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The Physical Mechanism for Melt Pulsation During Close-Coupled 

Atomization 

Andrew M. Mullis 

School of Chemical & Process Engineering, University of Leeds, Leeds LS2 9JT, UK 

 

Abstract 

High speed filming (18000 fps) has been used to study the phenomenon of melt pulsation in a 

discrete jet, high pressure gas atomization system. Image processing routines have been 

developed to determine the velocity of material within the melt plume as it streams away from 

the melt delivery nozzle and to parameterise the shape of the melt plume. This data is then 

correlated with the volume of material in the melt plume, which is used as a diagnostic for melt 

pulsation. We find that during periods of low melt the constriction in the melt plume in which 

its diameter is a minimum is smaller and further downstream. Both appear to be consistent with 

a transition from an open-wake structure during periods of high melt flow to a closed-wake 

during periods of low melt flow. Moreover, the average velocity of material in the plume 

appears to drop during periods of low melt flow, which we ascribe to its passage through the 

Mach disk. We conclude that there is sufficient evidence to assert that the closed-wake 

condition survives the introduction of a dense second fluid to the atomizer and that alternation 

between the open- and closed-wake condition is the likely cause of the observed melt pulsation.   

 

Keywords: Gas Atomization, Melt Pulsation, High Speed Video, Object Tracking 
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1. Introduction 

Close-coupled gas atomization is used extensively for the production of powder metals, in 

particular where fine (d50  50 m) or highly spherical particulates are required such as in 

Additive Layer Manufacturing (ALM) processes. However, the particles size distribution 

(PSD) of powders produced by gas atomization tends to be quite broad, typically spanning an 

order of magnitude or more (Anderson and Terpstra, 2002). This in turn leads to high 

scrappage/remelt rates for applications that require a narrow size distribution. For powder 

producers supplying demanding markets, such as for ALM feedstock, the remelt rate may be 

as high as 65%, wherein significant cost saving could result from even modest improvements 

in control of the particle size distribution. There exists a significant body of literature detailing 

various instabilities that occur during close-coupled gas atomization and how these may impact 

on the application of such powders as ALM feedstock (see e.g. the recent review by (Anderson 

et al., 2018)). The corollary of this is the prospect that if the stability of the atomization process 

could be improved, then a superior powder produce could be offered.  

 

One of the most common such instabilities is that of melt pulsation, in which the amount of 

melt instantaneously being delivered to the melt nozzle varies chaotically. When high melting 

point metals are atomized this can be observed with the naked eye as a flickering of the intensity 

of the atomization spray cone. Mullis et al. (2013) estimated that such pulsation can cause the 

gas-to-metal ratio (GMR = /g mm m  , where 
gm  is the mass flow rate of gas and mm  is the mass 

flow rate of metal) to vary between 1.26 (kg gas/ kg melt) and 15.16 over periods < 1 s. Given 

the well-established correlations between median particle size and the GMR (e.g. Lubanska, 

1970), it is difficult to envisage that large, short-duration fluctuations in the melt flow rate 

could not but effect the particle size distribution.  
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The pulsation phenomenon was first formally described by Ting et al. (2002), with Fourier 

analysis of high speed filming subsequently being used (Ting et al., 2005; Mullis et al., 2008) 

to confirm that the dominant frequencies present are typically < 25 Hz. Based upon their 

observations Ting et al. (2002) proposed the so-called pulsatile model, suggesting that 

pulsation results from a chaotic oscillation between the open- and closed-wake conditions. The 

wake region occurs due to the separation of the supersonic flow from the melt nozzle’s edge, 

and is characterised by a recirculating subsonic gas flow. It is delineated from the rest of the 

flow by an internal sonic boundary. The far end of the wake region is determined by the position 

of the ‘stagnation point’, a point of maximum pressure and minimum velocity where the 

majority of the gas enters the wake region. The structures of the open- and closed-wake are 

shown schematically in Figure 1. These have been traced to scale from Schlieren images of 

open- and closed-wake flow as obtained by Mates and Settles (1995). As such they accurately 

represent the structure and scale of the primary features observed in the open- and closed-wake. 

The very obvious recirculation zone immediately below the nozzle in the open-wake case 

appears absent in the closed-wake case. CFD modelling (Motaman et al. 2015) suggests that in 

fact a recirculation zone is still present, but is much reduced in size.  

 

In gas-only flow the open-wake condition is stable at low pressure.  Upon increasing the gas 

inlet pressure the structure of the flow-field goes through some changes. The internal shocks 

caused by the expansion of the issuing gas moves downstream. With increasing inlet pressure 

they continue to move further downstream such that the recompression shock reflected from 

the internal sonic boundary crosses the rest of the recompression shocks to form a Mach disk 

(Anderson et al., 1991). The formation of the Mach disk cuts off the wake region from the 

surrounding gas flow, dramatically decreasing its size and strength. This phenomenon is termed 

‘wake closure’, with the closed-wake condition also being stable in gas-only flow. 
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Figure 1. Gas flow structures in (a) the open-wake and (b) the closed-wake condition during gas atomisation. 

