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Abstract

Introduction: 

Individuals from older populations tend to have more than one health condition (multimorbidity). 

Current approaches to produce economic evidence for clinical guidelines using decision analytic 

models typically use a single-disease approach, which may not appropriately reflect the competing 

risks within a population with multimorbidity. This study aims to demonstrate a proof-of-concept 

method of modelling multiple conditions in a single decision-analytic model to estimate the impact 

of multimorbidity on the cost-effectiveness of interventions.  

Methods: 

Multiple conditions were modelled within a single decision-analytic model by linking multiple single-

disease models. Individual Discrete Event Simulation models were developed to evaluate the cost-

effectiveness of preventative interventions for a case study assuming a UK National Health Service 

perspective. The case study used three diseases (heart disease, Alzheimer’s disease, and 

osteoporosis) that were combined within a single ‘linked’ model. The linked model, with and without 

correlations between diseases incorporated, simulated the general population aged 45 years and 

older to compare results in terms of lifetime costs and quality-adjusted life years (QALYs).

Results:

The estimated incremental costs and QALYs for healthcare interventions differed when three 

diseases were modelled simultaneously (£840; 0.234QALYs) compared with aggregated results from 

three single-disease models (£408; 0.280QALYs). With correlations between diseases additionally 

incorporated, both absolute and incremental costs and QALYs estimates changed in different 

directions, suggesting that the inclusion of correlations can alter model results.   

Discussion: 

Linking multiple single-disease models provides a methodological option for decision-analysts who 

undertake research on populations with multimorbidity.  It also has potential for wider applications 

in informing decisions on commissioning of healthcare services and long-term priority setting across 

diseases and healthcare programmes through providing potentially more accurate estimations of 

relative cost-effectiveness of interventions.
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Introduction

The prevalence of long-term conditions tends to steadily increase with age [1]. This trend results in 

an increased prevalence of multimorbidity, defined as the co-existence of two or more long-term 

health conditions, in populations of older people [2-4]. The increased proportion of individuals with 

multimorbidity may have a significant impact on healthcare and resource allocation decision-making 

[5-7]. Evidence suggests that the number of conditions, rather than specific diseases, is a greater 

determinant of use of healthcare service resources [2]. Multimorbidity is associated with increased 

healthcare costs, service use, mortality, and reduced quality of life than is the case for those of single 

conditions [3, 8, 9]. Some commentators have suggested the need to focus on the prevention and 

management of multimorbidity rather than of single diseases [10]. 

Despite the resource and health implications of multimorbidity, most economic evaluations are 

conceptualised and designed to evaluate the incremental costs and benefits (relative cost-

effectiveness) of interventions for single diseases [11] to recommend care and management for 

people with specific conditions. Decision-analytic models used to inform the Clinical Guidelines (CG) 

published by the National Institute for Health and Care Excellence (NICE) in England, and more 

widely [12-14], seldom consider people with multiple conditions [15]. Economic evidence for CG 

development is informed by a decision-analytic model (hereafter ‘economic model’) designed to 

appraise interventions to treat or manage adverse health events which are most likely to occur 

within the same (single) disease [16]. 

Consideration of multimorbidity in an economic model should potentially provide more reliable 

estimates than those from a single-disease approach. Consequently, taking account of 

multimorbidity should lead to improved decisions on adoption and implementation of interventions 

for populations with more than one conditions. Taking account of multimorbidity in a single model is 

likely to change the estimates of costs and quality-adjusted life years (QALYs) of treating and 

managing the diseases when compared with modelling separate multiple populations with single 

conditions [17]. Intuitively, the results from two or more separate disease models can be combined 
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to obtain an understanding of the overall outcomes for a multi-morbid population. However, 

combining recommendations produced for single conditions to take account of multimorbidity may 

not represent the clinically optimal or cost-effective use of healthcare resources without jointly 

accounting for the benefits and risks of interventions [10, 18]. Such an approach does not 

incorporate competing risks of death nor does it account for the modification in the risks and health-

related quality of life (HRQoL) of the population with multimorbidity.   

This study aimed to present a proof-of-concept approach to taking account of multimorbidity in an 

economic model to generate robust estimates of incremental costs and health outcomes. The main 

focus was to present a methodology that could address multimorbidity within a single economic 

model by linking multiple single-disease models and, therefore, demonstrate the feasibility of using 

published models to incorporate multiple conditions within a single model. The method was 

illustrated using a case study of three selected diseases. The paper is now presented in three main 

sections. Section two describes the linkage methods used and the relevant case study. Section three 

reports the base-case results from the linked models, including a key finding associated with 

interpretation of result. Section four discusses the implications and limitations of using this approach 

in practice.  

Methods
 

This study demonstrates a method for linking multiple single-disease economic models using a 

Discrete Event Simulation (DES) constructed in SIMUL8 (©SIMUL8 Corporation). Three approaches 

to conceptualising and constructing an economic model were directly compared: (i) aggregating 

results from multiple single-disease models; (ii) modelling multiple diseases simultaneously within a 

single economic model; and (iii) incorporating correlations between diseases in the multi-disease 

economic model created in (ii). 

A case study was used to illustrate the methods. Multimorbidity was captured in the case study 

using three example diseases: heart disease (HD), Alzheimer’s disease (AD) and osteoporosis. Three 

diseases were selected to demonstrate the ability of the method to address any number of diseases 

that may co-occur. The selection of the relevant diseases to include in the case study was based on 

the economic, mortality and morbidity burden of each condition and the desire to cover a spectrum 

of conditions (see Appendix 1 for detailed selection criteria). A reference economic model to inform 

decisions on the structure, sources of data and key assumptions for each disease was identified from 
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a rapid review of recently published economic models [19-21]. Using these economic models, the 

current recommended treatments for the three diseases (statins for HD; donepezil for mild to 

moderate AD and memantine for severe AD; and alendronic acid for osteoporosis) were compared 

with no drug treatment. The specific details of the case study and challenges associated with the 

application of the method are reported in Appendices 1-8.  

The analysis was undertaken from the perspective of UK National Health Service (NHS) and Personal 

Social Services (PSS) in line with the reference case stipulated by NICE [22]. A lifetime horizon was 

used to fully assess the long term effect of the interventions. Costs and health outcomes associated 

with a lifetime use of the interventions were presented in terms of pounds sterling (£ in 2012/13 

price) and QALYs, respectively. The relevant population was defined as the UK general population 

aged 45 years and over with or without the diseases, rather than only the elderly, to fully capture 

the prevention effect of the interventions. Age and gender values were randomly sampled from the 

UK mid-2012 population estimates [23]. Those individuals who did not have the disease may or may 

not develop it before death based on the age- and gender-stratified incidence of the disease. A 

discount rate of 3.5% per annum was used for both costs and QALYs. The next section describes the 

methods used to link multiple single-disease models in reference to the conventional DES approach.

Individual patient modelling methods

A DES approach was chosen for modelling the three diseases in which individual patients are 

simulated to move through different disease events sampled from time-to-event distributions. The 

selected diseases were modelled individually and then combined within a single DES model as a 

linked-disease economic model (see Figure 1). Potential correlations between the diseases were 

additionally explored in the linked-disease economic model. Figure 2 illustrates the method for 

model linkage with respect to simulation time.

===== Place Figure 1 here =====

======Place Figure 2 here=======

Individual patient modelling was used to provide more flexibility to incorporate heterogeneity 

among patients when compared with cohort modelling.  Whilst cohort-based models can 

theoretically account for different characteristics of individuals such as age, risk factors, and history 

of other diseases, the number of dimensions needed for the relevant health states become 
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exponentially large [24]. The ‘time-to-event’ approach used in DES provided a practical option for 

linking multiple diseases. Transition probabilities for pre-specified equal-length cycles as in state-

transition cohort (Markov) models are not required, allowing for greater flexibility in the times when 

events can occur. DES models can also record more individual attributes to account for patient 

history than Markov models: the rate of Event 1, , is updated once an individual 

experiences Event 2, such that .

Figure 2(a) represents an economic model for a disease shown as a course of changes over time in 

‘variables’ that define the modelled system (the process of disease progression). Figure 2(a-ii) 

depicts a Markov model in the same format as the DES model for a selected individual from a cohort. 

Any occurrences that alter any set of such variables can be considered as ‘events’. The variables 

describing the state of a disease process at a point in time include: global variables that apply to all 

simulated individuals (e.g. discount rates and unit costs of interventions); and individual attributes 

that may or may not change over time (e.g. age, sex and individual’s disease history or changes in 

state membership if an individual from a Markov cohort is considered). The model outcomes such as 

lifetime costs and QALYs are based on the trajectories of these variables. Figure 2(a) shows how the 

DES allows for changes in the system variables to occur at any discrete point in time such that, 

multiple events can occur within a short period of time. The calculation of costs and QALYs is then 

made only when events occur, not at every cycle as in Markov models, hence allowing a large 

number of disease events to be incorporated in DES models. 

