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Abstract 

Congruently melting intermetallic, single-phase Ni3Ge (Tm = 1132°C) has been rapidly 

solidified via drop-tube processing wherein powders, with diameters between  850 to ≤ 38 

m, with equivalent cooling rates of ≤ 700 to > 54500 K s-1, were produced. Six dominant 

solidification morphologies were identified with increasing cooling rate, explicitly; (i) 

spherulites, (ii) mixed spherulites & dendrites, (iii) dendrites - orthogonal, (iv) dendrites - 

non-orthogonal, (v) recrystallized, and (vi) dendritic seaweed, are observed imbedded 

within a featureless matrix. Selected area diffraction (SAD) in the transmission electron 

microscope (TEM) analysis confirmed that it is only the spherulite microstructure that is 

partially ordered amongst the above listed microstructures, which are disordered. However, 

SAD analysis indicated that the featureless background material of all above 

microstructures is chemically ordered. Thermal analysis indicates a non-reversible reaction. 

Introduction 

Dendrites are one of the most common morphologies observed during the solidification of 

metallic materials. In contrast spherulites, although common in polymers, are rare in metals, 

particularly during single-phase solidification. In polymers, spherulites are most common 

during the crystallization of high molecular weight melts, where topological constraints 

restrict the reorientation of long chain molecules  [1]. This basic physics was used by 

Granasy et al. [2] to construct a phase-field model of spherulite growth, the fundamental 

ingredient of which was that translational diffusion was significantly easier than rotational 

diffusion. 
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Despite this, spherulites are known to occur in some simple systems where rotational 

diffusion would not normally be considered to be restricted. One such example is elemental 

selenium, although the formation of spherulites has been more commonly reported in the 

course of devitrification of amorphous metals when held above the glass transition 

temperature. Metallic glass systems in which spherulites have been observed upon 

devitrification include Ni-P [3], Fe-Si-B [4], Zr-Cu-Al [5, 6] and Zr-Cu-Ni-Al-Nb [7-9]. In a 

laser processing study on the Zr-Cu-Ni-Al-Nb system [9] found that spherulites form at the 

same composition as the amorphous matrix, concluding that under such conditions the 

formation of spherulites was a growth dominated process. 

Some common requirements for the formation of spherulites are known despite disagreement 

regarding the formation mechanism for their growth. One requirement is a disposition to non-

crystallographic orientations by means of small angle branching [10]. Another requirement is 

that a high viscosity should exist in the medium in which crystallization occurs. Morse et al. 

[11] showed the importance of this second requirement by examining the crystallization 

behavior of approximately seventy inorganic salts in media of varying viscosity.  This high 

viscosity of the crystallizing media presumably accounts for why spherulites are relatively 

common during the crystallization of amorphous metals.  

In this paper we will explore the relatively uncommon phenomenon of spherulite formation 

during crystallization from a metallic melt. The particular system we will investigate in this 

respect is the intermetallic compound -Ni3Ge. Under equilibrium solidification conditions 

-Ni3Ge will solidify with the ordered L12 crystal structure at all temperatures below the 

liquidus. However, it has been shown that for undercoolings in excess of 168 K, 

corresponding to a critical growth velocity of 0.22 m s-1, complete disorder trapping occurs 

[12]. 

Moreover, not only can ȕ-Ni3Ge be made to crystalize to a spherulitic morphology, but by 

changing the solidification conditions the spherulitic morphology will transform into different 

microstructures namely, mixed spherulites & dendrites, dendrites-orthogonal, dendrites-non-

orthogonal, recrystallized, and dendritic seaweed. As such, -Ni3Ge is an interesting 

compound in which to study the fundamental dynamics of microstructure formation in a 

single-phase material. Due to the importance of order-disorder reactions in the formation of 

microstructure in ȕ-Ni3Ge, we also performed Differential scanning calorimetry (DSC) on the 
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rapidly solidified material, in order to identify whether the ordering reaction giving rise to 

spherulite formation is reversible or irreversible.  

