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RESEARCH ARTICLE Open Access

Appropriate statistical methods for
analysing partially nested randomised
controlled trials with continuous outcomes:
a simulation study
Jane Candlish* , M. Dawn Teare, Munyaradzi Dimairo, Laura Flight, Laura Mandefield and Stephen J. Walters

Abstract

Background: In individually randomised trials we might expect interventions delivered in groups or by care

providers to result in clustering of outcomes for participants treated in the same group or by the same care

provider. In partially nested randomised controlled trials (pnRCTs) this clustering only occurs in one trial arm,

commonly the intervention arm. It is important to measure and account for between-cluster variability in trial

design and analysis. We compare analysis approaches for pnRCTs with continuous outcomes, investigating the

impact on statistical inference of cluster sizes, coding of the non-clustered arm, intracluster correlation coefficient

(ICCs), and differential variance between intervention and control arm, and provide recommendations for analysis.

Methods: We performed a simulation study assessing the performance of six analysis approaches for a two-arm

pnRCT with a continuous outcome. These include: linear regression model; fully clustered mixed-effects model with

singleton clusters in control arm; fully clustered mixed-effects model with one large cluster in control arm; fully clustered

mixed-effects model with pseudo clusters in control arm; partially nested homoscedastic mixed effects model, and

partially nested heteroscedastic mixed effects model. We varied the cluster size, number of clusters, ICC, and individual

variance between the two trial arms.

Results: All models provided unbiased intervention effect estimates. In the partially nested mixed-effects models,

methods for classifying the non-clustered control arm had negligible impact. Failure to account for even small ICCs

resulted in inflated Type I error rates and over-coverage of confidence intervals. Fully clustered mixed effects models

provided poor control of the Type I error rates and biased ICC estimates. The heteroscedastic partially nested mixed-

effects model maintained relatively good control of Type I error rates, unbiased ICC estimation, and did not noticeably

reduce power even with homoscedastic individual variances across arms.

Conclusions: In general, we recommend the use of a heteroscedastic partially nested mixed-effects model, which models

the clustering in only one arm, for continuous outcomes similar to those generated under the scenarios of our simulations

study. However, with few clusters (3–6), small cluster sizes (5–10), and small ICC (≤0.05) this model underestimates Type I

error rates and there is no optimal model.
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Background
Randomised controlled trials (RCTs) are often categorised

into two types: individually randomised controlled trials

(iRCTs) where participants are individually randomised to

treatment arms to receive one of the investigative treat-

ments; and cluster randomised controlled trials (cRCTs)

where groups of participants (clusters) are randomised to

treatment arms. We may expect outcomes for participants

within the same cluster to be more similar than those from

different clusters. The similarity can arise due to partici-

pants in the same cluster receiving care from the same

health provider or interacting with one another [1]. The im-

plications of clustering in cRCTs are widely acknowledged

[1, 2]. Clustering results in a reduction in statistical effi-

ciency in cRCTs and if ignored standard errors and p-values

for intervention effects are typically underestimated.

Clustering can also occur in iRCTs. For instance, clus-

tering of participants outcomes due to receiving treat-

ment as part of a group-based parenting intervention

[3], treatment in specialist clinics for the treatment of

venous leg ulcers [4], or participants under the care of a

surgeon for comparison for hemostasis in elective

benign thyroid surgery [5]. The care provider or group

dynamics may play a role in the causal pathway of the

intervention effect. We might expect correlated out-

comes between individuals either in the same group or

receiving treatment from the same care provider.

Standard sample size and analysis methods for iRCTs

rely on the assumption of independence between partici-

pants, which is violated when clustering is present. The

‘clustering effect’ is commonly quantified using the

intracluster correlation coefficient (ICC). The ICC mea-

sures the extent to which outcomes from participants

within the same cluster are correlated to one another

[1]. When designing and analysing iRCTs with cluster-

ing we need to consider implications of the potential

lack of independence. Ignoring clustering in the ana-

lysis can lead to over precise results and consequently

incorrect conclusions [1]. Clustering of any form re-

sults in a reduction in the effective sample size,

hence, there is a reduction in the power to detect an

intervention effect if it truly exists.

In addition to obtaining sufficient power and accurate

results, accounting for clustering enables us to estimate

the ICC. ICCs are often important for the interpretation

of trial results; we may be directly interested in the inter-

vention group or care provider effects. ICCs are also key

when calculating sample sizes for RCTs with clustering,

in order to maintain power [1].

An increasingly applied design in healthcare and educa-

tion research is a partially nested randomised controlled

trial (pnRCT) [6], where participants are individually ran-

domised to trial arms and clustering of outcomes occurs

in only one arm of the trial [7] (also termed partially

clustered trials). The STEPWISE trial is an example of a

pnRCT, assessing a structured lifestyle education

programme aimed at supporting weight loss for adults

with schizophrenia and first episode psychosis in a

community mental health setting. Individuals were rando-

mised to either an intervention arm of group-based life-

style education sessions or a control arm receiving usual

care at the individual level [8].

Specific statistical methods need to be used for analys-

ing pnRCTs. Consequently, there has been a consider-

able growth in the methodology literature (particularly

in the fields of psychotherapy and educational research)

in the past few decades both proposing and reviewing

statistical methods for pnRCTs.

Table 1 presents a summary of relevant literature

on the analysis of pnRCTs. This expands on the lit-

erature search by Flight et al. [9] summarising models

for the analysis of pnRCTs. Sample size calculations

for pnRCTs have been addressed elsewhere [10–14].

