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1 Abstract

2

3 Understanding the influence of feeding behavior on mandibular morphology is necessary for 

4 interpreting dietary change in fossil hominins. However, mandibular morphology is also likely to 

5 have an effect on feeding behavior, including jaw kinematics.  Here we examine the relationships 

6 between mandibular morphology and jaw kinematics in humans using landmark-based 

7 morphometrics to quantify jaw movement. Three-dimensional movements of reflective markers 

8 coupled to the mandible and cranium were used to capture jaw movements while subjects 

9 chewed cubes of raw and cooked sweet potato. Geometric morphometric methods were adapted 

10 to quantify and analyze gape cycle motion paths. Gape cycles varied significantly across 

11 chewing sequences and between raw and cooked sweet potato. Variation in gape cycle size and 

12 shape is related to the width (intergonial distance) and length of the mandible. These results 

13 underline the fact that jaw kinematic variation within and between taxa is related to and may be 

14 influenced by mandibular morphology. Future studies examining kinematic variation should 

15 assess the influence of morphological differences on movement. 

16

17
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18 1. Introduction

19

20 Although diet and mandibular morphology have been widely studied in primates, the 

21 relationships between them remain obscure (Hylander, 1979, 1985, 1988; Bouvier and Hylander, 

22 1981; Smith, 1983; Bouvier, 1986a,b; Daegling, 1992; Cole, 1992; Ravosa, 1996, 2000; Taylor, 

23 2002, 2006; Vinyard et al., 2003). One possible reason may be that diet only influences 

24 mandibular morphology indirectly through variation in gross aspects of feeding behavior (Ross 

25 et al., 2012). In turn, feeding behavior is variably impacted by several aspects of diet, including 

26 food geometric and material properties, as well as by an animal’s phylogenetic, ecological and 

27 sociological context (e.g., Hylander 2013). However, there is also evidence that, in humans at 

28 least, the direction of causality may in some cases be the reverse of what is traditionally 

29 assumed: i.e., mandibular morphology may affect various aspects of feeding behavior, including 

30 EMG activity and jaw kinematics (Ahlgren, 1966; Møller 1966, Ingervall and Thilander, 1974; 

31 Ingervall and Helkimo, 1978; Kiliaridis et al., 1985). This paper presents a detailed analysis of 

32 relationships between mandibular morphology and jaw kinematics in humans using a novel 

33 application of geometric morphometric techniques to kinematics. 

34 A chewing sequence is the sequence of gape cycles from ingestion to swallow and can be 

35 divided into sequentially numbered cyclic jaw movements or gape cycles (Fig. 1). The 

36 kinematics of the gape cycle are typically measured by tracking vertical and lateral displacement 

37 of the jaw over time (e.g. Reed and Ross, 2010; Iriarte-Diaz et al., 2011; Laird, 2017). Vertical 

38 displacement of the jaw during gape cycles is thought to vary as chewing progresses within a 

39 sequence reflecting the breakdown of food particles, bolus formation, changes in external bolus 

40 properties, and changes in food material properties (Foster et al., 2006; Woda et al., 2006; 
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41 Vinyard et al., 2008). In this context, decreases in vertical displacements and variation in muscle 

42 activity amplitudes through the chewing sequence reflect the decrease in food fragment sizes and 

43 variation in bolus properties as the sequence progresses (Pruim et al., 1978; Manns et al., 1979; 

44 Hylander and Johnson, 1985; Spencer, 1998; Olmsted et al., 2005; Vinyard et al., 2008; Reed 

45 and Ross, 2010; Laird, 2017). In humans, foods with higher toughness are often associated with 

46 greater vertical and lateral jaw displacements during the gape cycle (Anderson et al., 2002; 

47 Foster et al., 2006; Wintergerst et al., 2008; Laird, 2017; but see Takada et al., 1994; Peyron et 

48 al., 1997; Reed and Ross, 2010). 

49 What has seldom been addressed is the possibility that jaw kinematics are also impacted 

50 by the overall shape of the mandible. This is of interest because variation in a suite of features of 

51 human mandibular morphology, particularly differences in symphyseal height, overall 

52 anteroposterior length, mediolateral breadth, and the gonial angle, has been associated with 

53 geographic, climatic, dietary, and feeding performance factors (Kaifu, 1997; Nicholson and 

54 Harvati, 2006; von Cramon-Taubadel, 2011; Katz et al., 2017). When modeled as a constrained 

55 lever, variation in the length of mandible will move the dental functional area relative to the 

56 muscle resultant and change the location of maximum bite force production (Greaves, 1978; 

57 Spencer and Demes, 1993). Large vertical bite forces are associated with a short and broad 

58 mandibular ramus, a low coronoid process/shallow mandibular notch, and large bicondylar 

59 breadth (Herring and Herring, 1974). Humans with longer faces, narrower mandibles, and larger 

60 gonial angles have reduced masseter muscle thickness (Throckmorton et al., 1980, Kiliaridis and 