Drawings produced to scale by tracing Schlieren images as given by Mates & Settles (1995). Lines represent the 

boundaries between light and dark regions in the Schlieren images, with the line type (solid, close-dashed, dashed) 

being indicative of the contrast gradient in the image.  

 

The proposition made by Ting et al. (2002) is that a dynamic balance exists between the 

momentum of the melt and the momentum of the atomizing gas. In the closed-wake condition 

the high back pressure created by the separation of the wake region from the surrounding flow 

causes the melt flow rate to slow. However, the introduction of melt into the recirculation zone 

acts against the compressible gas, distorting and displacing the established flow features. As 

melt accumulates in the recirculation zone the Mach disk is disrupted. The system flips into the 

open-wake configuration causing a sudden drop in back pressure, with a commensurate 

increase in melt flow rate. With the release of melt from the recirculation zone the Mach disk 

is re-established and the cycle starts again. Consequently, the closed-wake may be categorised 

as a state of low melt flow rate, while the open-wake is a state of high melt flow rate, with 

pulsation being a chaotic oscillation between these two quasi-stable states.  

 

However, the model is far from universally accepted. In particular Mates and Settles (2005a, 

2005b) have argued, based on extensive Schlieren imaging studies of atomizers in single and 

two-phase flow, that wake-closure is not possible during two-phase flow. Specifically, they 
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state that wake closure is of no real consequence in atomization as the closed wake structure is 

not preserved during the actual atomization process. The introduction of the dense melt disturbs 

the shock wave structure, causing the disappearance of the Mach disk, and the ‘opening’ of the 

wake. Consequently, the basis for the pulsatile model of Ting et al. (2005), they argue, is 

incorrect.  

 

The origin of the pulsation phenomenon has been one of the area of atomization research that 

modelling using Computational Fluid Dynamics (CFD) has been unable to shed light on. A 

number of CFD models have been constructed for various atomizer geometries, but the 

complexity of the 2-fluid problem has meant that such studies have typically been restricted to 

gas only flow. Such studies have reproduced the essential features of the open- and closed-

wake structure (Ting and Anderson, 2004), permitted the aspiration effect and position of the 

Mach disk to be characterised as a function of gas pressure (Xinming et al., 2009) and 

demonstrated that even relatively small changes to the configuration of the melt nozzle and gas 

manifold can lead to significant changes in the pressure required for wake closure (Motaman 

et al., 2015).   

 

In this paper we present a suite of new methods for analysing high speed video footage obtained 

during close-coupled gas atomization. The tools are designed to parameterise the shape of the 

atomization plume and to determine the velocity of material within the plume. By correlating 

these melt plume statistics against the pulsation behaviour of the atomizer we are able to draw 

conclusions regarding the physical mechanism responsible for pulsation.  
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2. Experimental Methods 

2.1 Atomization Experiments and Filming Procedure 

Gas atomization experiments were performed using a close-coupled gas atomizer as supplied 

by a commercial manufacturer of both research and production scale gas atomizers. The 

system, which can atomize 10 kg batches of material at a time, is of the discrete jet design in 

which 18 jets of 0.5 mm diameter were arranged concentrically around a central melt delivery 

nozzle. The apex angle at the focus of the jets was 45°. Melt was fed down the central, 2.5 mm 

diameter, bore of the nozzle before wetting the flat nozzle tip, the diameter of which was 5.0 

mm. The arrangement, which is similar to both the USGA (Anand et al., 1978) and Ames 

HPGA-I (Anderson et al., 1991) designs, is shown schematically in Figure 2.  

 

Figure 2. Schematic diagram of the gas atomisation nozzle used in the high speed filming experiments. 

 

In the experiment reported here the atomized fluid was an Al-31.5 at.% Ni melt, the liquidus 

temperature of which is 1613 K. Atomization was performed at 1813 K, giving a 200 K melt 

superheat, wherein the atomized melt plume was sufficiently bright for all filming to be 

performed in the radiant light emitted by the melt. The atomizing gas was Ar, with the manifold 

pressure being 3.5 MPa, giving an estimated gas flow rate of 0.0487 kg s-1. In order to ensure 

a steady flow of melt to the atomizer the tundish sitting above the melt delivery nozzle was 

pressurised to 40 kPa with Ar gas. This is necessary as the aspiration pressure, the pressure just 

below the melt nozzle in gas only flow, for a gas pressure of 3.5 MPa is slightly (12 kPa) above 
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ambient. That is, the system does not naturally aspirate so as to draw melt into the atomizer, 

the melt flow is forced via pressurisation of the tundish. This may make this configuration 

susceptible to small variations in the pressure at the melt nozzle. The time averaged melt flow 

rate during the experiment was 0.0158 kg s-1, giving an average gas-to-metal ratio (GMR) of 

3.08 (kg gas to kg melt). The ultimate d50 particle size in the collected powder was 59.7 m.   