 

Experimental Methods  

Congruently melting, single phase ȕ-Ni3Ge (22.5 to 25.6 at. % Ge) [12] was made by arc 

melt. To verify that the final compound is homogenous, the process of arc-melting was 

performed 8 times. An X-ray diffraction (XRD) with a PANalytical Xpert Pro was used to 

confirm the phase composition of the ingot thus formed. Rapid solidification processing was 

undertaken using the Leeds 6.5 m drop-tube [13].  

The arc-melt ingot, 9.6 g in mass, was loaded into an alumina crucible with three 300 µm 

laser drilled holes in the base. Induction heating was used to melt the sample with efficient 

RF coupling being achieved by using a graphite susceptor. Once the desired temperature of 

1480 K (1207 C) (equivalent to 75 K superheat) was achieved the crucible was pressurized 

to 400 kPa, wherein a spray of fine droplets is produced. These solidify in free fall down the 

tube, which is maintained at a pressure of 50 kPa. In both cases the gas used was dried, 

oxygen free N2. The drop-tube method is explained in detail in [13].  

The Ni3Ge drop-tube powders were prepared for analysis by mounting, grinding, polishing 

and etching. First, the sieving into particle size ranges of the powders was performed. This 

was done by utilizing nine wire mesh stacking sieves that have apertures that decrease from  

850 ȝm (< 700 K s-1) to  38 ȝm (> 54500 K s-1). Once loaded with powder the entire stack 

was actively agitated for 10 minutes.  The methodology for the estimation of sample cooling 

rate is outlined in [14]. The mounting of the powder in a TransOptic™ resin followed from 

its removal from the sieves. 

XRD analysis was used to confirm that the drop-tube powders remained single-phase 

following rapid solidification processing. Subsequent to XRD analysis they were mounted 

and polished to a 0.5 m surface finish for microstructural analysis. After having been 

polished, the etching of the samples occurred with an equimolar mixture of hydrofluoric, 

hydrochloric and nitric acids. In order to obtain the microstructure of the droplets exposed by 

the etching, scanning electron microscope (SEM) imaging was utilized using a Carl Zeiss 

EVO MA15 SEM. EDX line scans, using a X-Max Oxford instrument Energy-Dispersive X-Ray 

(EDX) detector on the SEM, were used to investigate any chemical variation across the 

microstructural features observed after etching. Thermal analysis was used to determine the 
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reordering transition temperature in the Ni3Ge compound, with the temperature scan range 

being from room temperature to 1030 ˚C, at 10 K/min heating/cooling rate in N2 gas. 

 

Results 

In Figure 1, it is shown that XRD peaks from all drop-tube samples may be indexed to -

Ni3Ge via the ICCD pattern 04-004-3112. When Ahmad et al. [15] deeply undercooled a 

similar material using a melt fluxing technique, the resultant material also remained single 

phase. The XRD results here show that the same is valid for rapid cooling via drop-tube 

processing. Note that here, and throughout the paper, we use the designation  to refer to the 

chemical phase Ni3Ge irrespective of whether this is fully ordered (L12), completely 

disordered (A1-fcc) or has some intermediate degree of partial chemical ordering.  

 

Figure 1:  XRD results of an arc melted (black) and rapidly solidified samples, ranges from 

( 850 m to ≤ 38 m) indicating with different colour respectively. Vertical black lines 

indicate peaks position for the single-phase ȕ-Ni3Ge reference pattern and different colours 

represents XRD patterns of particle sizes from  850 m to ≤ 38 m. 

 

EDX analysis was carried out on freshly polished samples to ensure the chemical 

composition of the all drop-tube samples. For this, EDX area scanning was randomly 

performed at least on 10 particles of all ranges of drop-tube samples ( 850 m to ≤ 38 m) 

with the measured chemical compositions being within the Ni3Ge homogeneity range Ni – 
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23.8 at. % Ge as shown in Figure 2. Consequently, all ranges of drop-tube particles consists 

of an average chemical composition within the range of single phase, congruently melting 

compound, ȕ-Ni3Ge [16]. 