Modelling methods for linked model: general approach

The flexibility of the DES approach means that it is possible to merge existing single-disease 

economic models to create a linked-economic model by combining all event-defining variables 

within one system (see Figure 2(b)). In the linked economic models, costs were assumed to be 

additive. Four approaches (additive, minimum, multiplicative and linear index methods) to combine 

utility values for joint health conditions are possible in the absence of actual data for a population 

with more than one health condition. There is no agreement on the best approach and current 

recommendations suggest using the multiplicative method, which was the approach adopted in this 

study [25].   

Individuals with multiple diseases may have a higher risk of death. Multimorbidity is taken into 

account for disease-related death as competing risks: HD- and fracture-related deaths.  The earliest 
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time to disease-related death was determined at the central router in the DES. Death may not be 

related to any of the diseases explicitly modelled. Non-disease mortality rates in the linked model 

were defined as all-cause mortality obtained from the UK Interim Life Tables [26] minus the death 

rates associated with the diseases included in the model. 

Two versions of the linked-economic model were constructed which assumed (i) independence 

between the three diseases; or (ii) correlation between the diseases. A probabilistic analysis was 

conducted using the linked economic model assuming correlation. Next section describes how the 

linked economic model assuming independence between the three diseases was constructed. 

Independence assumes that the presence of one disease does not affect the risk of the others 

(denoted hereafter as ‘independently linked model’).

Linked economic model: assuming independence

All variables used in the single-disease DES models (Figure 2(b-i)) were combined to produce the 

independently linked economic model (Figure 2(b-ii)). This approach unifies variables, such as age 

and gender, commonly included in all single-disease economic models (Figure 2(b-ii)). In the linked 

economic model, the sequence of events is redefined to represent the times when any variables 

combined in the linked model are scheduled to change (Figure 2(b-ii)).  Creating a linked economic 

model involves adding a central routing variable that directs simulated individuals to the earliest 

next event. This routing is done by taking a value indicating which of the diseases the identified next 

event is associated with (Figure 2(b-ii)).  Competing risks across all individual disease models can also 

be compared and individuals are directed to move to the event corresponding to the earliest 

scheduled time to event. This linked-economic model can provide a seamless approach especially 

when populations at increased risks of multimorbidity are modelled and when existing models are 

available for the individual diseases. 

Table 1 provides additional detail on the process used to update event times and routing. The table 

shows how to follow an individual through the DES from model entry. Individuals can have zero, one, 

two or three of the diseases, and enter the combined model with characteristics sampled at the 

entry point. These characteristics are used for the sampling of times to next event (TTNEs) and/or 

the calculation of aggregate costs and QALYs. Individuals enter the DES model through the central 

routing point where the transition to the next event is executed. Once the individuals move to the 

event and all relevant parameters are updated, they return to the central router to be routed to the 
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next event. This process is repeated until an individual has been simulated up until the point at 

which they die. Recording the history of previous events means that the DES can account for 

multimorbidity, in terms of event costs, HRQoL and influence on risks of future events. The times to 

all further predicted events are then either resampled based on updated parameters or reduced by 

the TTNE to account for the passing of time. For example, at the central routing point, TTNEs for the 

other diseases are subtracted by the time spent in the previous event. Other time-related variables 

such as time before the effect of treatments stops, and time before the end of the first year of any 

cardiac events or osteoporotic fractures, are then re-calculated.   

===Place Table 1 here===

Linked economic model: assuming correlations between diseases 

This section describes how correlation between the three diseases was taken into account in the 

linked economic model.  Incorporating correlations between diseases assumes that having one 

disease can affect the risk of other diseases and hence correlations between diseases are 

incorporated (denoted hereafter as ‘correlated linked economic model’). The correlated linked 

economic model assigns disease history and event probabilities based on the status of the other 

diseases included in the DES model. Correlations associated with prevalence were incorporated to 

set the distribution of diseases at the start of the model, and correlations associated with incidence 

were used to dynamically change the incidence of one disease conditional on the occurrence of 

other disease events. 

The model assumed that the occurrence of HD events affects the incidence of AD, but not vice versa 

due to the relatively later onset of AD compared with that of HD [27]. There is growing evidence that 

supports osteoporosis is correlated with both HD and AD as greater vascular dysfunction is 

associated with lower bone mineral density [28-30]. Excess fracture risk has been reported among 

patients with a diagnosis of myocardial infarction with a hazard ratio of 1.73 [95% CI, 1.32-2.27] [31]. 

The DES assumed that a history of HD events would increase fracture risks and those with previous 

fracture would be at an increased risk of stroke and AD onset [31, 32].

For demonstrating a proof-of-concept model, correlations regarding selected prevalence and 

incidence estimates were deemed sufficient. Five types of correlations (see Appendix 2 for detail) 

were incorporated in the correlated linked model: i) prevalence and ii) incidence of AD in people 
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with and without HD; iii) incidence of hip fracture for people with a history of MI; iv) the risk of 

stroke among people with a history of hip fracture; and v) incidence of AD in people with low bone 

mineral density. Correlations associated with prevalence were incorporated at the start of the model 

by setting the distribution of diseases across individuals. Correlations associated with incidence were 

incorporated using a more dynamic approach. For example, after an individual develops an HD event, 

the incidence of AD for that individual was changed from the time of that HD event.  To incorporate 

the correlation between AD and HD, the total proportion of people who have AD was divided into 

the proportion of AD patients among people with HD and the proportion among people without HD. 

The incidence of AD for the total population was divided into that for population with HD and for 

population without HD, such that the sum of the incidence values equals the total incidence. 

 

Constructing single-disease models  

This section describes how the three single-disease economic models (heart disease, Alzheimer’s 

disease and osteoporosis) were conceptualised and built for the case study (see Figure 3). A rapid 

review was undertaken to identify economic models published as part of the UK National Institute 

for Health Research (NIHR) Health Technology Assessment (HTA) monograph series 

(https://www.journalslibrary.nihr.ac.uk/HTA/). Two of the three identified relevant single-disease 

models were Markov cohort models (HD and AD). The core structure of each identified economic 

model for each single disease was maintained but adapted to be implemented on a DES platform. 

Data sources reported in the published HTA reports were also used as model input parameters (see 

Appendix 3). All transition probabilities reported in the published economic models were converted 

to rates. Event rates reflect the instantaneous likelihood of the event occurring per unit of time. For 

each model, the appropriate number of simulated individuals to ensure stable outcomes was 

identified by examining the standard error of the mean estimates of (incremental) cost and QALYs, 

and the mean and jackknife confidence interval for the incremental cost per QALY estimate [33]. The 

results from the three single-disease models were compared with those of the published models to 

externally validate the model.

===== Place Figure 3 here=======
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Heart disease model

The state transition cohort model developed by Ward et al. [19], and used to inform guidance 

recommended by NICE, was used as the single disease model for heart disease (HD; Figure 3a). 

Statins, assuming a common class effect, were the intervention used for the secondary prevention of 

HD in patients with angina, MI, PAD or a history of stroke, and for primary prevention in patients 

who are at increased risk of coronary events. High-risk patients were defined as those whose 

estimated 10-risk of developing CVD is greater than 20% according to NICE TA94 [19]: however, the 

threshold was amended to 10% in 2014 [34].

Sources of data and key assumptions reported in Ward et al. [19] were considered as the main 

reference for the model. A review of existing models suggested that the single-disease economic 

model for HD should be adapted to include peripheral artery disease (PAD) and that it was necessary 

to update some parameter estimates (see Appendix 3).

First-year events and events in subsequent years were kept distinct because of the differences in the 

cost of interventions and HRQoL within these time periods. No difference in event rates was 

assumed between the first year and subsequent years after PAD because there was no clinical 

evidence identified distinguishing the two periods. The DES uses continuous time which means it 

was possible for an individual to have multiple events, and associated utility values, within a 12-

month period. It was therefore possible for one individual to incur two or more utility modifiers 

associated with first-year events. An event updating utility values was added to the model to ensure 

that changes in HRQoL were handled appropriately. 

Alzheimer’s disease

A DES model for Alzheimer’s disease (AD) was constructed (Figure 3b) based on the Markov model 

published in the HTA report by Bond et al. [20]. After a diagnosis of AD, the model structure 

replicated the three-state model in Bond et al. [20]. In line with current NICE recommendation [35], 

it was assumed that patients with a Mini-Mental State Examination (MMSE) score between 10 and 

26 at diagnosis (i.e. 10≤ MMSE ≤26) received donepezil. Memantine was assumed for patients with 

MMSE < 10.

Page 10 of 141



11

A simulated population representative of the UK population aged 45 and over was assumed to enter 

the model. This analysis assumed that some individuals have AD when entering the model. Those 

entering the model without AD may or may not develop AD before death based on the sampled time 

to onset of AD. It was assumed that diagnosis of AD is not instantaneous as the development of 

symptoms is gradual.  

Osteoporosis model

The economic model produced by Stevenson et al. [21] was used as a basis for osteoporosis model 

constructed for the case study (see Figure 3c). 