61 Kälebo, 1991; Van Spronsen et al., 1992). These features are thought to influence the mechanical 

62 advantage of the primary jaw adductors -- the masseter and temporalis muscles. 
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63 However, there is a well-documented trade-off between mechanical advantage and gape 

64 such that larger gapes require greater muscle stretch and/or posteriorly positioned jaw elevator 

65 muscles, negatively impacting jaw mechanical advantage (Herring and Herring, 1974; Lindauer 

66 et al., 1993; Van Eijden and Turkawski, 2001; Hylander, 2013; Iriarte-Diaz et al., 2017). This 

67 indicates that vertical movements of the jaw that stretch the muscles beyond their optimum 

68 length result in decreased mechanical advantage and lower bite forces.  Beyond this, the 

69 ontogeny of the mandible is well known to be strongly influenced by its loading history (Moss 

70 and Salentijn, 1969; Pearson and Lieberman, 2004), hence an association between function and 

71 mandibular size and shape is to be expected. 

72 We tested a series of hypotheses to investigate how gape cycle size and shape vary with cycle 

73 number across a chewing sequence, food type, and measures of mandibular morphology. First, 

74 gape cycles were hypothesized to change across the chewing sequence (H1), such that gape 

75 cycles are larger at the beginning of the chewing sequence before the food has been broken 

76 down. Gape cycles were also expected to differ between food types (in this case raw and cooked 

77 sweet potato) within each subject, reflecting differences in food particle breakdown, toughness, 

78 and elastic modulus. We hypothesized that raw sweet potato gape cycles will be larger than 

79 cooked sweet potato gape cycles, reflecting food material property-related differences in rates of 

80 particle breakdown and swallow-safe bolus formation (H2). Next, we compared jaw kinematics 

81 across individuals, assessing the extent to which gape cycle variation with food type and cycle 

82 number is consistent across individuals (H3). Finally, we hypothesized that differences in gape 

83 cycles among individuals covary with measures of mandibular size and shape (H4). Specifically, 

84 we hypothesize that smaller gape cycles are associated with greater mandibular mechanical 

85 advantage and tradeoffs between gape and bite-force tradeoffs. Smaller gape cycles would allow 
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86 subjects to maximize their mechanical advantage and minimize muscular stretch. As there are 

87 likely three-dimensional complexities of jaw movement that can only be quantified and analyzed 

88 using multivariate techniques, we addressed these hypotheses using a novel application of 

89 geometric morphometric techniques to gape cycles. This allows us to quantify and compare the 

90 three-dimensional size and shape of these motions to better understand how cycle size and shape 

91 vary with cycle number, food, and morphology.

92 2. Materials and Methods

93 Chewing sequences were recorded from twelve adult human subjects (seven women and 

94 five men) between the ages of 21 and 29. Subjects were free from chronic masticatory problems, 

95 had not had dental work within the last six months, and were not missing any teeth (except for 

96 M3’s). Each subject completed chewing trials on 15 mm3 cubes of cooked and raw sweet potato. 

97 To standardize the start of the chewing sequence, subjects completed two chewing trials in which 

98 they were asked to start chewing with the cube on their right lower first molar. Subjects were 

99 asked to chew at their normal rate only on the right side until all particles were swallowed. Side-

100 imposed chewing reflects normal unilateral loading during mastication and allowed us to capture 

101 variation in jaw movements without differences in loading side or food movement within the 

102 mouth. The chewing trials took place at the Human Evolution and Energetics Lab at Hunter 

103 College. All subjects were volunteers and gave informed consent before participating in the 

104 study. The New York University Committee on Activities Involving Human Subjects (project 

105 number 11-8561), and the Hunter College Human Research Protection Program (project number 

106 11-08-165-4471) granted approval for the study.

107 The cooked sweet potato was prepared by boiling the cubes for five minutes at 100° C. 

108 Raw and cooked sweet potato appear to differ in food toughness (the work needed to propagate a 
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109 crack through an object: Cooked: 57.15 ± 18.8; Raw: 841.0 ± 75.63), and elastic modulus (the 

110 ratio of stress to strain within the elastic region of the food: Cooked: 0.03 ± 0.02; Raw:  

111 3.65 ± 0.99) 

112 2.1 Distinguishing gape cycles

113 A Vicon motion capture system (www.vicon.com) recording at 200 Hz was used to 

114 capture the three-dimensional coordinates of a series of six reflective markers adhered to each 

115 subject’s face using double-sided tape directly above the following osteological landmarks: 

116 pogonion, nasion, right and left condylion laterale, and right and left gonion (Fig. 2; Table 1). 

117 Reflectors were placed on three subjects on two separate occasions to test intra-observer error in 

118 marker placement. There were no significant differences in the pairwise distances between the 

119 markers (using a Student T-Test, p = 0.72). Unless noted, all data formatting and analyses were 

120 run in R (R Core Team, 2017).