 

High speed filming was performed using a Kodak Ektapro 4540mx High Speed Digital Motion 

Analyser operating at a frame rate of 18,000 fps. The camera was fitted with a Micro-Nikkor 

70-180 mm zoom lens allowing a 42 mm field of view at the atomizer nozzle from a working 

distance of around 0.3 m.  However, in practise the useful viewing distance was typically 

limited to 30 mm downstream of the nozzle, as cooling of the melt plume meant that beyond 

this distance the plume was too faint to be resolved. This gives a spatial resolution of 0.17 mm 

per pixel. Total filming time was limited to 3.64 s due to a storage limitations, with a maximum 

of 65536 frames being buffered on the camera before filming had to be stopped and the data 

downloaded to a control PC.  

 

2.2 Previous Analysis Methods 

A schematic diagram illustrating the main features of the melt plume geometry is shown in 

Figure 3. Upon exiting the melt nozzle the melt plume first contracts, forming a ‘throat’, a 

region of minimum diameter, located close to the focus of the converging gas jets. The location 

of this throat region is designated as being a distance zt downstream of the outlet nozzle, with 

a diameter dt. Beyond the throat region the melt plume increases in size eventually reaching a 

near constant diameter which is maintained until the plume fades below the detection threshold 

of the camera.  
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This atomizer configuration has previously been studied extensively by Mullis et al, (2008, 

2013). In Mullis et al. (2008) a narrow window of width w pixels, located m pixels below the 

tip of the melt delivery nozzle was defined. This is also shown in Figure 3. In Mullis et al. 

(2008) the width of the window, w, was taken as four pixels, and the window was located at m 

= 5 pixels below the melt outlet nozzle. For consistency, these values are also adopted here. 

The basis of the analysis presented in Mullis et al. (2008) was to average the optical intensity 

over the pixels sampled in the window and use this average optical intensity, n

mI , as a proxy 

for the amount of melt instantaneously flowing from the nozzle. Here where n labels the frame 

from which the data was extracted and m labels the position on the z-axis where the sampling 

window was located. The association of melt-flow with optical intensity will be approximately 

valid provided that: (i) the melt undergoes minimum cooling prior to being sampled, (ii) the 

melt undergoes relatively uniform breakup prior to being sampled, (iii) there is no saturation 

of the pixels being sampled. Assumptions (i) & (ii) are met by having the sampling window 

very close to the melt outlet nozzle, the validity of assumption (iii) will be confirmed below. 

Moreover, we claim only a general correlation between the volume of melt being 

instantaneously delivered to the melt nozzle and the measured optical intensity, i.e. that low 

brightness equates to low flow rate and high brightness to high flow rate. In particular, it is 

unlikely that there is a linear relationship between optical intensity and melt flow-rate. 

However, we are unable to measure the time resolved melt flow-rate to establish this 

relationship more definitively.  
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Figure 3. Schematic diagram of the melt plume geometry showing the throat region of diameter dt, located a 

distance zt below the melt nozzle. For the analysis described in Section 2.5 the melt in the wake region is the 

region shown shaded between the melt nozzle and the throat. Also shown, sampling window w pixels wide located 

m pixels below the nozzle outlet.  

 

The analysis of Mullis et al. (2008) unambiguously demonstrated two important characteristics 

of the melt flow during gas atomization. The first was a relatively high frequency (300 Hz) 

instability which appeared to be due to precession of the melt. This was apparent as a regular 

left-right swinging motion of the melt plume in the 2D imaging plane. Figure 4 illustrates this 

by showing two frames from the high speed movie, with the melt plume (a) displaced to the 

left as viewed and (b) displaced to the right as viewed. The total time between the images 

shown in Figure 4a and Figure 4b was 1/600 s, this being consistent with the 300 Hz frequency 

for a full left-right-left cycle to be completed. This type of instability had previously been 

observed by Anderson et al. (2006) who ascribed it to incomplete wetting of the nozzle tip by 

the melt, an observation subsequently confirmed by direct observation of the melt filament 

using ultra-high speed imaging with a 20 ns pulsed laser (Mullis et al., 2011).  
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Figure 4. Frames (a) 5279 and (b) 5309 from the high-speed filming of the atomisation process showing 

precessional motion of the melt plume as a left-right swinging of the plume. Time between the frames is 1/600 s. 