 

Figure 2: An averaged out EDX concentrations of Ni and Ge (Ni-23.8 at. % Ge) drop-tube 

samples. 

SEM was used for studying microstructures of the rapidly solidified Ni3Ge droplets. There 

were six typical microstructures observed, namely (a) Spherulites, (b) mixed spherulites & 

dendrites (c) dendrites - orthogonal (d) dendrites - non-orthogonal, (e) crack-like 

(recrystallized), and (f) dendritic seaweed, all of which were observed embedded within a 

featureless matrix. Typical examples of these microstructures can be seen from the Figures 3.  

Figure 3a is a typical SEM image from the  850 m size fraction. In what is otherwise a 

featureless matrix, a number of spherulite like structures, which characteristically have 

diameters within 10-20 µm, are evident. These features appear to be omnipresent in the drop-

tube powders in this size fraction. This is also the case in the 850-500 µm size fraction in 

which the spherulite like structures are smaller, with typical diameters of  10 µm. 

Spherulitic structures are also observed in the size range 500-300 µm. However, these are 

now characteristically  3 µm in diameter. For the 300-212 µm and 212-150 µm size 

fractions dendrites and spherulites are observed to co-exist, (Figure 3b), with the proportion 

of dendrites increasing in the powders from the smaller sieve fraction.  
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With further reductions in the size of the powder (150-106 µm), spherulites cease to be seen 

in the microstructure of the etched droplets, with dendrites (orthogonal) become the dominant 

structure. Figure 3c shows examples of this. When the size of the sample decreases to 75 µm, 

dendrites are still the dominant morphology evident in the powders, although now these tend 

to display non-orthogonal side-branching (Figure 3d). With a yet further reduction in droplet 

size to 75 – 53 ȝm, numerous crack-like features are apparent as shown in Figure 3e. These 

features are not however cracks, as this morphology is not observed prior to etching. It is 

shown in [15] that the crack-like relief is indicative of a recrystallization. 

Finally, in the two smallest size fractions 53 – 38 ȝm and  38 ȝm, yet another structure is 

observed, which might be define a being ‘dense branched fractal’ or ‘dendritic seaweed’ in 

nature, an example of which can be seen in the Figure 3f.  

 

Figure 3: SEM micrograph of hydrofluoric (HF) etched Ni3Ge drop-tube samples (a) 

Spherulites, (b) mixed spherulites & dendrites (c) dendrites – orthogonal (d) dendrites - 

non-orthogonal, (e) crack-like (recrystallized), and (f) dendritic seaweed, are observed 

imbedded within a featureless matrix. 
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The microstructures observed in -Ni3Ge powders are remarkable for a number of reasons: 

1) Spherulites are extremely rare in metallic systems and, as far as we are aware, have 

never been reported in intermetallics.  

2) It is highly unusual to obtain such strong differential etching in a single-phase 

material, i.e. what has caused some regions to etch and other not to do so. EDX area and 

line scan measurements confirm that this is not chemical segregation, both regions shown in 

Figure 3a having no detectable chemical inhomogeneity. 

3) It is unusual in a fully crystalline material to see such clearly delineated structures. 

Normally, in for instance a dendritic structure, the intergrowth of differently oriented 

crystals results in a complex as-solidified microstructure. Here, apparently isolated crystals 

have grown. Such structures are common in amorphous-crystalline composites, but highly 

unusual in fully crystalline materials, although the XRD patterns for the drop-tube powders 

show no evidence for amorphous material in any size fraction. In fact, we have shown in 

[14] that the contrast arises due to disorder trapping during the recalescence phase of 

solidification.  

DSC analysis was undertaken on the rapidly solidified Ni3Ge (spherulite samples) with 

heating rate 10 K min-1, in order to identify any reordering transitions in this system are 

whether they are reversible or irreversible. The results of this experiment are given in the 

Figure 4, with the DSC trace from the first and second heating/cooling cycle indicated by green & 

purple arrows respectively. Two vertical black lines indicate potential transition temperatures at 530 

to 740 °C. We note that there is generally a close correspondence between the curves for the 

first and second cycles for both heating and cooling. This is indicative of low drift in the 

instrument between cycles, giving us confidence in the results and indicates that the material 

has the same heat capacity in cycle 2 as in cycle 1, whereby the material remains Ni3Ge. 