Events included in the DES model for osteoporosis were defined by four index fracture sites (hip, 

vertebral, wrist and proximal humerus fractures) and the risks of: nursing home entry from hip 

fracture; death following fracture; and non-fracture related death. The events representing initiation 

and discontinuation of a preventative pharmacological intervention (70mg alendronate taken once 

weekly) were also included. The model included fractures occurring to both osteoporotic and non-

osteoporotic populations [21]. It was possible to have two first year utility multipliers acting 

simultaneously. An event to update utility values was included in the model to reflect that utilities 

for the first year and subsequent years after a fracture could be different. 
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Results

This section presents illustrative simulation results for the UK general population aged 45 years and 

older from the case study. The three single-disease models produced comparable results with those 

from the published reference models despite the difference in model populations (see Appendix 4). 

Results are reported from two types of linked models: those from the independently linked model; 

followed by those from the correlated linked model. For all results reported in this section, 

stochastic variability between simulated individuals was examined to ensure stable outcomes (see 

Appendix 5). 

Linked economic model: assuming independence 

Table 2 reports the base-case results from the linked economic model assuming independence 

between the three diseases. Incremental cost-per-QALY estimates for the three interventions 

(statins, donepezil or memantine, alendronate) for the three diseases in combination (HD, AD, 

osteoporosis, respectively) differed between the linked economic model and the individual disease 

DES models. There were higher incremental costs (£840) and lower incremental QALYs (0.234) in the 

linked economic model compared with the sum of the three single-disease model results (£408, 

0.280) (see Appendix 6). The absolute costs from the independently linked model (£14,776 for 

intervention arm) were slightly lower than the sum of the absolute costs from the three single-

disease models (£15,520). The absolute QALYs (8.956 for intervention arm) were also lower than the 

minimum of the equivalent values from the three individual disease models (9.249), as utility levels 

were generally lower in the model including multiple diseases than in the models that consider only 

one disease. 

=== Place Table 2 here ======

Table 3 presents incremental cost and QALYs, and cost per QALY estimates of each intervention 

(statins, donepezil or memantine, alendronate) from the independently linked model based on 

700,000 simulated individuals. This analysis assumed that the interventions for the other two 

conditions were available to individuals. The results differed from the results from the single disease 
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models: the linked model produced larger incremental costs and smaller incremental QALYs in 

absolute values than the single disease models (see Appendix 6).

This difference was most noticeable for AD intervention which produced lower QALYs with lower 

costs than no treatment in the linked model (incremental QALYs of -0.001; incremental cost of -£24) 

whilst it was dominating no treatment in the individual AD model (Appendix 6). The results in Table 3 

did not have face validity because it was not considered plausible to have negative incremental 

QALYs associated with AD intervention: donepezil or memantine only delays cognitive impairment 

and the model did not capture the impact of adverse drug events. Therefore, the number of 

simulated individuals was increased to two million, from 700,000, individuals, and then face validity 

improved with the AD intervention dominating no treatment with a very small QALY gain. The small 

incremental values were in line with the results from the Bond et al. study [20, 36]. 

=== Place Table 3 here======

Impact of imbalance between the linked diseases on the interpretation of the 

results

Making a direct comparison between the absolute size of incremental QALYs and costs per person 

across the single-disease economic models (Figure 4 and Appendix 6), it is clear that the effect of HD 

intervention was much larger than those interventions for AD or osteoporosis. The results were 

shown to be stable within individual disease models. The relative cost-effectiveness of individual 

interventions estimated from the linked economic model could potentially be affected by the level 

of balance between the size of QALYs and cost outcomes from the individual diseases included in the 

linked economic model (regardless of whether independence or correlation was assumed). This 

effect was observed when the QALY gains from one disease (in the case study, HD) were much larger 

than those for the remainder and there were different levels of Monte Carlo sampling error between 

diseases. Hence, an acceptable level of sampling error in one disease for robust adoption decision 

for that disease could significantly impact the QALYs and cost outcomes for the other diseases.  
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====Place Figure 4 here=====

The margin of error, defined as half-width of the 95% confidence interval in this study, around the 

mean incremental QALYs, was used to describe the amount of random sampling error in the 

simulation results [37].  In the individual HD model, the margin of error was estimated to be 0.0288 

QALYs based on 200,000 simulated individuals. To estimate the predicted margin of error of the 

mean incremental QALYs with increased number of simulated individuals (N), a power regression 

model was used to fit a non-linear curve that decreases proportionally by  (R2=0.9999). Using the 

fitted equation, the margin of error in incremental QALYs for HD intervention with 700,000 

individuals was predicted to be 0.0155 QALYs. With 10 million individuals simulated, this value 

(0.0042 QALYs) was still large compared with the incremental QALYs associated with the 

interventions for AD (0.001 QALYs) and osteoporosis (0.008 QALYs). This shows that, where the 

treatment of one disease has a much larger absolute impact on cost and QALYs than the impact of 

treatments for other, a very large number of individuals may need to be simulated for stable results 

to be achieved in a linked model. Appendix 7 describes a hypothetical scenario in which a similar 

level of QALY gains was assumed for all three interventions, and the adoption decision within the 

linked model for each individual intervention was robust.  
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Linked economic model: assuming correlation between diseases

Table 4 reports the base-case results from the linked economic model incorporating correlations. 

The incremental cost-per-QALY results for the combination of the three interventions were similar to 

the results from the independently linked model (£3,583 per QALY gained). When the three diseases 

were assumed to be correlated, the absolute values of QALYs and life years increased and costs were 

lower.  This was the result of positive correlations between diseases resulting in multimorbidity 

being more concentrated within a narrower population. Table 5 shows the results of running the 

model with two million individuals simulated to reduce the impact of the aforementioned sampling 

error issue. A probabilistic sensitivity analysis (PSA) using the correlated linked model was 

undertaken and its feasibility in the multi-disease DES context is discussed in Appendix 8. All of the 

300 PSA samples showed incremental cost-per-QALY being lower than the threshold of £20,000 per 

QALY gained (Figure S8.1, Appendix 8). Conducting 300 PSA runs required 1.9 days of computing 

time for each intervention arm (Intel CoreTM i7CPU 3.40GHz processor with 16GB RAM). 

===Place Table 4 here=====

==== Place Table 5 here=====
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Discussion

This study aimed to demonstrate a proof-of-concept method to link multiple single-disease models 

using a case study involving three diseases (HD, AD and osteoporosis) managed with three 

interventions (statins, donepezil or memantine, alendronate). The inclusion of multiple diseases in a 

single DES model also enabled correlation between the diseases to be incorporated.  This illustrative 

example showed that producing a linked economic model was feasible using DES and also allowed a 

PSA to be performed. The results from the three single-disease models were broadly comparable 

with those from the published economic models despite differences in model populations, costs and 

health events included (Appendix 4).  The linked economic model results showed that incorporating 

multiple diseases and correlations between them in a model can produce different estimates of 

aggregate costs and QALYs for a disease when compared with those estimates derived from single-

disease models. In general, the magnitude of the difference between single and linked model results 

increased with the proportion of the model population developing multiple diseases. These results 

confirm a priori expectations that when considering a population of individuals that are susceptible 

to multiple health conditions, producing an economic model that focusses on a single disease will 

not only misrepresent actual care pathways but seriously bias the estimated costs and QALYs. 

Consequently, an intervention could be mistakenly estimated to be cost-effective when it is not. This 

potential for bias is relevant in the context of both allocation of healthcare resources and clinical 

guidelines. An economic model that appropriately links multiple diseases is likely to produce 

different decisions on technology adoption, which in turn could alter the nature of the NHS funded 

treatment options made available in clinical practice [38, 39].

To be able to appropriately measure the impact of multimorbidity, it is necessary to carefully select 

the relevant co-existing diseases for a specified decision problem. Ideally, the use of pre-defined 

criteria (as exemplified in Appendix 1) should be used to guide the selection of relevant diseases.  

Careful consideration should be paid to how many of the relevant diseases should be included in a 

linked economic model. The same principles used for single-disease modelling also apply to the 

selection of multiple diseases: the diseases considered to alter model outcomes that are important 

for the population being studied and to policy makers (such as costs and QALYs) should be included. 

Epidemiological data that identify commonly co-existing health conditions (for example, see [10]) 

can be used to inform the choice of which diseases are most relevant. The assessment of marginal 

returns to adding more diseases in the linked model could be investigated empirically. 
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This proof-of-concept analysis suggested that when one disease had a much larger impact on costs 

and QALYs than the other diseases in a linked economic model, the sampling error around the 

disease with larger impact could make a significant difference to the estimated cost-effectiveness of 

the other individual treatments. This result could lead to lack of face validity for the diseases with 

smaller incremental gains. The implication is that the number of simulated patients required to 

stabilise the adoption decisions within linked economic models may be greater than the maximum 

of the numbers required for single-disease models. In circumstances where the QALY gains are 

similar across individual treatments, then it is likely that the proposed methods of linking single 

disease models produce more accurate estimates for multi-morbid populations. Further research on 

approaches to addressing this problem, in particular when incremental costs and QALYs are small in 

magnitude, would be beneficial.