121 Gape cycles within a chewing sequence were identified using the change in distance 

122 between the three-dimensional coordinates at nasion and pogonion, which changes over time 

123 with jaw opening and closing. Gape cycles were specifically defined as the sequential departure 

124 from- and return to the point of minimum gape (Hiiemae, 1978; Bramble and Wake, 1985). 

125 Local minima were found using the R package ‘quantmod,’ and the time points of these minima 

126 were used to distinguish individual gape cycles throughout the chewing sequence. Jaw 

127 movements with longer durations or atypical movement patterns were attributed to swallows or 

128 food positioning within the mouth and were excluded. Gape cycles throughout the chewing 

129 sequence were sequentially numbered (cycle number). All analyses were restricted to the first 20 

130 gape cycles in the chewing sequence in order to capture the greatest change in jaw movement 

131 relating to particle breakdown and bolus formation. Gape cycles beyond cycle number 20 are 
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132 likely to be primarily for bolus formation and positioning before swallowing, and jaw 

133 movements are less likely to reflect differences in food material properties. Included gape cycles 

134 were also restricted to those starting and ending in the same position (maximum occlusion). The 

135 resulting data consisted of x, y, z coordinate data for each of the six landmarks for individual 

136 gape cycles throughout the chewing sequence. 

137 Varying gape cycle durations resulted in differences in the number of equally temporally 

138 spaced frames in each cycle, and it was necessary to standardize the number of frames per cycle 

139 in order to make comparisons of homologous landmarks. The coordinates for each landmark 

140 were resampled and interpolated to obtain a total of 99 frames per cycle. This resulted in each 

141 gape cycle being represented as a motion path of 99 temporally evenly spaced three-dimensional 

142 marker coordinates for each of the six markers. To remove the effects of head movement during 

143 chewing, the 99 frame gape cycles were translated and rotated to three fixed facial landmarks 

144 averaged across all subjects (nasion, left and right condylion laterale). The first point of 

145 pogonion in each gape cycle was then translated to the coordinates 0, 0, 0. This registers the 

146 cycles among subjects such that pogonion with the mouth closed is coincident and the planes 

147 defined by the upper facial landmarks are parallel. This ‘biomechanical space’ registration 

148 preserves information about cycle size, shape, and orientation. We focused on movement of the 

149 pogonion point because it is furthest from the axis of rotation, although rigid-body motion of the 

150 mandible also resulted in associated movements at the right and left gonial landmarks. 

151 Landmarks were also extracted for each subject at the point of maximum occlusion (mouth 

152 closed). Three Euclidean distances and one angle were calculated from these landmarks: 

153 intergonial distance, pogonion to gonion, gonion to condylion laterale, and the gonial angle 

154 (Table 2). 
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155 2.2 Application of geometric morphometrics to kinematics

156 Previous multivariate approaches to kinematics have either been restricted to motions at a 

157 joint (Park et al., 2005), or have utilized a Generalized Procrustes Analysis (GPA), thereby 

158 removing biomechanically relevant differences in scale, position, and orientation (Slice 1999, 

159 2002, 2003; Adams and Cerney, 2007; Pearson and Zumwalt, 2014). We adapt the geometric 

160 morphometric toolkit to quantify and analyze whole motion paths (kinematics) in the Euclidean 

161 space in which musculoskeletal mechanics operate, here called biomechanical space. 

162 Biomechanical space is defined as the size and shape of a three-dimensional motion path for a 

163 single point translated to a common fixed point (the point pogonion with jaws closed is taken as 

164 the common start point for registration without scaling or rotation). Importantly, motion paths in 

165 biomechanical space retain size, shape, and orientation and other biomechanically relevant 

166 information such as velocity or posture. 

167 2.3 Within subject analyses (H1 and H2)  

168 In order to analyze how gape cycle size and shape varied across the chewing sequence 

169 within each subject and food type, the coordinates of pogonion were averaged across the two 

170 repeated chewing sequences for each cycle and food item (e.g., average of the two raw sweet 

171 potato gape cycles for cycle number five). The resulting mean 1st to 20th gape cycles for raw 

172 sweet potato and cooked sweet potato in each subject were used to test H1 and H2. 

173 To test if gape cycles vary with cycle order across gapes 1-20 (H1), a multivariate 

174 regression was used to regress averaged gape cycle coordinates on cycle number within each 

175 subject. Significance of the regression was estimated using a permutation test (999 

176 permutations). All multivariate regressions were carried out using the R package ‘geomorph’ 

177 (Adams and Otarola-Castillo, 2013). To test whether the relationship between gape cycles and 
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178 cycle number varies between food types within each subject, we calculated the angle between the 

179 regression vectors for each food type using a permutation test (999 permutations) in the R 

180 package ‘morpho’ (Schlager, 2017). 