Analysis methods for pnRCTs have mainly focussed on

using mixed-effects models, individual-level models

which account for the hierarchical structure of the data

[6, 7, 9, 15–19]. These models allow us to control for

baseline covariates and represent the different levels in the

data, including cluster, individual, and repeated measures

(where applicable). In addition to accounting for the

clustering, we may expect the variance of the individ-

ual errors to differ between trial arms in pnRCTs,

termed heteroscedastic variance [7]. When a clustered

intervention arm is compared to a non-clustered control

arm the between-cluster variation in the intervention arm

is not present in the control arm. The clustered interven-

tion may result in a decrease or increase of the individual

level variability.

In this study, we use a series of simulations to evaluate

the statistical analysis models for two-arm parallel

pnRCTs with continuous outcomes, assessing a range of

scenarios including the effect of cluster size and the

number of clusters. In theory, the mixed-effects models

can be formulated so that they do not model clustering

in the control arm, however, when running these models

in statistical software packages it is necessary to impose

some form of clustering in the control arm. The litera-

ture identified in Table 1 highlighted that research to

date is lacking in addressing the best way to treat the

non-clustered control arm when fitting the models in

statistical software, using scenarios of relevance in the

field of public health with small clusters and small ICCs

[9], and evaluating the effect of the variance ratio of the

residuals on the model fit. In pnRCTs we may have small

numbers of clusters [9], thus we evaluate the impact of

the number of clusters on statistical inference and if

statistical inference remains valid using mixed-effects

models.
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Table 1 Summary of relevant literature on analysis of pnRCTs

Paper Relevant themes Range of valuesa Findings

Schweig &
Pane [16]

Describe and compare models for
pnRCTs with non-compliance using
a simulation study.

Simulation for two levels of clustering,
exact cluster sizes (m) unclear in paper,
cschool = 37, cclass = 177, λB = 2, 8,
ρschool = 0.005, 0.05, 0.15, ρclass = 0.0004,
0.10, 0.25, and θ = 0.087.

Clustering and non-compliance may have
a substantial impact on statistical inference
about intention-to-treat effects. Provide
methods that may accommodate pnRCT
with non-compliance, recommend using
complier average causal effect estimate
(CACE) and scaling by the proportion of
compliers. No mention of degrees of
freedom, we have assumed they used
default degrees of freedom method
available in R lme packages.

Flight et al. [9] Compare models applied to four
examples of pnRCTs. Compare
three different methods for classifying
the non-clustered control arm in
pnRCTs, including: singleton clusters,
one large cluster and pseudo clusters.

Examples with {m, c} = {36, 8; 24, 7; 14,
8; 5, 6}, and estimated ρ = < 0.0001, 0.02,
0.007.

Recommend use of the heteroscedastic
model, recommendations based only on
re-analysis of case studies. Methods for
classifying the non-clustered control arm
in pnRCTs had a large impact in fully
clustered mixed effects models and no
measurable impact in partially nested
mixed-effects models. ICCs in four
examples were small.

Sterba [27] Review of modelling developments
for pnRCTs, focused on those particularly
relevant to psychotherapy trials.

Recommend the inclusion of cluster
variability in analysis model as it provides
insight into treatment process (rather than
treating it as a nuisance). Annotated Mplus
commands for models

Lohr, Schochet
& Sanders
[19]

Report presenting a guide to design
and analysis issues for pnRCTs in education
research, using example trials. Discussion
of degrees of freedom issue in Appendix.

Guidance document, defines pnRCT in
context of education research and show
methods to analyse these using SAS.
Provide SAS commands for model fitting
in examples.

Korendijk
[18]

Compare models for pnRCTs using
simulation study, investigate
mis-specification for the estimation
of the parameters and their standard
errors.

Simulation study with m = 5, c = 10, 30,
50, 100, ρ = 0.05, 0.1, 0.2, λA = 1, d = 0.3.

All models perform comparably with
respect to fixed effect estimates.
Recommend use of partially nested
mixed-effects model. Simulations were
under null and ICC always greater than
zero. No mention of degrees of freedom,
we have we assumed default degrees of
freedom used from MLwiN software, and
homoscedasticity was assumed for
ndividual variances between the two
arms.

Sanders [17] Compare models for pnRCTs using
simulation study in terms of Type
I error and power

Simulation study with {m, c} = {2, 10; 4,
4; 5, 4; 10, 2}, ρ = 0, 0.1, 0.2, 0.3, 0.4, 0.5,
λA = 1, and ω2 = 0, 0.01, 0.059, 0.138.

Type I error rate increased as ICC increased,
Satterthwaite degrees of freedom had
better control than Kenward-Roger degrees
of freedom. Found using mixed-effects
model for pnRCT when ICC is zero likely
leads to never detecting intervention
effects, observed Type I error rates nearly
non-existent under all scenarios with ICC
equal to zero. Recommend to evaluate if
ICC is significantly different from zero prior
to selecting analysis method. Homoscedas
ticity was assumed for individual variances
between the two arms.

Baldwin
et al. [15]

Compare analysis models for pnRCT
simulation study, comparing three
degrees of freedom calculations,
and a pnRCT example.

Simulation for m = 5, 15, 30, c = 2, 4, 8,
16, ρ = 0, 0.05, 0.1, 0.15, 0.3, λB = 0.25,
1, 4, and d = 0, 0.5.

Recommend pnRCTs take account of
heteroscedasticity. Satterthwaite and
Kenward-Roger degrees of freedom
control Type I error rate. The heteroscedas
tic model provides an unbiased estimate
and little reduction in power compared to
the homoscedastic model. Argue that using
a partially nested mixed-effects model only
a problem for statistical inference when the
number of clusters is small. The number of
clusters has greater impact on power in
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We evaluate and provide recommendations for the

most appropriate analysis methods for pnRCTs,

including:

1) where mixed-effects models are necessary,

2) methods of specifying the clusters in the non-

clustered arm when fitting a model and the impact

these have on the analysis,

3) the impact of cluster sizes and the number of

clusters on statistical inference and,

4) the impact of heteroscedastic individual variance

between trial arms on statistical inference.