There are two small exothermic (downward) peaks at the indicated temperatures during the 

first heating cycle, which would be consistent with reordering of the partially disordered 

material due to disorder trapping during rapid solidification. As these appear only during the 

first heating cycle this reaction appears irreversible, which is consistent with the ordered 

variant being more stable than the disordered form at all temperatures below the liquidus. The 

ordering reaction is discussed in more detail later.  

Discussion  
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A reliable description of the solidification dynamics of Ni3Ge can be assembled from the 

SEM, TEM [13, 17, 18] and XRD data. It is clear that all samples are single-phase -Ni3Ge, 

with all XRD peaks being matched to ICCD pattern 04-004-3112. We postulate that the 

rapidly solidified material formed during recalescence grows as the disordered variant of the 

material while during slower growth in the post-recalescence phase of solidification the 

ordered variant is formed. During etching the disordered material is preferentially attacked, 

revealing the recalescence solidification morphology, which is, depending upon cooling rate, 

variously spherulitic, dendritic, recrystallized or dendritic seaweed. The more usually found 

chemically ordered variant is the ‘featureless’ matrix material, which appear to resist even 

the very aggressive etchant used here. This is consistent with the chemically resistant nature 

of intermetallic compounds. The results are in line with TEM results. These show that 

superlattice spots are found in the material of ‘featureless’ matrix. However, they are not 

observed in the orthogonal dendrites, the non-orthogonal dendrites or the dendritic seaweed.  

 

Figure 4: DSC trace from a Ni3Ge intermetallic compound, first and second heating/cooling cycle 

indicated by green & purple arrow correspondingly. 

 

For the spherulite morphology the TEM evidence is that the ‘featureless’ matrix is, as per the 

other morphologies, fully ordered, but the spherulites themselves are only partially 

disordered, consisting of alternating filaments of ordered and disordered material. The 

relationship between undercooling and chemical ordering was explored in detail for the 
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Ni3Ge compound by Ahmad et al. [19], with it being determined the fully disordered growth 

occurred for T > 168 K, this being evident by a rapid increase in growth velocity with 

undercooling above T = 168 K.  Unfortunately, direct measurement of undercooling during 

drop-tube processing is not possible, although it would be expected that smaller droplets 

would experience higher undercooling, both because of their higher cooling rate and because 

of the melt sub-division effect. These effects have been quantified by Wang & Wei [19] for 

drop-tube processed melts and their model estimates that the droplet size required to attain a 

critical undercooling of T > 168 K is d < 280 m. This is however a maximum 

undercooling that would be expected in such sized droplets, with the stochastic nature of 

nucleation meaning that some droplets of this diameter will undercool by much less.  

This model, together with the observations of Ahmad et al. [19], allow for a consistent 

explanation of the observed spherulite-dendrite transition observed in the drop-tube samples. 

For droplets in the size range 850-300 m the undercooling achieved is < 168 K and the 

growth during the recalescence phase of solidification is to a partially disordered (mixed 

ordered/disordered) spherulite morphology. This is also in line with the finding that with 

decreasing particle size (increasing undercooling), the volume fraction of spherulites 

increases. For smaller droplets, in the size range 300-150 m, some droplets achieve an 

undercooling above 168 K, some do not, and mixed dendrite/spherulite morphologies may be 

observed. Such mixed morphologies may also be observed in single droplets if the initial 

undercooling were only marginally above 168 K, as warming of the droplet during 

recalescence will lower the undercooling. Finally, for droplets with d < 150 m, for which 

the model of Wang & Wei [19] predicts a maximum undercooling of 270 K, we propose that 

virtually all droplets achieve an undercooling of at least 168 K and spherulite morphologies 

cease to be observed.  