The analysis showed that including correlations between diseases may potentially change the 

relative cost-effectiveness of interventions. When correlations were implemented, absolute QALYs 

were higher than when the diseases were assumed independent due to the concentration of co-

morbidities onto an already diseased population, resulting in lower QALY loss from having an 

additional disease. Hence, adding correlations better reflects the relationship between 

multimorbidity and mortality.  This paper demonstrated how to include correlations, based on the 

currently available data. Further evidence on correlations between diseases may become available in 

the future which would allow the model to be extended and improved.   

The DES approach, as illustrated in this paper, showed how it was sufficiently flexible to allow the 

impact of different types of individuals in a population to be quantified.  The general population was 

used as the entry population in the DES model, but it is possible to define more specific populations 

with different distributions of individual characteristics, for example, a population of individuals with 

prevalent HD but without osteoporosis.  In turn, a particular health intervention could be evaluated 

for these individuals in a population, which mirrors the approach in conventional HTA analyses for 

interventions in single diseases. 

There were some limitations to this proof-of-concept method. The use of the DES framework 

enabled the seamless linkage of the three disease distinct economic models, but future work could 

explore the application of the linkage method using methods other than DES. Also, the multiplicative 

method was used to combine utility values for the co-occurring health conditions. There are three 

other possible methods: additive, minimum and linear index methods. Each of these methods is 

likely to produce different utilities for any combination of health states, but the direction of the 

changes in the observed utility values will be the same. A future study could investigate the impact 
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of  using different methods to combine utility values on the magnitude of the cost-effectiveness of 

interventions in a linked model for more than one disease [40].

In this proof-of-concept study, time-to-event distributions and random numbers were used to 

represent the variability among individual observations (first-order uncertainty) as reported in 

Appendix 5.  Uncertainty around the structure of the economic model was not examined. A 

probabilistic sensitivity analysis (PSA) is required to understand the impact of second-order 

uncertainty arising from uncertainty in the model input parameters [41].  A feasibility run of PSA was 

undertaken that showed significant model running time would be required to conduct a large-scale 

PSA for this model (Appendix 8).   A study designed to understand the impact of parameter and 

structural uncertainty in a linked economic model could be a topic for future research using parallel 

computing or expedited PSA with non-parametric regression modelling [42]. Also, running the model 

for a more narrowly defined population with specific characteristics and higher disease prevalence, 

rather than for the general population, would accelerate convergence to mean outcomes at each 

deterministic run.

In conclusion, this proof-of-concept study used DES to produce a linked economic model and 

demonstrated that this is a feasible approach to inform decision-making relevant to interventions for 

populations with multimorbidity. This study provided a modelling framework that has the potential 

to be modified and/or expanded to incorporate other diseases and interventions to inform the 

development of clinical guidelines using evidence about the relative cost-effectiveness of 

interventions for people with multimorbidity. This study has shown that using a linked economic 

model that incorporates correlations between diseases is likely to influence the potential decisions 

made about the allocation of healthcare resources to support interventions relevant to multi-morbid 

populations, increasing the health benefits experienced by those patients.
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Table 1. An illustration of individual’s movement through the linked model *

Simulation 

time

Location (Event 

where updates 

occur)

Time to next disease event

Time 0 Entry Time to next heart disease event: Sampled to be 2.5 years

Time to next Alzheimer’s disease event: Sampled to be 12 

years 

Time to next osteoporosis event: Sampled to be 4.5 years

Time 0 Central router  Time to next event: 2.5 years (heart disease event)

 Utility weight until next event: 0.85 (baseline utility)

Time 2.5 Heart disease 

event

Next heart disease event: Sampled to be 6.8 years

Time 2.5 Central router Next heart disease event: 6.8 years

Next Alzheimer’s disease event: Updated to 9.5 (12-2.5) 

years

Next osteoporosis event: Updated to 2 (4.5-2.5) years

 Time to next event: 2 years (osteoporosis event)

 Utility weight until next event: 0.595 [=0.85 

(baseline utility) x 0.7 (utility multiplier for heart 

disease events)]

Time 4.5 Osteo event Next osteoporosis event: Sampled to be 7.3 years

Time 4.5 Central router Next heart disease event: Updated to 4.8 (6.8-2) years

Next Alzheimer’s disease event: Updated to 7.5 (9.5-2) years 

Next osteoporosis event: 7.3 years

 Time to next event: 4.8 years (heart disease)

 Utility weight until next event: 0.476 [=0.85 

(baseline) x 0.7 (heart disease) x 0.8 (utility 

multiplier for osteoporosis events)]

Time 9.3 Heart disease 

event

Next heart disease event: Sampled to be 8.2 years

Time 9.3 Central router Next heart disease event: 8.2 years

Next Alzheimer’s disease event: Updated to 2.7 (7.5-4.8) 

years 

Next osteoporosis event: Updated to 2.5 (7.3-4.8) years

 Time to next event: 2.5 years (osteoporosis)

 Utility weight until next event: 0.476 [=0.85 

(baseline) x 0.7 (heart disease)† x 0.8 (osteoporosis)

⁞
The process continues until death

*For illustration, the same utility values were assumed across all events within one disease: 0.7 for heart disease events 

and 0.8 for osteoporosis events. A constant baseline utility weight of 0.85 was assumed; †When the same event occurs 

more than once (e.g. two strokes within a year), a utility multiplier is applied only once. 
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Table 2. Per-capita results from the independently linked model based on n=700,000 simulated 

individuals

Independently linked model Individual disease 

models

With all 

treatments* 

None of the 

three 

treatments

Incremental 

values

Sum of incremental 

values across three 

individual models

Cost £ 14,776 £ 13,936 £ 840 £ 408

QALYs 8.956 8.722 0.234 0.280

ICER   £ 3,582 /QALY £ 1,458

*All the default treatments were assumed to be available.

Table 3. Cost-effectiveness of individual treatments from the all-disease linked model where 

diseases were assumed independent 

HD treatment AD treatment Osteoporosis treatmentAll disease 

linked 

model
No HD 

treatment* 

Incremental 

values**

No AD 

treatment*

Incremental 

values**

No Osteo-

porosis 

treatment*

Incremental 

values**

Based on 700,000 simulated individuals

Cost
£ 13,815 £ 960 £ 14,800 -£ 24 £ 14,942 -£ 166

QALYs
8.720 0.236 8.957 -0.001 8.954 0.002

ICER £ 4,068 £ 32,549† Dominating

Based on 2,000,000 simulated individuals

Cost
£ 13,798 £ 1,004 £ 14,819 -£ 18 £ 14,914 -£ 112

QALYs
8.717 0.240 8.958 0.000 8.952 0.005

ICER £ 4,175 Dominating Dominating

HD=heart disease; AD=Alzheimer’s disease; *Treatments for the remaining two diseases were assumed to be 

available; **All incremental values are compared with the results with all three treatments available; 

†Treatment with lower costs and lower QALYs; Costs and QALYs discounted at 3.5% p.a.
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Table 4. Base-case results from the all-disease model with correlations between diseases 

incorporated based on n=700,000 simulated individuals

Linked model with correlations incorporated

With all three 

treatments* 

None of the three 

treatments

Incremental values 

Cost £ 14,741 £ 13,894  £ 847

QALYs 8.962 8.725 0.236

ICER  £3,583 /QALY

*All the default treatments were assumed to be available.

Table 5. Cost-effectiveness of individual treatments using results from the all-disease linked model 

with correlations incorporated, based on n=2,000,000 simulated individuals

HD treatment AD treatment Osteoporosis treatment

No HD 

treatment*

Incremental 

values**

No AD 

treatment*

Incremental 

values**

No 

Osteoporosis 

treatment*

Incremental 

values**

Cost
£ 13,791 £ 936 £ 14,742 -£ 15 £ 14,869 -£ 142

QALYs
8.730 0.235 8.963 0.002 8.961 0.004

ICER

(£/QALY)

£ 3,978 Dominating Dominating 

HD=heart disease; AD=Alzheimer’s disease; *Treatments for the remaining two diseases were assumed to be 

available; **All incremental values are compared with the results with all three treatments available. 
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Figure 2. Discrete event simulation (DES) model with and without model linkage† 

†All y-axes of the diagrams show examples of variables defining the respective models and changes in their 

values over simulation time (x-axes); *Global parameters: variables that apply to all simulated individuals 

such as discount rates, unit cost of interventions and utility associated with health events; **Individual 

attributes: variables that reflect changes in individual characteristics over time such as age, a previous 

experience of disease events and utility multipliers relevant to the individual at specific event times; 