Red line indicates centre of the melt nozzle, which may not coincide with the centre of the image frame. 

 

The second was a chaotic pulsation in the melt volume being instantaneously discharged from 

the nozzle. Typically, most of the spectral power was restricted to the frequency range 5-30 Hz, 

but unlike the precessional instability, there was no one single dominant frequency. Figure 5 

shows the optical intensity (0-255 scale) averaged over a window located at m = 5, i.e. 5 pixels 

(0.86 mm) below the melt delivery tip.  

 

The superimposed precessional motion does have a minor effect on the measured brightness as 

the melt plume swings towards and away from the camera. It is shown in Mullis et al. (2008) 

that this takes the form of a low amplitude oscillation superimposed upon the main pulsation 

trend. However, due to the very regular nature of the precessional motion at 300 Hz this is 

easily filtered out. Here we have used a digital low pass filter to smooth the resulting time-

series data and remove the high frequency signature of the precessional motion of the melt. 

This is an infinite impulse response filter of the Butterworth type with a pass-band of f < 40 Hz 
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and a -80 dB cutoff of f > 200 Hz. Further details of the filter design and application are given 

in Mullis et al. (2013). 

 

 

Figure 5. Mean grey level determined within a sampling window 4 pixels wide, situated 5 pixels below the nozzle 

outlet. Data is determined from each of the 65536 frames in turn and presented here as a time series. Vertical grey 

bands delineate regions of low recorded grey level corresponding to low melt flow. Dotted line indicates the mean 

grey level, circles indicate the maximum and minimum intensities (with their associated frame number) and one 

frame representative of the mean grey level. 

 

The results show a very significant variation in the amount of material instantaneously at the 

melt nozzle. The mean brightness over the 3.64 s of recording was 31.03 (on a 0-255 intensity 

scale) with a standard deviation of 11.14. A feature of particular interest, as noted by Mullis et 

al. (2013), are the periods during which flow becomes very low, in some cases almost shutting 

off completely. The most obvious low flow periods are indicated on the Figure by the regions 

shaded light grey. The mean intensity within these regions is 16.95, around half the average 

global average. By way of comparison, the mean brightness measured outside of these regions 

is 35.28.  
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To illustrate what this means during filming Figure 6 shows three frames from the high-speed 

video. Figure 6a is frame 4939, which has the highest mean intensity in Figure 5. As an aside, 

we note that even in this frame the maximum grey-scale value of any pixel within the image is 

206 (0-255 scale). Hence, we assert with confidence that pixel saturation is not an issue in this 

analysis. Conversely, in Figure 6b we show frame 25830, which is identified as having the 

lowest mean intensity in Figure 5. Finally, by way of comparison, Figure 6c shows frame 

27128, which has a mean intensity of 31.01, close to the global mean value obtained from 

Figure 5. From Figure 6, the extent to which the flow of melt is almost shut off during periods 

of low flow is clear and we consider it unlikely that variations of such magnitude could have a 

cause other than commensurate variation in the melt flow-rate.  

 

 

Figure 6. Three frames from the high-speed movie, (a) frame 4939, the brightest in the set, (b) frame 25831, the 

darkest in the set and (c) frame 27128 which is representative of the time-averaged mean grey level. Exposure 

settings are identical for all three images. The superimposed precessional motion is evident with (a) being almost 

central, (b) being displaced to the right as viewed and (c) being displaced to the left.  

 

This level of pulsation is quite extreme and may be a consequence of the discrete jet type 

arrangement used on this atomizer. Specifically, because the discrete jet design reduces gas 
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consumption it is feasible to run such atomizers at higher pressure than conventional annular 

slit type designs, wherein the higher operating pressure may induce more severe pulsation. 

Nonetheless, given the interest in discrete jet type designs for the economical production of 

ultrafine powders (Anderson & Terpstra, 2002) and this being a commercial atomize, we 

consider this to be an interesting design to investigate.  

 

However, our contention here is that such high speed video contains a much richer data set and 

that this can be used not only to demonstrate atomizer pulsation, but to elucidate the physical 

processes giving rise to that pulsation. Here we focus on two characteristics of the plume, the 

velocity of material contained within it and the geometry of its outer envelope.  

 

2.3 Melt Plume Velocity 

Based on identifying a particularly distinctive feature within the melt plume and tracing its 

progress across several consecutive frames, Mullis et al. (2008) were able to estimate the 

velocity of the melt within the plume. They gave this as approximately 30 m s-1. However, this 

was based upon a single spatial location and a given instant in time. In principle, such a process 

could be formalised and automated so as to determine the velocity of material within the plume 

with both spatial and temporal resolution.  