Methods
Methods for analysis of partially nested trials

In this section, we present the main modelling ap-

proaches currently available and used for pnRCTs, in-

cluding ignoring clustering altogether, imposing

clustering in the non-clustered control arm, and expli-

citly modelling the partially nested design by modelling

clustering only in the intervention arm.

It is possible to account for clustering by including each

cluster as a fixed effect in a standard regression model, in

addition to a fixed effect representing the intervention ef-

fect. Although this method is simple to implement, it is

not recommended. Firstly, it does not reflect the study de-

sign of a pnRCT and may require a large number of fixed

effects to be fitted lowering the degrees of freedom [9].

Secondly, if clusters are of size one there is insufficient in-

formation to estimate both the intervention effect and the

cluster effect for each cluster. Finally, it will generally

underestimate the intervention effect variability as the

cluster level variability is removed.

Table 2 presents a summary of the models for the ana-

lysis of pnRCTs using findings from the literature search

by Flight et al. [9]. We define: y as a continuous out-

come, i is the individual participant indicator, j is the

cluster indicator, t is the intervention indicator (0 = con-

trol, 1 = intervention), θ is the intervention effect, β0 is

an intercept term. Error terms are defined depending on

the model procedure, represented using ϵ, u, and r,

where u represents the between cluster variation and ϵ

and r represent individual level variation.

Model 1 (Table 2) is the linear regression model which ig-

nores the clustering and uses analysis for non-clustered tri-

als, assuming independence between individuals regardless

of whether they are in the same cluster. This infers that the

conditional variance of y in both the intervention and con-

trol arms is equal. If the outcomes of individuals in the

same cluster are correlated, the independence assumption

Table 1 Summary of relevant literature on analysis of pnRCTs (Continued)

Paper Relevant themes Range of valuesa Findings

pnRCTs. At least eight, preferably 16 clusters,
to maintain Type I error rate.

Bauer
et al. [6]

Review of RCTs to ascertain the prevalence
of pnRCTS in four public health and clinical
research journals. Analysis models for pnRCTs
extended to include pre-test measures as
covariates, individual and group level
covariates, and example of pnRCT

Example with clustering in one arm
c = 41, m = 9, and estimated ρ = 0.02.

Out of 94 RCTs, 32% were pnRCTs, 40%
iRCTs and 27% cRCT. None used methods
specific to pnRCTs. Example pnRCT data
could be analysed using mixed-effects
models. Argue pnRCTs “often increase
external validity at the expense of internal
validity” (p.20).

Roberts &
Roberts [7]

Examine the case of pnRCTs, heterogeneity,
comparison of analysis methods for
simulation study and present an example.

Simulation for m = 6, c = 8, ρ = 0, 0.1, 0.2,
0.3, λA = 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2
and d = 0.

Recommend pnRCTs take account of
heteroscedasticity. Satterthwaite unequal
variances t-test gave robust to heterosce
dasticity. The heteroscedastic model gives
slightly inflated test size for large ρ: suggest
Satterthwaite degrees of freedom as a
solution.

Lee &
Thompson
[28]

Describe analysis models for iRCTs with
clustering and apply to two examples
(using Bayesian approach)

Show that ignoring clustering may
underestimate uncertainty, leading to
incorrect conclusions.

Hoover
[34]

Statistical tests for RCTs with clustering
that differ across trial arms.

Example with clustering in both
arms with m = 7 − 12, c = 3.

Provide an adjustment for the independent
samples t-test for pnRCTs. Statistical impact
of heterogeneity effect increases as the
cluster size increases, and as heterogeneity
increases. The test does not allow for the
inclusion of covariates, multiple treatments,
baseline measures, or non-normally
distributed outcomes.

am = cluster size, c = number of clusters, ρ= ICC, d = standardised effect size, ω2= Omega Squared effect size percent of variability accounted for by treatment

condition, λA= ratio of total variance in control arm compared to clustered, λB= ratio of individual variance in control arm compared to clustered arm. Ordered by

year of publication
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is violated and we underestimate uncertainty around inter-

vention effects when using the linear regression model

above.

Model 2 (Table 2) is the fully clustered mixed-effects

model which includes the cluster as a random effect; this

includes variability at both the individual and cluster level.

The mixed-effects model with imposed clustering of the

control arm requires the estimation of a random cluster

effect for both intervention and control groups. Some op-

tions for the imposed clustering in the control arm are

given in Table 3. The variance of the control arm and

intervention arm are assumed to be the same (homoscedas-

tic). When the variance is believed to differ between control

and intervention arm model 2 is not appropriate as it does

not account for heteroscedasticity. Models 3 and 4

(Table 2) apply the cluster effect to the clustered arm only

[7, 10, 11, 14], we term these the partially nested models.

Individuals in the non-clustered control arm are as-

sumed independent. This accurately reflects the design

of the study with clustering only in one arm. In the par-

tially nested homoscedastic model, we apply the random

effect uj to the clustered intervention arm only;

between-cluster variability is only present for the inter-

vention arm. Model 3 is homoscedastic as the variance

of the individual errors, ϵij, between arms is the same. In

practice, the variance of the individual errors may differ

between trial arms [7]. Therefore, model 3 is extended

to a partially nested heteroscedastic model, model 4,

this allows for differing individual errors between

intervention and control arms but does not constrain

the form of heteroscedasticity.

Imposed clustering in the control arm

Regardless of whether or not the model assumes cluste-

ring in one (models 3 and 4) or both arms (model 2),

within the statistical software package a decision must

be made about how to code the cluster indicators in the

control arm. One method is to impose clusters for all in-

dividuals, including those in the control arm, and use

analysis for cRCTs with clustering in both arms.