‡Central routing variable was added after combining all single-disease model variables in the linked model 

to indicate in which disease model the next event is scheduled to occur. 
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a.DESmodelvs.acohortmodelwithfixedtimecycles(Markovmodel)
i)DESmodel ii)Markovmodel

b.Single-diseaseDESmodelsvs.alinkedDESmodel
i)Twosingle-diseaseDESmodelsforDiseaseAandDiseaseB ii)AlinkedDESmodelwithDiseaseAandDiseaseBeventsmerged
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Figure2a-ii)Markov
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Figure2b-i)TwoSinglediseaseDESmodels
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Figure2b-ii)ALinkedDES

Variable1

Variable2

Variable3
Variable4

Endof
simulati
on

Variable5
(ageat
event)Variable
6

Event1Event2Event3t=0

Variable
7
Variable
8

Event4 Event5Event6

Central
Routing
variable‡

DiseaseA
DiseaseB DiseaseB

DiseaseA Nextevent=
simulation
end

 

Simulationtime

Linkedmodel
variables

Model 
variables 
merged

Page 32 of 141



a)Heartdiseasemodel*

The heart disease model included MI, stroke, angina, revascularisation PAD and cardiac and non-cardiac deaths as qualifying health events. Each non-fatal cardiac event except PAD (MI, angina, stroke and revascularisation) was divided into two temporal categories: first-year and subsequent years after the event.
b)Alzheimer’sdiseasemodel

Alzheimer’s disease: The onset and diagnosis of AD were added to the structure of the model by Bond et al. (2012) in order to model a general population.
c)Osteoporosismodel*

Osteoporosis model: Four fractures (hip, vertebral, wrist and proximal humerus) were included as osteoporotic fracture events. The events also included nursing home entry from hip fracture; death following fracture; and non-fracture related death (see Stevenson et al. 2009).
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Appendix 1. Justification for disease selection

The criteria used for selecting the diseases to be modelled in the case study are summarised in Box 1. 

Box 1. Criteria for selecting diseases to model

o Diseases with major cost implications: High costs to the UK NHS and Personal Social Services 

of treating/managing the diseases

o Diseases of the elderly: Diseases with significant mortality and morbidity burden for older 

population and diseases whose incidence is expected to increase as population ages.

o Establishing a balance between different disease areas in order to cover a spectrum of 

conditions.

o Diseases that are correlated with respect to their incidence/prevalence and thus are more 

likely to co-occur

o Whether there are sufficiently recent HTA reports undertaken for the disease in order that a 

peer-reviewed model could be replicated.

o Diseases of hard endpoints, rather than those being risk factors for other diseases 

themselves, such as diabetes and hypertension

Diseases with significant cost implications to the UK NHS and Personal Social Services (PSS) for an 

ageing population were considered for inclusion in the model. Diseases expected to become more 

prevalent as a population ages were given a priority. 

A balance between different disease areas was also considered as one of the criteria. Including 

diseases from one or two areas of diseases whose mechanisms are similar may be misleading in 

estimating the broad impact of population ageing on healthcare expenditure and the interactions 

between diseases. Among diseases of significant economic, mortality and morbidity burdens, a 

spectrum of diseases that affect different parts of the body were included. 

Diseases that are potentially correlated were considered for inclusion in the case study. Seemingly 

unrelated health conditions may co-occur in individuals as they often share common underlying risk 

factors (for further details, see Appendix 2). 
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Fracture risks are influenced by the presence of cardiovascular disease (CVD).  In a study that was a 

part of the Rochester Epidemiology Project, myocardial infarction (MI) was associated with higher 

risk of all types of osteoporotic fracture [1]. Excess fracture risks after MI were found with the 

overall adjusted hazard ratio (HR) of 1.32 (95% CI 1.12-1.56) across all anatomic sites. 

Further, the prevalence of heart disease (HD) among Alzheimer’s disease (AD) patients was 

considered higher than that of HD within an age- and gender-matched general population.  A 

number of studies have found that AD often co-exists with vascular conditions such as hypertension, 

hyper-cholesterolaemia, and diabetes mellitus [2-6]. 

Osteoporosis and stroke share several risk factors, including age, smoking, low physical activity, and 

hypertension. Thus, low bone mineral density (BMD) and high stroke risk can be correlated. Studies 

have shown that low BMD or a history of fracture has an association with the incidence of stroke [7-

9]. Jørgensen et al. [9] reported that women with BMD values in the lowest quartile had a higher risk 

of stroke than women with BMD values in the highest quartile (odds ratio (OR)= 4.8), and a linear 

trend over the quartiles was statistically significant. The OR for stroke increased 1.9 per SD (0.13 

g/cm2) reduction in BMD. The association between low BMD and stroke in women remained 

significant when the analysis was adjusted for potential confounders. In men, however, no 

statistically significant difference in BMD between the stroke patients and their controls was found.  

The presence of recently published (or in press) NIHR HTA reports was considered as it was deemed 

as evidence of the importance of the disease to major stakeholders such as decision-makers in local 

government, policy-makers (including the National Institute for Health and Care Excellence (NICE)), 

health professionals, and the general public. Further, the model structures reported in the HTA 

reports were largely replicated. 

Diseases with hard endpoints were preferred to those which were surrogate risk factors for other 

diseases. It was believed that such diseases could be embedded as a risk factor, and the 

consequences of the diseases could be represented in the models of other diseases. 

Using the selection criteria, the three diseases with significant mortality and disability burdens for 

the elderly – heart disease (including stroke and MI), Alzheimer’s disease, and osteoporosis – were 

chosen for the case study.  

The most expensive disease category was cardiovascular disease.  Heart conditions, such as coronary 

heart disease (CHD) and MI, and stroke were selected for modelling as they account for the largest 
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proportion of mortality and prevalent cases in cardiovascular disease among older individuals [10], 

and impose significant economic burden on the overall healthcare system [11]. 

Dementia was selected for modelling considering its cost, potential association with CVD, the 

balance between the chosen diseases, and likely impact of population ageing. Amongst brain 

disorders, dementia was the most expensive category of spending [12], and affects older people in 

particular with the incidence positively correlated with age [13]. Only the most common form of 

dementia, Alzheimer’s disease (AD), was modelled in this study as the current NICE guidance and 

relevant model-based studies (including HTA reports) focussed on AD.

It was considered appropriate to include one or more musculoskeletal disorders due to the 

increasing prevalence and incidence with age. Amongst the musculoskeletal conditions, osteoporosis 

was deemed appropriate to include in the model due to its high cost.  Osteoarthritis (OA) was not 

selected as previous models have been built for OAs at different anatomical sites such as knees, hips, 

and joints of hands, which make OA more difficult to include given the aim of this paper. 

Furthermore, the incidence of OA is difficult to estimate as the onset is not well-defined due to the 

discrepancy between the symptomatic OA and OA based on the radiological changes.  Rheumatoid 

arthritis (RA) was considered for inclusion as RA mainly affects people aged 65 years and older [14]. 

However, RA was not chosen for the modelling given that the cost of RA did not exceed that of OA 

and chronic obstructive pulmonary disease. 
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Appendix 2. Incorporating correlations between diseases

The following correlations were incorporated in the proof-of-concept model.

1) Prevalence of AD for people with and without HD

2) Incidence of AD for people with and without HD

3) Incidence of hip fracture for people with and without a history of MI

4) Stroke risks among people with and without a history of hip fracture

5) Incidence of AD with and without low BMD

AD=Alzheimer’s disease; HD= heart disease; MI= myocardial infarction; BMD=bone mineral density

This section describes only the correlations between the prevalence of HD and AD ((1) in above table) 

and the incidence of osteoporotic fracture and the presence of HD ((3) in above) incorporated in the 

linked model and how these correlations were implemented. The correlations 1)-5) were selected 

due to the data availability. Different incidence and prevalence estimates were applied to two 

groups of people with and without the other underlying condition.  Similar calculation methods to 

those described in this section were applied to other correlations. 

Targeted literature searches in the Medline and/or EMBASE databases using a combination of the 

disease names were conducted to identify the required data on correlations between the modelled 

diseases. Wherever possible, data on the incidence and prevalence of one disease with and without 

the other diseases was obtained. Further details on the correlations 2), 4) and 5) can be found in 

Youn (2016) [1].

Correlation between Heart disease and Alzheimer’s disease

Systematic searches for literature reporting the prevalence of AD and other co-existing conditions 

and the outcomes of intervention for patients with AD and other relevant conditions were 

conducted within the Medline and EMBASE databases. However, very few papers that could provide 

numerical data for populating the model were identified. 

A small number of studies that discussed empirical data on the effect of one disease on another 

were identified. As Maslow [2] noted, studies mainly listed common co-existing conditions that were 
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present in their study population only, or intentionally excluded people with AD who have other co-

morbidities as the effect of other diseases could confound the effect of AD. Studies focussing on 

heart disease reported similar results. 

Correlation of prevalence

The prevalence of HD among AD patients was considered higher than that of HD within an age- and 

gender-matched general population.  A number of studies have found that AD often co-exists with 

vascular conditions such as hypertension, hyper-cholesterolaemia, and diabetes mellitus [2-6]. 