 

An extensive literature has built up in the field of computer vision which relates to such 

problems, namely: how do we track objects as they move across consecutive frames within a 

movie sequence. The approaches adopted within the computer vision literature may be classed 

as adopting either a Fourier (e.g. Ejiri and Hamada, 2006) or non-Fourier (e.g. Malavika and 

Poornima, 2013) approach. However, in both cases we describe the computer vision approach 

as being deterministic in that the algorithm attempts to accurately track features, be they cars, 
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human faces or manufactured parts on a production line, which change their appearance 

relatively little between consecutive frames. In fact, this is likely to be a poor assumption for 

features within an atomization plume for a number of reasons: 

1) As a consequence of the spatial expansion of the plume, features observed close to the 

melt nozzle will become more diffuse as they progress downstream;  

2) The brightness of features within the plume will decrease continuously with distance 

downstream, due to cooling of the melt in the much colder gas stream;  

3) It is likely that there will be differential velocities present within the plume, meaning 

that features that were co-located near the nozzle outlet may not remain so as they travel 

downstream; 

4) We are projecting a 3-dimensional spray plume onto a 2-dimensional imaging plane, 

wherein features may be obscured as they cross in front of, or behind, each other; 

5) Features within the plume, which are typically aggregates of co-moving particles, may 

merge with other features or fragment. 

Consequently, traditional computer vision algorithms struggle to reliably determine and track 

features within an atomization spray plume.  

 

For the reasons outlined above we have adopted here a more statistically based approach, based 

on the cross-correlation of an image pair. Similar techniques are described by Tokumaru & 

Dimotakis (1995) and by Duke et al. (2010), who used the technique to study the breakup of 

an annular liquid sheet. To illustrate the principle consider the idealised case in which a set of 

well defined, discrete features are formed at the nozzle tip and then move downstream at 

constant velocity and in a shape preserving manner. At some instant in time corresponding to 

frame n we will have a pixel profile n

mI which will correspond to the set of feature as they pass 

pixel row m. Sometime later, at frame n + i, these features will have moved downstream by j 
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pixels such that pixel vector n i

m jI 
 will be identical to n

mI . In this case the correlation coefficient 

between n

mI  and n i

m jI 
  will be 1. Of course, the situation we have described is far from the reality 

of an atomization plume. Notwithstanding this, we conjecture that if we take i sufficiently 

small, we can identify the j such that 1n

m jI 
  corresponds to the same set of features as represent 

by n

mI  at the earlier time. To do this we calculate the cross-correlation between n

mI  and all 1n

m jI 
  

for 1  j  J, searching for the maximum correlation between the two vectors. At the j 

corresponding to the maximum correlation we assume that we have tracked the features 

between consecutive frames and can assign an average displacement between frames. Knowing 

the time-base between frames this may be converted to an average velocity for all features in 

that horizontal pixel row. Moreover, the value of the maximal correlation coefficient can be 

used to determine the level of confidence with which the assignment of the displacement is 

made. Here J is the maximum number of pixels downstream which is searched for a match. 

The appropriate value of J is determined by trial and error, although the results are insensitive 

to the value chosen provided J is sufficiently large. Here we have terminated the search when 

J = 30 or when the plume becomes too faint for the features to be resolved.  

 

Using the procedure outlined above the time resolved velocity of the plume at a given 

horizontal level can be determined by scanning though n whilst keeping m fixed. Conversely, 

a spatially resolved velocity profile moving downstream through the plume can be obtained by 

fixing n and scanning through m. Generally, a good match can be found between n

mI  and an 

appropriate 1n

m jI 
 . In the case m = 15 (i.e. the initial sampling window is 15 pixels or 2.6 mm 

below the nozzle outlet), the value of the maximum correlation coefficient (i.e. at the point 

where n

mI  and 1n

m jI 
  are deemed to match so that a velocity can be determined) averaged over 

all 65536 frames was 0.9456, with a standard deviation of 0.0160. Further downstream the 
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mean (standard deviation) are 0.9733 (0.0071) at m = 35 (6.0 mm below the nozzle outlet) and 

0.9772 (0.0053) at m = 55 (9.5 mm below the nozzle outlet). For comparison the statistically 

significant value, based on a one-tailed t-test with a number of degrees of freedom equal to the 

size of the I vector – 2, is 0.2902 at the 1% significance level. From this we conclude that 

provided i is small, and here we only consider the case of i = 1 (i.e. t = 1/18000 s) the algorithm 

for velocity determination appears robust. 