Table 3 represents the different options for imposing

clustering, j, in the control arm, l is the number of indi-

viduals in the control arm and k is the number of arbi-

trary clusters in the control group. Option one treats the

control group as one single cluster; option two treats

each individual in the control arm as their own cluster

of size one (singleton clusters) giving j=l clusters in the

control arm. ICC estimation can be problematic with

options one and two, in theory, it is not possible to

estimate between-cluster variability in option one, or es-

timate within cluster variability in the control group

using option two [20]. Option three imposes artificial

pseudo-random clusters in the control group to

overcome the problem of estimating within or between-

cluster variability. The number of arbitrary clusters, k,

needs to be considered. We chose it to be equal across

treatment arms. In addition, option three will likely

result in a lower ICC estimation due to the assumed

independence of control participants.

In our simulation study, the fully clustered model 2 is

parametrised using the imposed clustering from Table 3.

The models are:

� Model 2.1 fully clustered mixed-effects model with

singleton clusters in the control arm;

Table 2 Models for the analysis of pnRCTs

Model description Statistical model Heteroscedastic
residuals

Model 1 Linear regression
(ignore clustering)

yi = β0 + θti + ϵi

• ϵ i � Nð0; σ2
ϵ
Þ the individual level variation

No

Model 2 Fully clustered
(impose clustering)

yij = β0 + θtij + uj + ϵij

• u j � Nð0; σ2uÞ a random effects term representing between cluster
variation

• ϵ i j � Nð0; σ2
ϵ
Þ the individual level variation

No

Model 3 Partially nested
homoscedastic

yij = β0 + θtij + ujtij + ϵij

• u j � Nð0; σ2uÞ a random effects term representing between-cluster variation
in clustered arm

• ϵ i j � Nð0; σ2
ϵ
Þ the individual level variation

No

Model 4 Partially nested
heteroscedastic

yij = β0 + θtij + ujtij + rij(1 − tij) + ϵijtij
• u j � Nð0; σ2uÞ a random effects term representing between cluster-variation
in clustered arm

• rij � Nð0; σ2r Þ the individual level variation in the non-clustered control arm.
• ϵ i j � Nð0; σ2

ϵ
Þ the individual level variation in the clustered arm

Yes

Table 3 Options for imposing clustering in the non-clustered

control arm

Option Cluster Intervention

1 j = 0 j = 1, …, c

2 j = 1, …, l j = l + 1, …, c

3 j = 1, …, k j = k + 1, …, c

Candlish et al. BMC Medical Research Methodology  (2018) 18:105 Page 5 of 17



� Model 2.2 fully clustered mixed-effects model with

one large cluster in the control arm;

� Model 2.3 fully clustered mixed-effects model with

pseudo clusters in the control arm.

Flight et al. [9] investigated the effect of the different

methods of imposing clustering in the control arm

presented in Table 3 in four pnRCT case-studies. The four

case-studies covered trials evaluating the effect of: specialist

leg ulcer clinics (clustered by clinic), acupuncture for low

back pain (clustered by acupuncturist), postnatal support in

the community (clustered by community support worker),

and telephone befriending for maintaining quality of life in

older people (clustered by volunteer facilitator). Little differ-

ence was found between the different methods for the fully

clustered mixed-effects models and there was no difference

between the different methods for the partially nested

mixed-effects models.

We anticipated that the method of imposing the clus-

tering in the control arm does not affect the results of

the methods which model clustering in only one arm,

however, this evaluated in the simulation study.

Degrees of freedom for fixed effect estimates

In the mixed-effects models above we wish to carry out

significance tests for the intervention effect. In addition

to the correct choice of model, the test statistics and

degrees of freedom in mixed-effects models also need to

be considered. For large sample sizes in mixed-effects

models, the test statistics for fixed effects can be as-

sumed Normally distributed. However, for small samples,

the t-distribution is generally used as an approximation of

the distribution of the test statistic. Estimating the degrees

of freedom for the t-distribution is unclear for pnRCTs

and will affect both the significance test and the confi-

dence intervals of the intervention effect estimate.

Comparison of degrees of freedom correction methods

has been undertaken for cRCTs and pnRCTs with small

numbers of clusters [15, 21]. The Satterthwaite

small-sample degrees of freedom correction takes into

account the variance structure of the data, for pnRCTs,

it has been shown to be superior to the between-within

method for maintaining Type I error rates (and compa-

rable to the Kenward-Roger method) [15]. Following

these results, the Satterthwaite approximation was used

to calculate degrees of freedom (using dfmethod() option

for mixed, available in Stata 14 onwards [22]).

Simulation study

Overview

We performed a simulation study to evaluate the statis-

tical analysis models for pnRCTs presented in Table 2,

and the imposed clustering of the control arm in Table 3

[23]. All models were fitted using a restricted maximum

likelihood procedure (REML). All simulations were done

in Stata [22], graphs produced using ggplot2 [24] in R

[25]. See Additional file 1 for simulation code.

Data-generating mechanism

We simulated data to replicate a two-arm parallel

pnRCT trial with a non-clustered control arm and a

clustered intervention arm (randomised 1:1) and a con-

tinuous outcome. We simulated data under various de-

sign scenarios and under both the null (θ = 0) and

alternative hypothesis (θ =A, where A ≠ 0).

Data were simulated from the following model with

the intercept set to zero and group allocation denoted

by t (t = 0 for control, t = 1 for intervention arm):

� For the intervention arm ðt ¼ 1Þ yi j ¼ θ þ u j
ffiffiffi

ρ
p þ zi j

ffiffiffiffiffiffiffiffi

1−ρ
p

� For the control arm ðt ¼ 0Þ yi j ¼ zi j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γð1−ρÞ
p

Where uj~N(0, 1) and zij~N(0, 1). This simulates an ICC

of ρ and a ratio of individual level variance between the

non-clustered control arm and the clustered intervention

arm of γ. If γ = 1, there is homoscedasticity between the

individual level variance in the control and intervention

arms. Full simulation study steps, including the data

generation process and modelling, are presented in Fig. 1.