For instance, the US National Center for Health Statistics survey found that 82% of people in assisted 

living facilities where help is provided for daily activities such as bathing and dressing had one or 

more of dementia, hypertension, and heart disease (Figure S2.1) [7]. 42% of the residents had 

Alzheimer’s disease or other forms of dementia and 34% had heart disease. 14% of people had both 

dementia and heart disease and 9% of them had all three of the diseases. However, as this survey 

was conducted in assisted living centres, the survey respondents were likely to be older than other 

study populations. 
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Figure S2.1. Co-morbidities of residents in assisted living facilities

Source: The National Center for Health Statistics, 2010 [7]

In order to incorporate the linkages between AD and HD, those with and without HD had different 

prevalence of AD: the total proportion of people who have AD was divided into the proportion of AD 

patients among people with heart disease and the proportion among people without HD. 

For each age and sex group, the total prevalence of AD, , can be seen as a weighted 

average of two conditional probabilities  and  as follows; 

         

[Eq. 1]

where AD and HD are binary variables taking the value of one when the disease is present and zero 

otherwise. Therefore,   and  are the prevalence of AD and HD, respectively. 

 denotes the probability of having AD conditional on the presence of HD, or the 

prevalence of AD among those with HD, and  the prevalence of HD among those 

with AD. 

In the same way, the total prevalence of heart disease can be calculated as:

        

[Eq. 2]
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Eq. 2 expresses the total prevalence of HD in terms of  and  

using the value of AD prevalence, . Regardless of which equation to use, the split should 

be the same as  and  represent the same coloured area in 

Figure S2.2 although the actual figures of the conditional probabilities differ depending on which 

disease status is assumed to be known. 

Figure S2.2. Prevalence linkage between AD and heart disease

However, Eq. 2 could not be used as the total prevalence of heart disease had to be partitioned 

among the cardiac events included in the model and data required for using Eq. 2 were not available 

from the literature searches.  Hence, the prevalence of AD was divided into the prevalence of AD for 

people with and without HD using Eq. 1.

Using Bayes’ theorem,  in Eq. 1 was calculated as 

  [Eq. 3]. The relationship in Eq. 1 was used to 

calculate .  The following sections describe the methodology and report the 

calculation results. 

Calculation and calibration of the prevalence of Alzheimer’s disease among heart disease patients

The prevalence of AD among people with HD, , was calculated by combining the 

results on  and  using Eq. 3. Subsequently, the prevalence of AD 

among people without HD, ,  was also estimated using Eq. 1. 
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The resulting prevalence of AD divided into  and  is shown 

in Table S2.1. These values were used in the linked model as the prevalence of AD in relation to the 

presence of heart disease. The ratio   varied with age group and sex as the prevalence 

of individual diseases,  and , differ between age and sex. 
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Table S2.1. Prevalence of AD divided into the prevalence for people with HD and that for people 

without HD (before calibration)

Prevalence of AD

 People with HD ① People without HD ② Ratio (①/②)

Age Men Women Men Women Men Women

<65 0 0 0 0 NA NA

65-69 0.018267 0.044718 0.006785 0.005929 2.69 7.54

70-74 0.036962 0.05099 0.015618 0.009068 2.37 5.62

75-79 0.051255 0.091056 0.032751 0.034654 1.57 2.63

80-84 0.095646 0.180764 0.058681 0.068831 1.63 2.63

85+ 0.196727 0.363585 0.108037 0.132586 1.82 2.74

The prevalence of AD before and after applying the correlations were compared using the values 

sampled at the model entry in order to see whether the estimation method used for splitting 

prevalence produced similar results. The total prevalence of AD and the prevalence for people with 

and without HD are compared in Table S2.2. The prevalence values of AD with and without HD were 

combined for comparison with the total AD prevalence before splitting using 100,000 simulated 

individuals for each age group (in order to have enough numbers of simulated individuals in each age 

group). The absolute percentage differences ranged from 0.23% to 5.09% between the total 

population values and the split values of prevalence.  The percentage difference was the largest for 

female population aged 70-74 years. The differences could be due to the use of the single estimate 

of  in Eq. 3 for all age groups and sex, which fails to reflect variation among 

different populations in the estimation equation.  

Although the differences could be considered small, the prevalence of AD split for people with and 

without HD was calibrated to match the total prevalence. Calibration was performed in order to 

start the model with the same population with respect to the total prevalence of AD. Based on the 

total prevalence values, age- and sex-specific calibration multipliers were applied to the prevalence 

values for people with and without HD. These were calculated as the total prevalence divided by the 

combined prevalence using split values. The calibrated prevalence after these multipliers were 

applied was used in all models for this paper where AD and heart disease were correlated. 
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Table S2.2. Comparison of simulated proportions of people with Alzheimer’s disease (AD): between 

when the total prevalence of AD was used and when the prevalence of AD split into HD and non-HD 

groups was used 

Total prevalence of 

AD (before splitting)

Combined 

prevalence of AD 

using split 

prevalence values*

% Difference 

(compared with the 

total prevalence AD)

Age Men Women Men Women Men Women

<65 0 0 0 0 0 0

65-69 0.0101 0.0108 0.0098 0.0104 -3.01% -3.98%

70-74 0.0223 0.0158 0.0232 0.0166 3.88% 5.09%

75-79 0.0403 0.0511 0.0387 0.0503 -3.94% -1.52%

80-84 0.0734 0.1015 0.0732 0.1020 -0.38% 0.44%

85+ 0.1411 0.1980 0.1451 0.1985 2.79% 0.23%

*Based on the results of 100,000 simulated individuals for each age group. 

In order to examine the effect of the calibration at the population level, the numbers of people with 

AD across all age groups in the models before and after calibration were compared in Table S2.3 

when 200,000 individuals aged 65 years and over were simulated for each model (the age 

distribution for people aged 65 and over was adapted from the ONS mid-2012 UK population 

estimates). The total numbers of people with AD among 200,000 simulated individuals from models 

with and without calibrated prevalence values were compared with that from the model where 

heart disease and AD were independently linked. The calibration reduced the difference between 

when the total AD prevalence was applied and when the split prevalence values were used from 

0.50% to 0.24% for male population and from 1.89% to 1.18% for females. 

There still existed differences in the number of people with AD after calibration due to Monte Carlo 

sampling error. Perfect calibration would have been possible if the calibration factors were 

calculated using the model results with the infinite number of runs for each age and sex group. In 

addition, if the infinite number of individuals were simulated in the perfectly calibrated model and 

the independently linked model for figures in Table S2.3, the differences would have been 

eliminated. 
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Table S2.3. Number of individuals with Alzheimer’s disease (AD) before and after calibration 

compared with when total prevalence without correlations was applied

Number with AD when 

Total AD prevalence was 

used**

Number with AD when split prevalence values were used* 

(difference (n; %))

Men Women Men Women Men Women

Before calibration After calibration

3378 6292
3395

(+17; +0.50%)

6411

(+119; 1.89%)

3386

(+8; 0.24%)

6366

(+74; +1.18%)

*Among 200,000 simulated individuals aged 65 years and older; **Results from the model where 

heart disease and AD were linked with independence between diseases assumed. 
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Correlation between Heart disease and Osteoporosis 

The model in this study focussed specifically on correlations regarding hip fracture, and MI and 

stroke as these events are associated with the highest costs and utility effects. This section describes 

the correlation between hip fracture and a history of MI. Similar calculation was performed for the 

correlation between the risk of stroke and a history of hip fracture. 

Incidence of hip fracture and prevalent cardiovascular disease

Fracture risks are influenced by the presence of CVD.  In a study by Gerber and colleagues [8], MI 

was associated with higher risk of all types of osteoporotic fracture. Excess fracture risks after MI 

were found with the overall adjusted hazard ratio (HR) of 1.32 (95% CI 1.12-1.56) across all anatomic 

sites. Trends of the fracture incidence rates for three time-periods (1979-1989; 1990-1999; 2000-

2006) were tested and an increase in fracture rates over time was found among MI patients. An HR 

of 1.66 for both men and women for hip fracture was used in the model, which was for the most 

recent time period (2000-2006). Data reported in Gerber et al. [8] was used in the model as this 

study was based on a large sample size and similar ethnic group to that of the UK, and provided 

relatively recent data in the format suitable to be applied to the time-to-event distributions used in 

the model.  Only a transient increase of fracture risks after MI was identified in the study. In the 

Gerber et al. (2011) study, as the mean follow-up time was only 4 years and the association between 

and MI and 5-year risk of osteoporotic fracture was reported, HR was applied for five years after MI. 

The incidence of hip fracture was split between that for those with MI and that for those without. 