181 We assess the pattern of variation of gape cycles within the sample by carrying out a 

182 principal component analysis (PCA) (performed in “Geomorph,” Adams and Otárola-Castillo, 

183 2013). We visualize the variation in registered gape cycle coordinates between either extreme of 

184 the first principal component (PC1) and its relationship with cycle order. Importantly, the 

185 resulting principal components were only used as a visualization tool and not used to statistically 

186 compare cycle changes with order and food types. The eigenvalues, proportion of variance, and 

187 cumulative proportion of variance are listed in the Supplemental Online Material (SOM Table 

188 S1).

189 2.4 Among subject analyses (H3 and H4)

190 When registered to common points across individuals, gape cycle motion paths in 

191 biomechanical space also reflect differences in mid-facial form and gape cycle orientation. 

192 Although these differences were likely small within humans, we carried out a second set of 

193 analyses in Procrustes space to focus on differences in cycle size and shape alone. In order to 

194 transform the gape cycles from biomechanical space to Procrustes space we carried out a 

195 generalized Procrustes analysis (GPA) of gape cycle landmark coordinates and rescaled the 

196 resulting cycle shape coordinates by their centroid sizes. In the resulting Procrustes size and 

197 shape space, distances directly relate to relative landmark displacements between configurations. 

198 After pooling all individuals, gape cycle coordinates in biomechanical space and Procrustes size 

199 and shape space were separately averaged at each cycle number (1-20) for both raw and cooked 

200 sweet potato. This resulted in four datasets used to test H3 and H4: raw sweet potato in 
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201 biomechanical space, cooked sweet potato in biomechanical space, raw sweet potato in 

202 Procrustes space, and cooked sweet potato in Procrustes space. 

203 Multivariate regressions and the angles between the food type regression vectors 

204 (described above) were used to assess the relationships between gape cycles and cycle number 

205 among individuals in biomechanical and Procrustes space (H3). Multivariate regressions with 

206 permutation tests (999 permutations, run in Geomorph) were used to test whether measures of 

207 mandibular morphology were correlated with gape cycle size and shape in biomechanical and 

208 Procrustes space. Gape cycle variation with cycle number and measures of mandibular 

209 morphology was visualized using a PCA (described above). 

210 3. Results

211 3.1 Within subjects, gape cycles change across the chewing sequence (H1)

212 For both foods, gape cycles vary in form and orientation throughout the chewing 

213 sequence (Table 3). In six of the subjects, gape cycles for raw sweet potato covaried significantly 

214 with cycle number (Table 3). When chewing cooked sweet potatoes, gape cycles were 

215 significantly associated with cycle number in one of the subjects (Table 3). 

216 3.2 Within subjects, cycles will vary with cycle number for raw and cooked sweet potato (H2) 

217 Gape cycles, in biomechanical space, vary more for raw than cooked sweet potato across 

218 the chewing sequence. Half of the subjects had significantly different angles between the vectors 

219 of the regressions between cycle number and raw and cooked sweet potato gape cycles (Table 3). 

220 This indicates that gape cycles differ over time, between food types. 

221 3.3 Among subjects, gape cycle variation with food type and cycle number is consistent (H3)

222 With all subjects combined, a multivariate regression of the average gape cycle sizes 

223 shapes and orientations (for cycle orders 1-20, in biomechanical space) on cycle number was 
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224 significant for cooked sweet potatoes (p = 0.01), but not raw sweet potatoes (p = 0.55). For 

225 cooked sweet potato, gape cycles are larger at the beginning of the chewing sequence and 

226 become narrower with increasing cycle number (Fig. 3A). The angle between the regression 

227 vectors for each food type is significant (p = 0.05). A multivariate regression of the average 

228 Procrustes aligned gape cycle sizes and shapes (1-20) on cycle number was significant for 

229 cooked sweet potato (p < 0.01) but not for raw sweet potato (p = 0.18). Similar to biomechanical 

230 space, cooked sweet potato gape cycles were wider at the beginning of the chewing sequence 

231 (Fig. 3B). A permutation test on the angle between the regression vectors using the Procrustes 

232 aligned coordinates was not significant (p = 0.29). 

233 3.4 Among subjects, gape cycles will covary with measures of mandibular size and shape (H4) 

234 Multivariate regressions with permutation tests of average raw and cooked sweet potato 

235 gape cycles in biomechanical space on the distance between the right gonion to right condylion 

236 laterale were not significant (Table 4). However, gape cycles significantly varied with intergonial 

237 distance and the distance from pogonion to gonion for raw and cooked sweet potato (Fig. 4A-D). 

238 Gape cycles also significantly varied with gonial angle for raw sweet potato (Fig. 4E). In all of 

239 these relationships, narrower gape cycles were associated with larger pogonion to gonion and 

240 intergonial distances when visualized along PC1. In multivariate regressions of Procrustes size 

241 and shape variables with permutation tests on mandibular measurements, only the distance 

242 between pogonion and gonion and intergonial distance achieved significance when chewing raw 

243 sweet potato (Fig. 5A-B; Table 4). Longer pogonion to gonion and intergonial distances were 

244 associated with narrower gape cycles (Fig. 5A-B).