 

2.4 Plume Envelope Geometry 

The velocity of the material being transported in the plume is not, however, the only 

information that may be extracted from the high speed video sequence. The geometry of the 

plume envelope may also be determined and parameterized, with the information thus obtained 

being used to help elucidate the physical processes giving rise to atomizer pulsation. The 

process is relatively straightforward. First a threshold intensity level, Ithr, is set. Ithr may be 

either an absolute grey level (e.g. intensity = 45 on the 0-255 scale output of the camera) which 

is applied to all frames, or it may be a relative level obtained on a frame by frame basis. In the 

latter case the maximum and minimum intensity levels, Imax and Imin, within each frame are 

determined and Ithr set for the frame in question according to 

( )thr min max minI I I I    (1) 

where 0    1 is constant, and Equ. (1) allows for some frames having a non-zero background 

grey level. In general, because the volume of melt discharged by the atomizer varies in time, 

thus leading to significant variations in the maximum intensity between frames, the relative 

approach to setting Ithr as defined by Equ. (1) is preferred, with  typically assigned a value of 

0.2-0.3.  
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Starting at the z-position corresponding to the nozzle tip we then scan from both low-x and 

high-x to determine the first location in each case where the actual grey level exceeds Ithr. This 

determines the locus of the melt plume at this z position, wherein we move 1 pixel downwards 

in z and repeat the process, building up the entire locus of the melt plume. The downward scan 

of the frame is terminated at the point where no pixels exceed the Ithr grey level, with the 

procedure then being repeated for the next frame in the video sequence.  

 

Figure 7 shows a typical frame (frame number 17575, t = 0.9764 s). In part (a) of the Figure 

we show the frame as captured, in part (b) the same frame with the locus of the melt plume, as 

identified by the routine, superimposed in red for  = 0.3 and in green for  = 0.2. In both cases 

it is evident that the routine identifies the location of the outer envelope of the plume in a 

reliable manner, with  = 0.3 picking out the central region of the plume and  = 0.2 tending 

to include more of the peripheral spray streaming off from the central plume. However, it is 

also evident that there are some darker areas inside the identified locus, although at the moment 

we seek to identify only the outer envelope of the plume and do not concern ourselves with 

characterizing the structure within the plume.  

 

The plume geometry shows a constriction, referred to sometimes within the atomization 

literature as the throat, somewhat below the nozzle outlet. For the frame shown this is around 

3.7 mm (0.73 nozzle diameters) below the tip, where the plume width is a minimum of 3.5 mm 

(0.70 nozzle diameters) for  = 0.3 or 4.1 mm (0.82 nozzle diameters) for  = 0.2. The plume 

width subsequently opens up as it progresses further downstream, eventually reaching a near 

steady value before detection is lost, which is indicated as a closing of the detected plume locus. 

In the analysis presented below we have extracted the width of the plume at the constriction 

point and the z-coordinate of the constriction, as two useful parameters which may be used to 
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understand the flow. The location of the throat is not found to sensitive to . The absolute value 

of the throat diameter detected does vary somewhat with  and here we report values 

determined with  = 0.3. However, the trends found (e.g. the way in which throat diameter 

correlates with measured optical intensity within the plume) are not sensitive to the choice of 

. 

 

 

Figure 7. Typical frame from the high speed filming of the melt plume during gas atomisation showing (a) the 

location of the sampling window m pixels below the nozzle and its width, w, (b) the frame as captured and (c) 

with the outline of the plume as determined by the automated plume detection routine for  = 0.3 (inner) and   = 

0.2 (outer). 

 

2.5 Near Nozzle Melt Accumulation 

Having identified the location of the throat region and the outer locus of the plume envelope 

one final calculation is performed. The pixels inside the envelope above the throat (the region 

shaded in Figure 3) are summed in order to calculate the cumulative optical intensity for 

material in the region between the nozzle and throat. As above, this is taken as a proxy for the 

amount of material in this region.   
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3. Results 

3.1 Melt Plume Velocity 

The time-resolved velocity of the material in the plume is shown in Figure 8 for two values of 

m, m = 5 (0.86 mm below the nozzle tip, the location where the reference brightness is 

measured) shown in blue and m = 50 (8.6 mm below the nozzle tip) shown in red. For reference 

the grey regions shown on Figure 5 indicating periods of low flow have been transposed onto 

Figure 8.  That is, the highlighted regions shown in Figure 8, and in subsequent figures, are 

derived from the data shown in Figure 5 and are indicative of periods of low melt flow, 

allowing for direct comparison with the melt flow rate. A number of features are worthy of 

note. Firstly, and perhaps most obviously, there is a very strong correlation between the volume 

of material at the melt nozzle and the flow velocity measured at this location (blue curve in 

Figure 8), with the correlation coefficient for the two data sets being 0.8584. In particular, the 

periods of low flow volume also correspond to periods of abnormally low flow velocity within 

the plume, as shown by the coincidence of low flow velocity with the shaded regions from 

Figure 5. The average flow velocity in the shaded regions is 17.0 m s-1, compared with an 

average of 34.1 m s-1 outside of these regions.  