Using the prevalence estimates of MI used to populate the individual heart disease model, the total 

incidence of hip fracture was split between the incidence of hip fracture for patient who had an MI 

within 5 years and that for patients who did not have MI for the last 5 years. These were reported in 

Table S2.4 for those on no treatment (A) and on drug treatment for osteoporosis (B) where an RR of 

72% for hip fracture was applied [9]. Due to the low prevalence of MI among younger age groups, 

the baseline incidence for those without MI was similar to the total incidence including both groups 

with and without MI. 
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Table S2.4. Hip fracture incidence split between rates for those with MI and without MI

A. Hip fracture incidence with and without MI – No drug treatment

 Total incidence of hip 

fracture

Baseline rate r (without 

MI)

Rate for patients with MI

Age Men Women Men Women Men Women

45-50 0.00030 0.00020 0.00030 0.00020 0.00049 0.00033

50-55 0.00030 0.00020 0.00030 0.00020 0.00049 0.00033

55-60 0.00070 0.00050 0.00067 0.00049 0.00112 0.00082

60-65 0.00030 0.00080 0.00029 0.00079 0.00048 0.00131

65-70 0.00080 0.00130 0.00073 0.00127 0.00121 0.00211

70-75 0.00110 0.00210 0.00100 0.00206 0.00167 0.00341

75-80 0.00200 0.00420 0.00180 0.00396 0.00299 0.00658

80-85 0.0068 0.0097 0.00613 0.00915 0.01017 0.01519

85+ 0.0099 0.0217 0.00892 0.02047 0.01481 0.03398

B. Hip fracture incidence with and without MI – For individuals on drug treatment for 

osteoporosis

 Total incidence of hip 

fracture – on drug 

treatment

Baseline rate r (without 

MI)

Rate for patients with MI

Age Men Women Men Women Men Women

45-50 0.00025 0.00018 0.00025 0.00017 0.00041 0.00029

50-55 0.00024 0.00017 0.00024 0.00017 0.00040 0.00028

55-60 0.00050 0.00033 0.00048 0.00032 0.00080 0.00054

60-65 0.00020 0.00055 0.00019 0.00054 0.00032 0.00090

65-70 0.00060 0.00092 0.00054 0.00090 0.00090 0.00149

70-75 0.00081 0.00150 0.00074 0.00147 0.00123 0.00244

75-80 0.00145 0.00303 0.00131 0.00286 0.00217 0.00475

80-85 0.00490 0.00695 0.00442 0.00656 0.00733 0.01088

85+ 0.00713 0.01557 0.00643 0.01469 0.01067 0.02439

The incidence rates of hip fracture with and without a recent MI reported in Table S2.4 were used as 

the baseline event rates for hip fracture for the first 5 year period after MI. The relative risks 

associated with factors that can influence the event rates, such as low BMD and previous fracture, 

were applied onto these baseline rates. When sampling time to next hip fracture, these baseline 

incidence rates of hip fracture were updated when the sampled time to event was longer than the 

time before a change in age band, or the time left to a change in the drug efficacy due to the 
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treatment fall time after discontinuation. Hence, all three time intervals for which different event 

rates are applied – time to 5 years after MI, time to next age band, and time to next efficacy change 

due to the fall time of treatment effect – were continuously compared with the sampled time to 

event (TTE) value. When the sampled TTE value is longer than any of the three, the baseline 

incidence rates were changed accordingly and TTE was resampled. 
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Appendix 3. Parameter estimates and data sources

Event Rates 

This section describes the event rates used for the base-case model only for HD due to the addition 

of PAD and updated parameters. Parameter estimates used in the AD and osteoporosis models were 

based on the data reported in the HTA reports [1, 2] and are detailed in Youn [3]. The data sources 

were identified from the six UK-based studies [4-9]. The most appropriate parameter estimates 

reported for similar populations and contexts in the six studies and their sources of data were used 

for the model in this research. UK-sourced data were used wherever possible, and age-dependent 

time-variant rates of transitions between health events were preferred.

All included HD disease states except PAD were split into two temporal categories – first year and 

subsequent years after the event – due to the difference in the rates for transitions to other events, 

costs, and/or utility weights between the first year of the event and thereafter.  Various sources for 

cardiac death rates were used dependent on the ‘from’ state of the transition. The rate of transition 

to cardiac death varied with the age group and the temporal period (first year or subsequent years 

after the event), and time to cardiac death was sampled from an exponential distribution, the 

parameter of which produced the appropriate rate. 

The event rates used in the model are summarised in the next sections by the origin of transitions, 

with each section followed by a summary table of the estimates. In addition, rates of transitions to 

fatal stroke and PAD were described in separate sections as they applied regardless of the origin of 

transitions. 

Transitions from event-free state (at model initiation)

Event rates differed depending on whether an individual is on primary or secondary prevention 

interventions, or is untreated. Rates of transitions from the event-free state are summarised in Table 

S3.1. 
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Table S3.1. Baseline annual rates of transition from event-free state

Baseline rates for individuals not receiving statin treatment

From To Estimates Sources

Event free MI Rate for men = 0.01624; Rate for 

women = 0.01123

WOSCOPS 

(Shepherd et al. 

1995 [10]) and 

Framingham 

studies 

(D’Agostino et al. 

2008 [11])

Stroke Exponential mean of Exp(9.218 + (-

0.064)*age at event + (-

0.176)*gender) for time to event 

distribution . Then, the 

prob of stroke being fatal applied. 

P(fatal stroke)=e^xb/[1+e^xb] where 

xb= -4.874 + 0.043*age – 

0.074*gender.  

Anglo-

Scandinavian 

Cardiac Outcomes 

Trial (ASCOT) trial 

results [8]

Angina Rate = 0.0027 per patient-year. ASCOT-LLA data 

[12] 

Revascularisation For only primary and secondary 

prevention populations, 

Exponential mean of Exp(5.250 + (-

0.013)*age at event + 

(0.479)*gender) for time to event 

distribution . 

Otherwise, the national average rate 

of revascularisation was used. 

ASCOT trial [8]

National Audit of 

PCI [13]

PAD Rate= 0.021149= the incidence of 

PAD with intermittent claudication.

Edinburgh Artery 

Study [14]

CVD death For individuals not receiving any 

interventions, 

Males (females): 45-54 years 

0.000639 (0.000178); 55-64 years 

0.001711 (0.000573); 65-74 years 

0.004275 (0.001994); 75-84 years 

0.013182 (0.008621); 85 years and 

over 0.040947 (0.035576).

For only primary and secondary 

prevention populations, 

Exponential mean of Exp(6.576 + (-

0.035)*age at event + 

(0.437)*gender) for time to event 

distribution .

Mortality 

Statistics: Deaths 

registered in 2012 

[15]

ASCOT trial [8]
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Transitions from MI

Table S3.2. Baseline annual rates of transitions from myocardial infarction

Baseline rates for individuals not receiving statin treatment

From To Estimate Sources

MI MI For age groups 1-5: First 

(subsequent) year(s) rates: 

0.13697 (0.01633),  

0.12239 (0.01806), 0.10747 

(0.01867), 0.09146 (0.0180), 

0.07375 (0.01613).

NICE TA94 Table 

52 [16]; 

Nottingham Heart 

Attack Register 

(NHAR) [17].

Stroke For age groups 1-5: First 

(subsequent) year(s) rates: 

Group 1 (< 55): 0.00150 (0.0004),  

Group 2 (55-65): 0.00321 (0.00100), 

Group 3 (65-75): 0.00682 (0.00220), 

Group 4 (75-85): 0.01420 (0.00471), 

Group 5 (> 85): 0.02819 (0.00914).

NICE TA94 (Table 

52); Nottingham 

Heart Attack 

Register (NHAR); 

Angina Exponential rate =  0.05975 Ara et al. 2009. 

Table 8 [9]; Fox et 

al. 2005 [18]

Revascularisation First year rate = 0.504347 TNT trial

[6]

PAD Rate= 0.021149= the incidence of 

PAD with intermittent claudication.

Edinburgh Artery 

Study (Leng et al. 

1996)

CVD death For age groups 1-5: First 

(subsequent) year(s) rates: 

Group 1 (< 55): 0.01755 (0.00541),  

Group 2 (55-65): 0.03387 (0.00955), 

Group 3 (65-75): 0.06465 (0.01603), 

Group 4 (75-85): 0.12059 (0.02482), 

Group 5 (> 85): 0.21791 (0.03615).

NICE TA94 (Table 

52); Nottingham 

Heart Attack 

Register (NHAR) 

[17].
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Transitions from Stroke 

Table S3.3. Baseline annual rates of transitions from Stroke

Baseline rates for individuals not receiving statin treatment

From To Estimate Sources

Stroke MI Rates by age group: 

Group 1 (< 55): 0.00160,

Group 2 (55-65): 0.00310,

Group 3 (65-75): 0.00552,

Group 4 (75-85): 0.00803,

Group 5 (> 85): 0.01045.

NICE TA94 (Table 

52); Nottingham 

Heart Attack 

Register (NHAR) 

[17].

Stroke

(Stroke 

recurrence)

Baseline rates for 0-1, 1-5, 5-10 

years for individuals aged <65:

0-1 year rate= 0.06401 (mean = 

15.6237); 1-5 year rate= 0.02694; 5-

10 year rate= 0.01887.