245

246 4. Discussion
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247 Studies relating variation in diet to mandibular morphology in primates have had varying 

248 success. Ross et al. (2012) propose that this is because diet influences mandibular morphology 

249 through other hierarchically-arranged variables such as ingestive behavior and jaw kinematics, 

250 along with their associated loading, stress, and strain regimes. Here we have addressed part of 

251 this relationship by examining how gape cycle variation differs between food types and across 

252 the gape cycle across and within individuals, and by evaluating the relationship between jaw 

253 kinematics and mandibular morphology. Our results reveal that mandibular morphology relates 

254 to differences in jaw movements, suggesting that investigations of diet and feeding behavior 

255 should consider possible impacts of mandibular morphology on behavioral variation. Future 

256 studies examining kinematic variation across individuals or taxa should also evaluate the 

257 influence of mandibular morphology on kinematic variation. 

258 4.1 Within individuals, gape cycles vary with cycle number and food type (H1)

259 The results in Table 3 support the hypothesis that gape cycles vary across the chewing 

260 sequence in most subjects for raw sweet potato. This is consistent with previous studies 

261 suggesting that vertical displacement of the jaw and masticatory muscle activation decrease 

262 across a chewing sequence (Pruim et al., 1978; Manns et al., 1979; Hylander and Johnson, 1985; 

263 Spencer, 1998; Olmsted et al., 2005; Vinyard et al., 2008; Reed and Ross, 2010). Greater vertical 

264 jaw displacement at the beginning of the chewing sequence is thought to reflect the period of 

265 greatest food particle breakdown (Plesh et al., 1986; Foster et al., 2006; Woda et al., 2006; 

266 Vinyard et al., 2008; Reed and Ross, 2010; Laird et al., 2016). The lack of significant changes in 

267 gape cycle size and shape with cycle number in cooked sweet potato likely relates to the 

268 relatively soft food material properties of cooked sweet potato. Cooked sweet potato did not 
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269 require multiple chewing cycles in order to break the food into particles -- rather gape cycles 

270 were likely related to bolus formation.

271 4.2 Within individuals, gape cycle variation with cycle number differs for raw and cooked sweet 

272 potato (H2)

273 The regressions between cycle number and gape cycle size and shape differed between 

274 raw and cooked sweet potato in most individuals (H2, Table 3). Because the size and shape of 

275 the ingested food objects was uniform, gape cycle variation reflects differences in food material 

276 properties and bolus formation between raw and cooked sweet potato. Larger jaw vertical 

277 displacements have previously been associated with foods of higher toughness (Anderson et al., 

278 2002; Foster et al., 2006; Wintergerst et al., 2008; but see Takada et al., 1994; Peyron et al., 

279 1997). Additionally, the raw and cooked sweet potato regressions did not converge as cycle 

280 number progressed. This implies that preparation of a swallow-safe bolus from foods of different 

281 initial properties does not impose a common pattern of jaw kinematics after the initial food 

282 breakdown and bolus formation. It is possible that this result reflects our experimental setup as 

283 subjects generally swallowed the cooked sweet potato before the raw sweet potato. However, our 

284 results suggest that food material properties influence jaw movements and that these motions are 

285 incompletely described by vertical or lateral linear displacements (e.g., Reed and Ross, 2010; 

286 Laird, 2017). The consistency of covariation between gape cycles and food material properties 

287 requires further testing over a large range of food items. 

288 4.2 Among individuals, gape cycle variation with cycle number and food type is consistent across 

289 subjects (H3)

290 We assessed the relationships between gape cycles and cycle number across all subjects. 

291 Gape cycles significantly varied with cycle number across subjects in cooked sweet potato and 
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292 there was a significant difference between the raw and cooked sweet potato vectors. This result 

293 differs from the within subject analyses in that cooked sweet potato was only correlated with 

294 cycle order in one subject (Table 3). This difference may reflect differences in bite conditions 

295 across subjects that are beyond experimental control. For example, food positioning, food 

296 fracture, and bite forces are unlikely to be consistent across subjects for a particular gape cycle 

297 number. Regardless, the analyses both within and across subjects consistently showed diverging 

298 regressions between raw and cooked sweet potatoes. Results from the Procrustes aligned 

299 coordinates also significantly differed with chew number; however, the angle between the 

300 vectors was not significantly different, suggesting that orientation and registration of cycles at 

301 the pogonion with jaw closed account for the differences found in the among-subject between-

302 food cycles in biomechanical space. 

303 4.3 Among individuals, gape cycles covary with the size and shape of the face (H4)

304 We explored covariation between mandibular size, shape, and orientation and gape cycles 

305 using linear measures of mandibular morphology. We found that intergonial distance and the 

306 distance from pogonion to gonion were related to gape cycle size and shape in both cooked and 

307 raw sweet potatoes, and differences in the gonial angle were associated with gape cycle size and 

308 shape in raw sweet potato. The gape cycles visualized on PC1 suggests subjects with longer 

309 intergonial and pogonion to gonion distances and larger gonial angles have wider gape cycles. 