 

The second striking feature of the results shown in Figure 8 is the extent to which the estimated 

flow velocity has dropped by m = 50, 8.6 mm downstream of the nozzle tip. More specifically, 

for those times at which the flow velocity was high near the nozzle tip, the velocity has dropped 

significantly, typically from 30 – 40 m s-1 to 10 – 15 m s-1. Conversely, for those times at which 

the velocity was already low near the nozzle tip, the velocity remains almost constant at 10 – 

15 m s-1, such that at m = 50 the temporal variation in velocity is almost eliminated.  
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Figure 8. Vertical component of velocity of the melt plume measured at m = 5 (0.86 mm, upper curve) and m = 

50 (8.6 mm, lower curve) below the melt nozzle. Vertical grey bars are adopted from Figure 5 and represent 

periods of low mean grey level (low melt flow rate). 

 

This spatial variation in velocity is explored in more detail in Figure 9, in which we show the 

velocity as a function of distance downstream averaged over two short time periods, each of 

which corresponds to an interval of 400 frames (0.022 s). One of these, centered on frame 

number 15550 (t = 0.864 s) corresponds to an interval of high melt flow, the other centered on 

frame number 49550 (t = 2.753 s) corresponding to an interval of low melt flow. For 

comparison, the spatially resolved velocity averaged over all 65536 frames is also shown. In 

the high flow regime, the velocity drops essentially linearly with distance downstream for the 

first 9.5 mm or so, thereafter remaining approximately constant until the plume becomes too 

faint to resolve. In contrast, in the low flow regime, as is already apparent from Figure 8, the 

velocity is low throughout its downstream passage, with any initial decrease in velocity 

restricted to the first 2 mm or so downstream from the nozzle. As the atomizer spends the 

majority of its time in the high melt flow condition, the average over all frames is dominated 

by, and thus closely resembles, the high flow rate curve. 
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Figure 9. Time averaged velocity as a function of position with the atomiser in the high-flow (diamonds) and low 

flow (circles) conditions. In each case the average is determined over 400 consecutive frames. Also show (squares) 

is the global average over all 65536 frames. 

 

3.2 Melt Plume Geometry 

The minimum diameter of the constriction, or throat, in the melt plume, as a function of time 

is shown in Figure 10 and its corresponding position in Figure 11. As previously, the shaded 

regions on the figures indicate periods of low melt flow, as determined from Figure 5. The 

data is obtained based on a relative threshold intensity determined on a frame-by-frame basis 

according to Equ. (1), with a value of  = 0.3. As such, the average optical intensity (grey level) 

within the frame should not bias the throat determination. It is clear from Figure 10 that throat 

diameter correlates well with the estimated melt flow rate as determined from the optical 

intensity near the melt delivery nozzle, with periods of low flow corresponding to times during 

which the throat is at its narrowest. Specifically, for the periods shown shaded in Figure 10 the 

average throat diameter is 3.25 mm, compared with an average during the rest of the filming 

period of 3.79 mm. The linear correlation coefficient between the data for optical brightness 

and throat diameter is 0.4988.  
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Figure 10. Diameter of the throat region of the melt plume. Vertical grey bars are adopted from Figure 5 and 

represent periods of low mean grey level (low melt flow rate). 

 

 

Figure 11. Location of the throat region of the melt plume, measured downwards from the melt nozzle outlet. 

Vertical grey bars are adopted from Figure 5 and represent periods of low mean grey level (low melt flow rate). 

 

Conversely, with reference to Figure 11, it appears that the throat position, measured in 

distance downstream from the nozzle tip, is inversely correlated with the estimated melt flow 

rate, with the throat being further downstream during periods of low flow. The average 

downstream distance of the throat during periods of low flow is 3.80 mm, compared with 3.17 

mm during the rest of the filming period. The linear correlation coefficient between the data 
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for optical brightness and throat position is -0.4059. For both the throat diameter and throat 

position we note that the correlation with the optical brightness data is somewhat weaker than 

is the case for the velocity data, although we also note that all are statistically significant. In 

fact, for such a large dataset (N > 65000) any correlation coefficient exceeding 0.009 would be 

considered significant at the 1% significance level (based on a one-tailed test).  

 

3.3 Near Nozzle Melt Accumulation 

Figure 12 shows the cumulative optical intensity for the material in the plume between the 

nozzle and the throat. The general tendency is for the cumulative intensity in this region to be 

low when the melt flow is low. In deed, there is a very high degree of similarity between Figure 

12 showing the total amount of material in the nozzle-throat region and Figure 5 showing the 

outflow from the nozzle. However, in the low flow regions the curve for the accumulation of 

material (Figure 12) typically leads the curve for flow rate (Figure 5) by 1-5 ms.  