Simulation scenarios are presented in Table 4. We var-

ied: the intervention effect, ICC, cluster size, number of

clusters, and ratio of individual variance between the

trial arms. If γ = 0.25 then individual variance in the con-

trol arm is one quarter that in the intervention arm and

if γ = 4 then individual variance in the control arm is

four times that in the intervention arm.

Simulation values were chosen based on literature on

pnRCTs [7, 9, 15, 17, 18, 26–28], as well as extending

these to more extreme cases of γ and ρ that may occur

in rare instances. Reporting of ICCs in iRCTs with clus-

tering is limited at present and it is plausible that ICCs

in pnRCTs differ from those of cRCTs. Current evidence

suggests ICCs in iRCTs with clustering in either one or

both arms are generally small and often less than 0.05

[7–9, 29], hence the choice to include a small ICC ρ =

0.01 in the simulations with ICCs of 0.2 or more occur-

ring only in rare instances. We were unaware of specific

literature on the evidence of heteroscedasticity, however,

from the authors experience of working on trials it was

expected γ to typically stay within the range of 0.5–2.

The number of clusters in the intervention group was 3,

6, 12 or 24. These figures reflect the small numbers of

clusters recruited in many pnRCTs and, coupled with

the cluster sizes of 5, 10, 20 or 30, they allowed alterna-

tive combinations of cluster size and number of clusters
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to be investigated for a given total trial sample size.

Figure 2 provides a graphical example of the simulated

partially nested trial data.

Methods

Each simulated dataset was analysed using the models

described in Table 2.

Estimand

Our estimands of interest are the REML estimate of

the intervention effect θ and the model estimate of

the ICC ρ.

Performance measures

We used the following performance measures: bias,

mean square error (MSE), and coverage of 95% confi-

dence intervals for θ̂, Type I error rate and power (calcu-

lated as the proportion of simulated results with a

statistically significant intervention effect at the 5% level

when the null or alternative hypothesis were true, for

Type I error and power respectively) and where appli-

cable, model estimated ICC. See Additional file 2 for

more detail on performance measures. For each of the

1440 scenarios 1000 datasets were generated; a 5%

significance level and 95% confidence interval based on

1000 simulations has a Monte Carlo error of 0.7%.

Results

Model convergence was generally satisfactory for all

models with models converging 95–100% of the time

across the different scenarios.

Imposed clustering in the control arm

Methods for imposing clustering in the control arm, pre-

sented in Table 3, had a negligible impact on the per-

formance measures of the partially nested mixed-effects

models (models 3 and 4). Under the simulation scenar-

ios, the differences in the p-value, confidence intervals

Fig. 1 Flowchart representing the simulation study steps

Table 4 Simulation input scenario values (total 1440 scenarios)

Variable Notation Values

Number of clusters c 3, 6, 12, 24

Cluster size m 5, 10, 20, 30

Intervention effect θ 0, 0.2, 0.5

ICC ρ 0, 0.01, 0.05, 0.1, 0.2a, 0.3a

Ratio of individual variance
between control and cluster
trial arms

γ 0.25a, 0.5, 1, 2, 4a

aConsidered extreme values to occur in rare scenarios
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and estimated ICC between the methods were only

present at four decimal places. Model fitting was consid-

erably faster (around four to five times faster) using ei-

ther one large cluster or the pseudo clusters compared

to the singleton clusters, however, this will likely be im-

material when fitting only a small number of models.

Methods for imposing clustering in the control arm

had a large impact on the performance measures of the

fully clustered mixed-effects models (models 2.1, 2.2,

and 2.3). Specific results for each performance measure

are presented in the following sections.

Results are reported only for the partially nested

mixed-effects models (models 3 and 4) with the

non-clustered controls classified as one large cluster, as

other methods were comparable. All three methods for

classifying the non-clustered control arms for the fully

clustered mixed-effects model (models 2.1, 2.2, and 2.3)

are reported.

Bias

The bias of the intervention effect estimate was not af-

fected by the analysis model used, individual variances

(γ) or the ICC (ρ). The maximum absolute bias of the

intervention effect was |0.057|, |0.043|, and |0.053| for

θ = 0, 0.2 and 0.5, respectively.

Mean square error

The models produced unbiased estimators with no dif-

ference in the observed MSE between the different

models. The MSE of the intervention effect estimate had

a mean of 0.051 (standard deviation (SD) 0.056) and

maximum of 0.346.

Type I error

Plots of the mean Type I error rates split by model, the

ratio of individual variances (γ) and the ICC (ρ) are pre-

sented in Fig. 3. As would be expected the linear regres-

sion model which ignores clustering had inflated Type I

error rates, with Type I error rate affected by ICC (ρ),

the ratio of individual variances (γ), number of clusters

(c), and cluster size (m). Although the inflation was

minimal when ICC ρ = 0.01, the mean Type I error

was 0.061 (SD 0.010). When cluster size m ≤ 10 and

ICC ρ = 0.01 the mean Type I error rate was 0.056

(SD 0.007).

Model 2, the fully clustered models with imposed clus-

tering in the control arm resulted in biased Type I error

rates. Imposing clustering as singleton clusters (model

2.1) led to Type I error rates which were largely affected

by the ratio of individual variances (γ) and ICC (ρ). Im-

posing one large cluster in the control arm (model 2.2)

resulted in Type I error rates of zero (due to the

Satterthwaite degrees of freedom correction resulting in

large degrees of freedom when imposing one large clus-

ter in the control arm). Imposing pseudo clusters in the

control arm of the same size as the intervention arm

(model 2.3) provided relatively good control of Type I

error rates, mean Type I error of 0.039 (SD 0.018), but

was affected slightly by both the ratio of individual

variances (γ) and ICC (ρ).