310 Together, results from the biomechanical and Procrustes analyses suggest that gape cycle 

311 variation with chewing sequence order and food material properties is mediated by differences in 

312 the length and width of the mandible. When Procrustes size and shape variables were used to 

313 describe motion cycles, a similar relationship was found for intergonial distance and the distance 

314 from pogonion to gonion in raw sweet potatoes. 
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315 Our data suggest that gape cycle size and shape vary with size of the gonial angle, 

316 intergonial distance, and anteroposterior mandibular length (measured as pogonion to gonion), 

317 and covariation between gape cycles and mandibular morphology is consistent with previous 

318 proposals relating morphological variation to mechanical advantage. Subjects with acute gonial 

319 angles and broader mandibular breadth presumably have masseter and temporalis muscles that 

320 are positioned more anteriorly relative to the tooth row resulting in increased mechanical 

321 advantage and increased muscle activation (Herring and Herring, 1974; Throckmorton et al., 

322 1980; Lindauer et al., 1993; Van Eijden and Turkawski, 2001; Hylander, 2013). We propose that 

323 smaller gape cycles were used in these subjects in order to maximize their mechanical advantage 

324 and minimize muscular stretch. Subjects with an obtuse gonial angle, smaller intergonial 

325 distance, and anteroposteriorly shorter mandibles may have had lower mechanical advantage, but 

326 they used larger gape cycles potentially allowing greater intraoral bolus manipulation. Further 

327 investigation of the morphological influences on jaw motions and bite force production is needed 

328 using taxa with varying mandibular morphology and data on individual variation in muscle 

329 mechanics (cf. Iriarte-Diaz et al., 2017).

330 Alternatively, changes in mechanical advantage may not be driving variation in jaw 

331 kinematics in modern humans. The magnitude of variation in jaw kinematics during normal 

332 chewing and mandibular morphology in modern humans may be small enough to not result in 

333 significant biomechanical differences in gape, muscle stretch, and mechanical advantage. This is 

334 consistent with suggestions that masticatory biomechanical constraints do not direct facial 

335 variation in Homo sapiens (Demes and Creel., 1988; O’Conner et al., 2005; Eng et al., 2013). 

336 Differences in gape cycle size and shape with mandibular morphology may instead reflect other 

337 factors such as relative differences in facial retraction, occlusal topography, or variation in 
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338 tongue manipulation of a food item. In order to assess whether mechanical advantage is an 

339 important factor driving jaw kinematics, additional tests are needed using taxa with large 

340 differences in facial prognathism and gape. Tests are also needed to examine the influence of 

341 craniofacial morphology on aspects of feeding biomechanics outside of jaw kinematics, such as 

342 chewing sequence duration, gape cycle length, or opening and closing length and velocity.

343 4.4 Geometric morphometrics, kinematics, and application to fossil hominin form-function 

344 relationships 

345 The development and application of geometric morphometric methods has transformed 

346 quantitative approaches to comparative morphology. However, application of a geometric toolkit 

347 to complex kinematic forms is less common and raises important questions regarding appropriate 

348 methods. Here we present a novel application of geometric morphometric methods to the 

349 quantification of kinematic variation. Our approach differs from previous methods in that the 

350 orientations of the gape cycles are retained in biomechanical space, and the size and shape of the 

351 whole gape cycle is treated as a single object, the motion cycle. This approach allows variation in 

352 motion size and shape to be related to important variables in biomechanical space, including 

353 muscular and bony morphology. 

354 Previous studies on gape cycle kinematics have focused on maximum horizontal and 

355 vertical displacement of the jaw (Reed and Ross, 2009; Iriarte-Diaz et al., 2010; Laird, 2017), but 

356 our analyses suggest that the gape cycles undergo size and shape changes not captured by 

357 maximum linear displacements. The position of maximum vertical and horizontal displacement 

358 differed among subjects and across chew number. For example, maximum horizontal 

359 displacement may occur closest to maximum gape in some subjects or closer to minimum gape 

360 in others. This variation suggests maximum kinematic displacements may not be homologous 
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361 aspects of motion size and shape across individuals. Gape cycles also underwent size and shape 

362 changes outside of maximum displacement. Some gape cycles narrowed at maximum and 

363 minimum gape, whereas others maintained greater horizontal dimensions. This implies that 

364 displacements may not capture the subtleties of size and shape differences of three-dimensional 

365 kinematics. Our approach also compared among individual results in both biomechanical and 

366 Procrustes space. Overall, the results from biomechanical and Procrustes space were similar, but 

367 the angles between regression vectors of raw and cooked sweet potato gape cycle and chew 

368 number significantly differed in (H3), and fewer measures of mandibular morphology were 

369 significantly correlated with gape cycle size and shape in Procrustes space compared to 

370 biomechanical space (H4). This difference implies that gape cycle orientation influences some 

371 aspects of gape cycle variation. 