 

 

Figure 12. Cumulative intensity (sum of pixel intensities) for all pixels in the wake-region, defined as being 

between the melt nozzle outlet and the throat. Vertical grey bars are adopted from Figure 5.  
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4. Discussion 

The results obtained may be summarized thus: 

 The gas atomizer studied can be shown to be undergoing pulsation, that is the volume 

of melt instantaneously being delivered to the nozzle tip, is undergoing large amplitude, 

chaotic variation.  

 During periods of high melt flow the velocity of material in the melt plume is of the 

order of 40 m s-1 as it is stripped off the nozzle tip, dropping to around 15 m s-1 at a 

distance of 9.5 mm downstream from the nozzle. Thereafter the velocity is 

approximately constant until the plume ceases to be visible.  

 During these periods of high melt flow the melt plume has a well-developed 

constriction, or throat, which is on average 3.79 mm in diameter and 3.17 mm 

downstream of the nozzle tip.  

 During periods of low melt flow the velocity of material as it is stripped of the nozzle 

tip is of the order of 15 m s-1, a velocity which remains more-or-less constant as the 

material moves downstream.  

 During the period of low melt flow the throat in the melt plume is narrower and its 

average is further downstream, with the mean throat diameter being 3.25 mm and its 

average location being 3.80 mm below the nozzle tip.  

 

The results with respect to the relationship between melt velocity, throat diameter and throat 

position, all as a function of optical brightness, which is here taken as a proxy for the volume 

flow rate of the metal, are summarized in Figure 13. Each of the three curves in Figure 13 has 

been obtained by performing non-linear regression over all 65536 measurements and plotting 

the resulting trends lines to represent the average dependence upon optical brightness. Our 

contention is that all of these observations are consistent with the physical mechanism giving 
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rise to pulsation being an oscillation between the open- and closed-wake conditions. 

Specifically, the closed-wake is terminated by a Mach disk, a shock structure at which the gas 

velocity is reduced. Consequently, melt passing through the closed-wake may well be 

travelling more slowly than that passing through the open-wake, as in the closed-wake 

condition the melt must exit the recirculation zone through the Mach disk, wherein it is 

decelerated. Moreover, it is clear that, with reference to Figure 1, the presence of the Mach 

disk in the closed-wake condition causes the constriction at the termination of the recirculation 

zone to narrow and move further downstream.  

 

While Figure 1 is strictly valid in the case of gas only flow, the data presented here appears to 

indicate that some clear vestige of these structures are able to survive the passage of the melt 

through the recirculation zone. As such, we contend that it is perfectly valid to discuss the 

presence of both the open- and closed-wake during two-phase flow in a close-coupled gas 

atomizer. The features associated with the closed-wake seem to correlate well with periods of 

low melt flow in the atomizer and that conversely the features associated with the open-wake 

seem to correlate well with periods of high melt flow. Moreover, the total quantity of melt 

contained within the wake-region, defined here as the region between the nozzle and the throat, 

also correlates well with the melt flow-rate from the nozzle. However, the melt flow-rate lags 

the total quantity of melt by between 1-5 ms.  We suggest that if the lowering of the melt flow-

rate is due to the high back-pressure exerted by the closed-wake condition, the lag may be 

explained by an accumulation of melt in the wake region causing the disruption of the closed-

wake, as first proposed by Ting et al. (2002). Once the closed-wake were disrupted the back-

pressure would drop and the melt flow-rate would increase, giving a natural explanation for 

the observed lag. 
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Figure 13. Best estimate, based upon regression analysis, of the plume velocity, throat diameter and throat 

position as a function of mean grey level through a window located 5 pixels below the nozzle outlet, taken here 

as a proxy (arbitrary units) for the melt flow rate. 

 

Consequently we contend that, unlike the assertion of Mates and Settles (2005a, 2005b), the 

closed-wake condition can exist during the atomization of a second fluid in the close-coupled 

atomization configuration and that alternation between the open- and closed-wake 

configuration is intimately related to the melt pulsation phenomenon observed during 

atomization. This suggests possible lines of enquiry in the development of gas atomization 

equipment. Specifically, if the wake condition could be stabilized, pulsation could be reduced 

which should in turn lead to a narrower powder size distribution. This paper presents a 

methodology by which the stability of the wake condition can be measured during two-phase 

flow, and hence by which design modification can be assessed. Even within existing 

atomization technology, small changes in the atomizer configuration can alter the wake closure 

pressure by almost a factor of 2 (Motaman et al., 2015) and, as far as we are aware, the relative 

stability of the closed-wake as a function of wake closure pressure, and hence the PSD, have 

not been investigated.  
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