Both the homoscedastic and heteroscedastic partially

nested models (models 3 and 4) provided good control of

Type I error rates (model 3: mean Type I error 0.045 (SD

0.016) and model 4: mean Type I error 0.044 (SD 0.014))

with little difference present between the two models.

For more detailed comparison Fig. 4 presents the Type

I error rates for the linear regression model (model 1),

the homoscedastic (model 3) and the heteroscedastic

(model 4) partially nested models by ICC (ρ), the ratio

of individual variances (γ), number of clusters (c), and

cluster size (m). Higher ICC values resulted in higher

Type I error rates in each model. The impact of ignoring

clustering (model 1) depends on both ICC (ρ), cluster

size (m), and number of clusters (c). Larger number of

clusters (c) resulted in better control of Type I error

rates for the partially nested models. When ICC ρ = 0,

the Type I error rates of the partially nested models

(models 3 and 4) were reduced from the nominal level.

This is due to the cluster variance components being es-

timated when they are not actually present in the data.

When the ICC was small (ρ ≤ 0.05) and the individual

variance in the control arm smaller than that in the

intervention arm (γ < 1), the Type I error rates of par-

tially nested models were reduced from the nominal 5%

level. When ICC was large (ρ = 0.3) the partially nested

models generally resulted in inflated Type I error rates.

As ICC increased Type I error rates increased, with the
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Fig. 2 Example of simulated partially nested trial dataset, ρ = 0.1,

γ = 1, c = 12, and m = 10
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partially nested models 3 and 4 only reaching above the

nominal Type I error rate of 5% on average when ICC

ρ ≥ 0.2.

The Satterthwaite correction used in Stata mixed

(dfmethod(sat)) did not fully correct the Type I error

rates to the nominal 5% level, even with the use of the

heteroscedastic model 4. The heteroscedastic model 4

did have slightly improved control of Type I error rates

than the homoscedastic model 3.

Coverage

Plots of the mean coverage of the 95% confidence inter-

vals of the intervention effect estimate split by model,

ICC (ρ) and the ratio of individual variances (γ) are pre-

sented in Fig. 5 under the alterative hypothesis. The lin-

ear regression model (model 1) resulted in under

coverage when ICC was small (ρ ≤ 0.05) and the cover-

age rates decrease as ICC (ρ) increases. The fully clus-

tered models with imposed clustering in the control arm

resulted in both over and under coverage dependent on

the direction of the variance ratio and the method of im-

posed clustering. Imposing clustering as singleton clus-

ters (model 2.1) resulted in coverage rates largely

affected by ratio of individual variances (γ). Imposing

one large cluster in the control arm (model 2.2) resulted

in over coverage, due to the reduced Type I error rates

of zero caused by the Satterthwaite degrees of freedom

correction. Imposing pseudo clusters in the control arm

(model 2.3) provided mean coverage rates of 0.961 (SD

0.018).

Both the homoscedastic and heteroscedastic partially

nested models (models 3 and 4) provided good control

of coverage rates of 95% confidence intervals (model 3:

mean coverage rate 0.956 (SD 0.014) and model 4: mean

coverage rate 0.956 (SD 0.014)) with little difference be-

tween the two models. In the simulations over coverage

of the 95% confidence intervals for the heteroscedastic

model 4 occurred when ICC ρ ≤ 0.05, except when the

Fig. 3 Mean Type I error rate by γ and ρ over all scenarios, for each model
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ratio of individual variances γ = 4. Hence, the results

were generally conservative when ICC was small. Under

coverage of the 95% confidence intervals for the hetero-

scedastic model 4 only occurred for large ICC (ρ) and

ratio of individual variances (γ).

Power

Increasing the number of clusters as opposed to increas-

ing the cluster size had a bigger impact on power with a

fixed total sample size. Fig. 6 shows the power of the lin-

ear regression model (model 1), the homoscedastic

(model 3) and the heteroscedastic (model 4) partially

nested models when intervention effect θ = 0.5 by ICC

(ρ), the ratio of individual variances (γ), number of

clusters (c), and cluster size (m) (see Additional file 2 for

when θ = 0.2). Under the simulation scenarios con-

ducted, 12 or more clusters and cluster sizes of ten or

more were generally needed for a power greater than

80%. Using three or six clusters rarely gave power over

80%, only for ICC ρ ≤ 0.05 and relatively large cluster

sizes m ≥ 20, did power go over 80%.

For ICC ρ ≤ 0.05, which is commonly assumed when

planning complex intervention trials in healthcare,

power of 80% was generally achieved with: 24 clusters of

any size, 12 clusters of size ten or more, and six clusters

of size 20 or more (120 in each arm).

Under a ratio of individual variances γ = 1 the total

residual variance in both trial arms is equal to one,

hence, the intervention effect (θ) we simulated is the

standardised intervention effect. Figure 7 shows the

power of models 1, 3 and 4 under homoscedastic indi-

vidual variances (γ = 1). The heteroscedastic model 4 is

over-parameterised in the case of the ratio of individual

variances γ = 1, however, it did not result in a substan-

tially lower power than the homoscedastic model.

Table 5 presents the power of model 4 and model 1

under ICC ρ = 0, model 4 is over-parametrised here.

There is a loss in mean statistical power which ranged

between 1.7 to 6.3%.