372 This study demonstrates the utility and importance of employing a geometric 

373 morphometric toolkit to analyzing three-dimensional movements and its applicability to 

374 questions relevant to paleoanthropology. In particular, this approach allows a direct examination 

375 of covariation between movement and morphology that can be used to understand morphological 

376 and functional variation. For example, this approach can test how pelvic morphology covaries 

377 with locomotor gait in order to address the functional implications of pelvic variation in fossil 

378 hominins. This approach may potentially allow future studies to examine how complex 

379 movements relate to a range of variables including morphology, kinetics, and energetics.

380
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381 Figure Captions

382 Figure 1. A sample chewing sequence with gapes 1-10 numbered. The x-axis is frames per 

383 second (FPS). The y-axis is jaw displacement such that 0 is maximum jaw closure. A single gape 

384 cycle, chew number 5, is demarcated by the gray area.  

385

386 Figure 2. Six osteometric landmarks (A) and the location of the reflectors placed on the 

387 overlying skin (B). Euclidean distances of mandibular morphology calculated from the marker 

388 locations. 

389

390 Figure 3. Visualization of the relationships between cooked sweet potatoes gape cycles in 

391 biomechanical space (A) and Procrustes space (C and D) and chew number. Gape cycle size and 

392 shape variation captured by the first principal component (PC1) are shown along the y-axes. 

393

394 Figure 4. Visualization of correlations between gape cycles in biomechanical space and 

395 measures of mandibular morphology.  Gape cycle size and shape variation for raw sweet 

396 potatoes (A, C, and E) or cooked sweet potatoes (B and D) are shown for the first principal 

397 component (PC1) along the y-axes. Only significant relationships are shown. 

398

399 Figure 5. Visualization of correlations between gape cycles in Procrustes space and measures of 

400 mandibular morphology. Only significant relationships are shown. Gape cycle size and shape 

401 variation for raw sweet potatoes are shown for the first principal component (PC1) on the y-axes. 

402

403
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SOM Table S1

Eigenvalues, Percentage of total variance explained, and cumulative variance from each of the principal 

component analyses used for visualization (Figure 3 and 4). 