The dominance of spherulite growth at low undercooling is probably related to the slow, 

kinetically limited, growth of the ordered phase. The occurrence of spherulites in devitrified 

metallic glass systems is instructive. The principal difference between crystallization from the 

melt and crystallization from a metallic glass precursor, is that in a metallic glass the 

viscosity is much higher and consequently the atomic diffusivity is much lower. As a result, 

diffusion in a glass is generally restricted to short range such that the atom rearrangement 

occurs without bulk solute redistribution. In turn this means that the growth rate is limited by 

kinetics, rather than by diffusion. An isotropic material under pure kinetically limited growth 

would grow as a sphere [8]. However, crystalline anisotropy within the growing sphere will 
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favor certain crystal orientations, giving rise to the fine needle spherulite morphology. In the 

growth of -Ni3Ge from its parent melt, a similar condition occurs. There is no need for long-

range solute mobility by diffusion since the compound is congruently melting. This is in line 

with EDX measurements. These show that, within experimental uncertainty, spherulitic and 

dendritic chemical composition is the same as that of the surrounding matrix material.  

Once fully disordered growth is achieved at higher undercooling, there is a switch to a 

dendritic morphology as growth of the disordered solid is rate limited by diffusion rather than 

kinetics.  With decreasing droplet size (increase of the undercooling) these are observed to 

switch from having orthogonal to non-orthogonal side-branching. In a cubic system this is 

characteristic of a switch in the primary growth direction. Typically, cubic systems grow 

along the <100> directions at equilibrium, with a switch to either <110> or <111> growth 

being noted at elevated undercooling in a number of systems [20]. A similar change has been 

observed as precursor to the transition to the dendritic seaweed morphology [21, 22].  

From the discussion above it is clear that chemical ordering, and disorder trapping at elevated 

growth velocity, play a key role in the formation of the observed microstructures. Heating in 

the DSC can be used to initiate reordering of the non-equilibrium disordered structure, with 

the DSC results suggesting such a transition might occur between 530 to 740 °C. Based on 

the thermodynamic assessment of the Ni-Ge system given by Jin et al. [23] we estimate the 

enthalpy of formation for the ordered -Ni3Ge solid from the disordered solid to be H = -

1642 J mol-1 (6600 J kg-1). Accordingly, the signal detected at 530 °C, being of the order of 

0.1 mW from a typical 5 mg DSC sample, looks to be of appropriate magnitude given that the 

sample will only be partially disordered (all of the ‘featureless’ matrix is assumed fully 

ordered). Moreover, this result also indicated that the reaction is non-reversible, i.e. there is a 

transformation upon the first heating cycle (green arrow) which is not replicated on the 

second heating cycle (purple arrow). The most likely explanation for this is that the partially 

disordered material has undergone ordering at elevated temperature. Once ordered it then 

remains ordered. This differs from say the Ni5Ge3 intermetallic in the same system, in which 

thermal analysis indicated a reversible reaction upon re-heating/cooling [23].  

Summary & conclusion 

The congruently melting, single phase, intermetallic compound ȕ-Ni3Ge was subject to rapid 

solidification via drop-tube processing. Following drop-tube processing, the material 

remained as single phase ȕ-Ni3Ge, irrespective of the imposed cooling rate. Droplets 



Page 11 of 12 
 

spanning the size range  850 to ≤ 38 ȝm, with equivalent cooling rates of  ≤ 700 to > 

54500 K s-1, were subject to microstructural study by SEM. Six dominant solidification 

morphologies were identified, specifically; (i) spherulites, (ii) mixed spherulites and 

dendrites, (iii) dendrites – (orthogonal side-branching), (iv) dendrites – (non-orthogonal side 

branching), (v) recrystallised, and (vi) dendritic seaweed. In each case these features are 

observed embedded within a featureless matrix. SAD in the TEM analysis confirmed that it is 

only the spherulite microstructure that is partially ordered amongst the above listed 

microstructures, which are disordered. However, SAD analysis indicated that the featureless 

background material of all above microstructures is chemically ordered. Thermal analysis 

indicate a non-reversible reaction, which is differing than another Ni-Ge congruent melting 

intermetallic compound (Ni5Ge3).  
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