ICC

Figure 8 presents the mean estimated ICC across the

fully clustered and partially nested mixed effect models,

Fig. 4 Type I error rate of models 1, 3 and 4, by ρ, γ, c, and m
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by the ratio of individual variances (γ) and ICC (ρ). ICC

estimation was consistent under the heteroscedastic par-

tially nested model (model 4). The homoscedastic par-

tially nested model (model 3) resulted in biased ICC,

with the direction of bias dependent upon the ratio of

individual variances (γ).

Figure 9 presents the ICC for the homoscedastic

(model 3) and heteroscedastic (model 4) partially nested

models by the ratio of individual variances (γ), ICC (ρ),

number of clusters (c), and cluster size (m). The ICC es-

timation from the homoscedastic model was highly af-

fected by γ. The ICC estimation from the

heteroscedastic model was not affected by γ. Using the

heteroscedastic model, there was a slight positive bias in

the ICC estimation when ICC ρ ≤ 0.05, and when ICC

ρ ≥ 0.2 there was slight negative bias in the ICC estima-

tion. For example, when ICC ρ = 0.0 the mean ICC esti-

mation was 0.028 (SD 0.018), and when ICC ρ = 0.05 the

mean estimation was 0.060 (SD 0.014). As expected ICC

estimation improved as sample size increased. The ICC

estimation was only consistent across all values of ICC

(ρ) when there were 24 clusters, regardless of cluster

size. For an accurate estimate of ICC when true ICC ρ =

0.05, under the simulation scenarios we required cluster

sizes (m) of 20 or 30 or at least six clusters of size ten or

24 clusters of size five.

Summary of results

Simulation results are summarised in Table 6 presenting

the performance of the simple linear regression model

(model 1), homoscedastic partially nested mixed effects

model (model 3) and heteroscedastic partially nested

mixed effects model (model 4) under different design

scenarios. Results from the fully clustered mixed-effects

models (model 2) are excluded from Table 6 as we do

not recommend these in any scenario regardless of the

method used to impose clustering in the control arm.

None of the fully clustered mixed-effects models pro-

vided full control of the Type I error rates and the par-

tially nested mixed effects models always outperformed

them.

Discussion
In this study, we have investigated six modelling strat-

egies for the analysis of pnRCTs with a continuous out-

come. Our simulation study showed that when analysing

pnRCTs the use of the heteroscedastic partially nested

mixed-effects model for normally distributed outcome

Fig. 5 Mean coverage of 95% confidence interval, by ρ and γ over all scenarios
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Fig. 6 Power when θ = 0.5, by ρ, γ, c, and m

Fig. 7 Power with standardised intervention effect of 0.5 (θ = 0.5 and γ = 1)
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data (using Satterthwaite degrees of freedom) in general

provides: unbiased effect estimates; maintains relatively

good control of Type I error rates; and did not noticeably

cause a reduction in power even with homoscedastic indi-

vidual variances across arms. The heteroscedastic partially

nested model takes account of the between-cluster

variance (if present) and therefore provides valid infer-

ences for the intervention effect. Additional file 2 presents

model-fitting code for R, Stata and SAS. When using the

partially nested mixed-effects model, the method of classi-

fying the non-clustered controls had a negligible impact

on statistical inference under the simulation scenarios,

agreeing with findings from analysis of four example

pnRCTs by Flight et al. [9].

Our findings were broadly similar to those of Bald-

win et al. [15]. However, they did not assess the

method of classifying the non-clustered controls or

performance of models under small ICC (ρ = 0.01,

lowest value used in our study) which commonly

occur in pnRCTs [7–9, 26, 29]. Unlike findings from

Baldwin et al. [15], the Satterthwaite degrees of freedom

correction did not fully control the Type I error rate in

our simulations. The largest discrepancy from the nominal

level occurred when the ICC was small, ratio of individual

variances <1, and under small sample sizes.

Table 5 Mean and SD of power of model 4 versus model 1

under ρ = 0 over all scenarios

Intervention
effect (θ)

Model Power

Mean (SD)

0 1 0.050 (0.007)

4 0.033 (0.014)

0.2 1 0.388 (0.276)

4 0.327 (0.286)

0.5 1 0.803 (0.254)

4 0.740 (0.298)

Fig. 8 Mean estimated ICC by γ and ρ over all scenarios, for each model
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We have illustrated that using a naïve linear regression

model, which ignores clustering in pnRCTs, gave inflated

Type I error rates and resulted in under coverage of

confidence intervals when clustering of outcomes was

present. When ICC 0.01 ≤ ρ ≤ 0.05, which we believe is

common in pnRCTs [9], ignoring clustering led to

largely inflated Type I error rates using the linear regres-

sion model. A low ICC may still have a large impact,

particularly when cluster sizes are large.

When ICC was small and/or with very few clusters

and small cluster sizes using the partially nested

mixed-effects models 3 and 4 resulted in underestimated

Type I error rates. These models correctly reflect the de-

sign of the trials; however, they can result in conservati-

vism regarding the precision of estimates due to the bias

in estimating the variance estimates when we have a

small number of clusters. Consequently, using the par-

tially nested mixed effects models with small ICC may

make it difficult to detect differences between the trial

arms when present.

Sanders [17] recommend evaluating whether ICC is sig-

nificantly different from zero prior to selecting an analysis

method. We caution such significance testing for ICC,

and similarly testing for heteroscedasticity [7]. These tests

will generally lack power in a pnRCT and it is not the

statistical significance of the ICC that matters but impact

of the magnitude on inference. In general, we recommend

the use of the partially nested models when analysing

pnRCT trials, particularly if conservatism and an ICC esti-

mate are desired. However, the choice of model and the

requirement or not for conservatism needs to be consi-

dered in the context of the specific trial setting.

Similar to cRCTs [1], in a pnRCT increasing the number

of clusters rather than increasing the cluster size has a

greater increase in power for a fixed total sample size. Our

simulation results showed that this will also provide a more

accurate estimation of the ICC. When the number of clus-

ters is small, for example, three clusters in the intervention

arm, the ICC estimation will likely be upwardly biased.