H3: RSP 

biomechanical 

space

Eigenvalue Percentage of total 

variance explained

Cumulative 

variance explained

PC1 152.0388 0.7254 0.7254

PC2 41.94376 0.2001 0.9256

PC3 6.484204 0.03094 0.95651

PC4 3.636153 0.01735 0.97386

PC5 2.08895 0.00997 0.98383

PC6 0.916615 0.00437 0.9882

PC7 0.614844 0.00293 0.99114

PC8 0.56181 0.00268 0.99382

PC9 0.475245 0.00227 0.99609

PC10 0.2468 0.00118 0.99726

PC11 0.213435 0.00102 0.99828

PC12 0.196843 0.00094 0.99922

PC13 0.090222 0.00043 0.99965

PC14 0.039133 0.00019 0.99984

PC15 0.018692 0.00009 0.99993

PC16 0.010539 0.00005 0.99998

PC17 0.004772 0.00002 1

H3: CSP 

biomechanical 

space

Eigenvalue Percentage of total 

variance explained

Cumulative 

variance explained

PC1 5518.93 0.7955 0.7955

PC2 1031.553 0.1487 0.9442

PC3 322.0342 0.04642 0.9906

PC4 40.66702 0.00586 0.99646

PC5 9.752504 0.00141 0.99787

PC6 8.529671 0.00123 0.9991

PC7 3.153998 0.00045 0.99955

PC8 1.883811 0.00027 0.99982

PC9 0.808057 0.00012 0.99994

PC10 0.406585 0.00006 1

H3: RSP 

Procrustes 

space

Eigenvalue Percentage of total 

variance explained

Cumulative 

variance explained

PC1 2995.001 0.6937 0.6937



PC2 674.6383 0.1563 0.85

PC3 253.1268 0.05863 0.90864

PC4 161.4729 0.0374 0.946

PC5 79.17547 0.01834 0.96438

PC6 68.51403 0.01587 0.98025

PC7 29.17858 0.00676 0.98701

PC8 23.73346 0.0055 0.9925

PC9 9.28555 0.00215 0.99466

PC10 8.232768 0.00191 0.99657

PC11 4.418908 0.00102 0.99759

PC12 4.106581 0.00095 0.99854

PC13 2.742303 0.00064 0.99918

PC14 1.360676 0.00032 0.99949

PC15 1.060509 0.00025 0.99974

PC16 0.730615 0.00017 0.99991

PC17 0.405361 0.00009 1

H3: CSP 

Procrustes 

space

Eigenvalue Percentage of total 

variance explained

Cumulative 

variance explained

PC1 16025.89 0.5853 0.5853

PC2 10116.44 0.3695 0.9548

PC3 630.2424 0.02302 0.97777

PC4 289.9633 0.01059 0.98836

PC5 170.8908 0.00624 0.99461

PC6 54.58978 0.00199 0.9966

PC7 44.27851 0.00162 0.99822

PC8 21.93986 0.0008 0.999

PC9 16.75298 0.00061 0.99963

PC10 6.56287 0.00024 0.99987

PC11 3.57331 0.00013 1

H4: RSP 

biomechanical 

space

Eigenvalue Percentage of total 

variance explained

Cumulative 

variance explained

PC1 4643.1 0.7583 0.7583

PC2 1163.929 0.1901 0.9484

PC3 235.4313 0.03845 0.98688

PC4 35.46655 0.00579 0.99268

PC5 23.60162 0.00385 0.99653

PC6 8.572013 0.0014 0.9979

PC7 4.791984 0.00078 0.99871

PC8 3.113813 0.00051 0.99922



PC9 2.616242 0.00043 0.99965

PC10 1.086577 0.00018 0.99983

PC11 0.651766 0.00011 0.99993

PC12 0.274335 0.00004 0.99998

PC13 0.126323 0.00002 1

H4: CSP 

biomechanical 

space

Eigenvalue Percentage of total 

variance explained

Cumulative 

variance explained

PC1 5518.93 0.7955 0.7955

PC2 1031.553 0.1487 0.9442

PC3 322.0342 0.04642 0.9906

PC4 40.66702 0.00586 0.99646

PC5 9.752504 0.00141 0.99787

PC6 8.529671 0.00123 0.9991

PC7 3.153998 0.00045 0.99955

PC8 1.883811 0.00027 0.99982

PC9 0.808057 0.00012 0.99994

PC10 0.406585 0.00006 1



Table 1. Reflective marker locations, landmark definitions (White and Folkens, 2000), and operational definitions applied here.

 

. 

Marker location Landmark Definition Operational definition

Right and left condylion laterale Most lateral point on the mandibular 

condyle at minimum gape

Subjects asked to repeatedly open and close 

their mouth; marker placed over condylion 

laterale at minimum gape.

Right and left gonion Most posteroinferior point where the 

mandibular ramus meets the corpus

Marker placed over palpable gonion at 

minimum gape

Nasion The intersection of the two nasal bones 

and frontal bone

Marker placed at the most posteroinferior 

midline point below glabella

Pogonion The most anterior midline point on the 

chin

Marker placed over palpable pogonion point 

at minimum gape. 



Table 2. Mandibular measurements from each subject taken when the jaw was in maximum 

occlusion.

Pogonion to 

right gonion 

(mm)

Intergonial 

distance 

(mm)

Right gonion to 

right condylion 

laterale (mm)

Gonial 

angle (°)

Subject 1 103.48 117.68 71.80 95.16

Subject 2 108.70 126.98 73.27 115.40

Subject 3 116.82 159.30 72.81 100.75

Subject 4 91.62 114.17 55.48 111.08

Subject 5 111.15 138.64 56.50 93.33

Subject 6 123.76 156.28 58.39 92.93

Subject 7 103.62 120.95 61.66 96.32

Subject 8 109.77 127.53 62.87 106.12

Subject 9 95.61 116.71 61.12 106.36

Subject 10 110.65 128.89 73.06 83.15

Subject 11 102.41 142.18 69.55 111.65

Subject 12 107.78 132.02 67.52 97.19

Minimum 91.62 114.17 55.48 83.15

Maximum 123.76 159.30 73.27 115.40

Average 107.11 131.78 65.34 100.79

SD 8.69 14.82 6.77 9.49



Table 3. The results for H1 are p-values from permutation tests on the regression of gape cycles 

on gape cycle order and for raw sweet potato (RSP) and cooked sweet potato (CSP). 

Within-individuals: 

Gape cycle 

order~RSP (H1)

Within-individuals: 

Gape cycle 

order~CSP (H1)

Within-individuals: 

Angles between RSP 

and CSP regression 

(H2)a

Subject 1 0.81 - -

Subject 2 <0.01b <0.01 0.04

Subject 3 0.08 - -

Subject 4 <0.01 0.08 0.05

Subject 5 <0.01 0.56 0.03

Subject 6 0.19 0.24 0.24

Subject 7 0.21 0.64 0.64

Subject 8 0.81 0.12 0.08

Subject 9 <0.01 0.50 0.06

Subject 10 0.22 - -

Subject 11 <0.01 0.52 -

Subject 12 0.02 0.14 0.03
a The results for H2 are p-values from permutation tests on the angle between these regression 

vectors (CSP vs RSP).

bSignificant results are shown in bold.



Table 4. Multivariate regressions p-values from permutation tests for gape cycles in 

biomechanical and Procrustes space and measures of mandibular morphology (H4).a

aSignificant values are shown in bold.

Biomechanical space Raw sweet potato Cooked sweet potato

Pogonion to right gonion <0.01 <0.01

Intergonial distance <0.01 <0.01

Right gonion to right condylion laterale 0.84 0.88

Gonial angle 0.02 0.21

Procrustes space Raw sweet potato Cooked sweet potato

Pogonion to right gonion 0.01 0.64 

Intergonial distance 0.02 0.16

Right gonion to right condylion laterale 0.80 0.21

Gonial angle 0.85 0.73