With six clusters in the intervention arm, the ICC estimate

was relatively unbiased once the true ICC ≥0.1. The ICC

estimation became consistent regardless of cluster size or

true ICC only once there were 24 clusters in the simulation

scenarios. This reflects findings from previous research that

to reliably estimate the size of clustering effects a large

number of clusters are required [30].

This study investigated the case of analysing partially

nested trials under complete compliance. Non-compliance

in the clustered arm of a pnRCT may occur when some

participants randomised to a particular treatment group or

Fig. 9 ICC estimation of heteroscedastic partially nested model, by γ, ρ, m and c
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care provider do not attend any sessions or receive treat-

ment as part of different treatment group or care provider

intended at randomisation. Consequently, non-complier

outcomes may be assumed independent if they do not

receive the clustered intervention. Schweig and Pane [16]

describe and compare models for pnRCTs with non-com-

pliance using a simulation study. They argue that an un-

biased intention-to-treat (ITT) estimate under non-

compliance on a pnRCT may be obtained using a Complier

Average Causal Effects (CACE) model. This method in-

volves estimating the treatment effect for compliers and

scaling this CACE effect estimate by the proportion of

compliers to provide an ITT effect estimate. The issues

posed by non-compliance warrant further investigation,

considering a broader range of scenarios and investigating

the degrees of freedom corrections for valid statistical

inferences.

The design and analysis of trials with clustering in one

arm needs to take account of heterogeneity and ICC to

have a sufficiently powered sample size and accurate

intervention effect. We strongly recommend the reporting

of ICCs in trials results papers. The framework developed

for cRCTs is also broadly applicable in iRCTs with cluster-

ing, identifying three dimensions to consider when report-

ing an ICC: a description of the dataset (including

characteristics of the outcome and the intervention); how

the ICC was calculated; and the precision of the ICC [31].

This has the potential to improve the assumptions about

ICCs in iRCTs, adhere to CONSORT reporting guidelines

for RCTs of nonpharmacological interventions [32], and

raise awareness of the need to account for clustering in

both the sample size and analysis in iRCTs with clustering.

A wide variety of terminology are used in iRCTs with

clustering in one arm, including partially nested, partially

clustered, multi-level, and individually randomized group

intervention. A more consistent use of terminology would

reduce confusion, improve reporting and make finding

relevant ICCs from previous trials easier. We suggest the

terminology partially nested randomised trial (pnRCT) to

describe an iRCT with clustering in one arm.

Limitations

All the mixed-effects models assume that the cluster

level means follow a Normal distribution. This may not

be a valid assumption, for example, when we have a

small number of clusters.

In the simulations, we have used fixed cluster sizes. In

practice, cluster size may vary, causing a loss in efficiency

when estimating the intervention effect. A simulation

study by Candel and Van Breukelen [10] found the effi-

ciency loss in the intervention effect estimate was rarely

more than 10%, requiring recruitment of 11% more

Table 6 Summary of simulation results by different models split by ρ, m, and c averaged over all γ

*Model 1: simple linear regression; Model 3: homoscedastic partially nested mixed effects model; Model 4: heteroscedastic partially nested mixed effects model.

Green highlighted ≤ than expected, red highlighted > than expected
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clusters for the intervention arm and 11% more individ-

uals for the control arm. The loss of efficiency in the inter-

cept variance reached to 15%, requiring 19% more clusters

in the clustered arm, and no additional recruitment in the

control arm. Additionally, it has been shown in cluster tri-

als if the coefficient of variation in cluster size is small, less

than 0.23, then the correction on sample size is negligible

[33]. It should be noted that cluster sizes are likely to be

more similar in group administered interventions com-

pared to trials which impose clustering by being treated

by the same care provider [7].

Throughout the simulations we assumed there was no

effect of clustering in the control arm, this may not strictly

be true in practice. In healthcare intervention trials, a

commonly used control intervention is ‘care as usual’. This

type of control may induce some form of low-level clus-

tering, for instance, treatment by a healthcare practitioner.

If the same practitioner treats numerous individuals, we

can assume, in the same sense as we have done for the

intervention arm that these individuals are clustered and

include this in the modelling procedure. However, this in-

formation is often not available in trial data and is not

unique to pnRCTs.

Partially nested trials pose a number of challenges, in

particular, the issue of internal validity [6]. The grouping

of individuals as part of the delivery of a treatment may

affect the outcome. However, taking a pragmatic view-

point, we consider the grouping as part of the treatment

as a whole if this is reflective of treatment delivery in

real-world practice. In addition, if the ungrouped con-

trols are the true comparison in real life a pnRCT design

will provide external validity.

Conclusion
Partially nested RCTs are increasingly used in complex

intervention research. Ignoring clustering can lead to infla-

tions of the Type I error rates, even for small ICCs. When

analysing a pnRCT with continuous outcomes we recom-

mend the use of a heteroscedastic partially nested

mixed-effects model with corrected degrees of freedoms

such as using the Satterhwaite method, for outcomes similar

to those generated under the scenarios of our simulations

study. The method used for classifying the non-clustered

controls had a negligible impact on the results using the par-

tially nested mixed-effects model. The model is easy to im-

plement in standard statistical software and does not cause a

notable reduction in power under homoscedastic variances.

With few clusters, small cluster sizes and small ICC, the par-

tially nested model underestimated Type I error rates and

gave largely inflated ICC estimates, hence, for such designs

there is no optimal model and we need to be cautious in

model interpretation. Finally, to aid the design and prior

selection of an appropriate analysis plan for pnRCTs, we

strongly recommend the reporting of estimated ICC when

publishing trials results.
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