Then, probability of stroke being 

fatal= e^xb/[1+e^xb], where

xb= -4.874 + 0.043*age – 

0.074*gender, was applied. 

Mohan et al. 2009 

[19] – Stroke 

recurrence; ASCOT 

trial [8]

Angina Rate = 0.0027 Assumed the same 

as the rate of 

transition from 

event free to 

angina state (NICE 

TA 94 Table 52) 

Revascularisation Rate= 0.01056 TNT trial [6]

PAD Rate= 0.021149= the incidence of 

PAD with intermittent claudication.

Edinburgh Artery 

Study [14]

CVD death For age groups 1-5: First 

(subsequent) year(s) rates: 

Group 1 (< 55): 0.00924 (0.00421),  

Group 2 (55-65): 0.02245 (0.00985), 

Group 3 (65-75): 0.05340 (0.02102), 

Group 4 (75-85): 0.12466 (0.04207), 

Group 5 (> 85): 0.27839 (0.07796).

NICE TA94 (Table 

52); Nottingham 

Heart Attack 

Register (NHAR) 

[17]
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Transitions to Fatal Stroke

If the reported data did not explicitly state that the event probabilities were for non-fatal stroke only, 

then a proportion of the patients who experience a stroke was assumed to die due to the stroke. 

The proportion of fatal stroke among all stroke events was estimated using the logistic regression 

equation reported in the ASCOT trial results [8] with an exception of transitions from 

revascularisation state where a 50% probability of stroke being fatal was assumed as in Ara et al. 

(2009). Thus, the transitions to stroke from event free, stroke, angina and revascularisation states 

included a subset of patients having a fatal event and subsequently moving to cardiac death state.

Transitions from Angina

Rates of transitions from angina are given in Table S3.4. Individuals were assumed to have stable 

angina first and then progress to unstable angina, which requires more intense medical treatments. 

Once unstable angina was developed, it was assumed that patients could not improve to stable 

angina. 
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Table S3.4. Baseline annual rates of transitions from angina

Baseline rates for individuals not receiving statin treatment

From To Estimates Sources

Angina MI 1) From Stable angina: Rate = 0.01520;

2) Unstable angina

5%, 4.9%, 4.7%, 4.3% from 1st year event.

3.5%, 6.3%, 11.2%, 18.5% from subsequent 

yrs event for those aged <55, 55-65, 65-75, 

75-85 yrs, respectively. 

Juul-Moller, 

Edvardsson [20]; 

Ara, Pandor [9], 

Table 8; Gray and 

Hampton [17]; 

Stroke 1) From Stable angina: 

Rate = 0.00791; Then, the prob of stroke 

being fatal applied, probability = 

e^xb/[1+e^xb], where xb= -4.874 + 

0.043*age – 0.074*gender. 

2) From Unstable angina: For age groups of 

<65, <75, <85, >85 years,

[1st year rate] To non-fatal stroke: 0.2%, 

0.5%, 1%, 2%; To fatal stroke: 2.6%, 4.3%, 

7%, 10.3%; 

[subsequent yrs rate] To non-fatal stroke: 

0.1%, 0.1%, 0.3%, 0.7%;  Fatal stroke: 

0.4%, 0.5%, 0.6%, 0.7%.

1) Juul-Moller, 

Edvardsson [20]; 

NICE [16]; Lindgren, 

Buxton [8]

2) Ara et al. 2009 

(HTA) Table 8.; 

Gray and Hampton 

[17]

Angina 

(unstable)

Annual probability from stable angina to 

unstable angina: 

Group 1 (< 55): 0.0013,

Group 2 (55-65): 0.0029,

Group 3 (65-75): 0.0060,

Group 4 (75-85): 0.0091, 

Group 5 (> 85): 0.0122. 

NICE TA 94: Table 

52. 

Revascularisat

ion

Rate=0.00269 Assumed the same 

as the minimum 

revascularisation 

rate from PAD state. 

(Leng et al. 1996)

PAD Rate= 0.021149= the incidence of PAD with 

intermittent claudication.

Edinburgh Artery 

Study (Leng et al. 

1996)

CVD death 1) If no history of angina= 

Group 1 (< 55): 0.009, 

Group 2 (55-65): 0.0035, 

Group 3 (65-75): 0.007, 

Group 4 (75-85): 0.007, 

Group 5 (> 85): 0.007.  

2) From unstable angina = (CHD and CVD 

death rates combined for 1st and 

subsequent years.

NICE TA94 (Table 

52); Nottingham 

Heart Attack 

Register (NHAR).
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Transitions from Revascularisation

Table S3.5. Baseline annual rates of transitions from revascularisation

Individuals not receiving statin treatment

From State To State Estimate Sources

Revascularisation MI Rate= 0.03874 Fox, Poole-Wilson 

[18]; Ara et al. 

(2009) [9]

Stroke Rate=0.002 with 50% of stroke 

being assumed to be fatal. 

Henderson, 

Pocock [21]; Ara 

et al. (2009) [9]

Angina Rate = 0.032523 Henderson et al. 

(2003); Ara et al. 

(2009) [9]

Revascularisation First-year rate  of having a 2nd 

revascularisation= 0.14491

TNT trial [6] 

PAD Rate= 0.021149= the incidence of 

PAD with intermittent claudication.

Edinburgh Artery 

Study [14]

CVD death Rate = 0.005785 RITA-2 trial [21]
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Transitions from PAD

Table S3.6. Baseline rates of transitions from peripheral arterial disease

Baseline rates for individuals not receiving statin treatment

From To Estimate Sources

PAD MI Rate = 0.01711 Edinburgh Artery 

Study [14]

Stroke Rate= 0.01408 Edinburgh Artery 

Study [14]

Angina Rate= 0.02019 Edinburgh Artery 

Study [14]

Revascularisation Rate=0.00269 Edinburgh Artery 

Study [14]

PAD Rate=0 Assumed

CVD death Exponential mean of Exp(6.576 + (-

0.035)*age at event + 

(0.437)*gender) for time to event 

distribution .

The same rate as 

the transition 

from event free 

to CVD death: 

ASCOT trial [8]

Transitions to PAD

The incidence of PAD reported in the Edinburgh Artery Study was used for the estimation of 

transition rates to PAD. The incidence of symptomatic PAD (i.e. with intermittent claudication, IC) in 

general population aged 55 and over was used for all transitions to PAD event due to the lack of 

published evidence [14]. Age dependent incidence was not included as it was not statistically 

significant in the Edinburgh Artery Study [14]. However, there was some evidence of an increase 

with age in earlier longitudinal studies [22, 23].  

Among patients with PAD, approximately 20% progress to develop severe symptoms with critical 

limb ischaemia (CLI) over a 5-year period and 1-2% undergo amputation over a lifetime [24]. In the 

model, 20% of people with IC were randomly sampled to develop CLI at the time of developing PAD 

for simplicity, to whom higher costs and lower utility weights were applied. 
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Effectiveness of statin treatments

Statin interventions was assumed to reduce the risks of coronary events (MI, angina, and fatal CHD 

events) and stroke. The model assumes that a proportion of individuals entering the model are 

receiving a statin intervention for primary and secondary prevention of CVD events. The relative 

risks (RRs) of events associated with statin use were applied to the baseline risks converted from the 

event rates reported in Tables S3.1-S3.6, and are shown in Table S3.7.  

Table S3.7. Relative risks associated with statin use compared with placebo

Transitions to Relative Risk Source

MI 0.656 Ward et al. (2006) [4]

Non fatal stroke 0.754 Ara et al. (2009): Simvastatin 

40mg/day

Fatal stroke (from Angina 

state)

0.876 Ara et al. (2009): Simvastatin 

40mg/day

Stable Angina (from event free 

state)

0.59 Ward et al. (2006) [4]

To Fatal CHD event (CVD 

death)

0.74 Ward et al. (2006) [4]

Non CVD death (from event 

free state)

0.656 Ward et al. (2006) [4]
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Non-disease mortality

Non-cardiac mortality rates used to construct distribution profiles for time to non-disease death 

were calculated by subtracting cardiac mortality rates from the all-cause death probability profiles. 

Cardiac mortality rates were estimated by combining the rates reported for heart disease (ICD-10 

code I00-I52) and stroke (I64) using data obtained from the Mortality Statistics: Deaths registered in 

2012 [15]. Cardiac mortality rates used to calculate the non-disease mortality are shown in Table 

S3.8. These were the same rates used for transitions to cardiac death from event-free state.

Figure S3.1 shows distributions for time to non-cardiac death for a few selected age groups. As the 

cardiac death rates were assumed constant across the 10-year age bands whilst the all-cause 

mortality rates were specified at every age  between 45 and 100 years, the probability profiles 

created were not smooth, but had a few stepped decreases at the age cut off values. 

Table S3.8. Cardiac death rates used to estimate non-cardiac mortality rates*

Age group

Sex 45-54 55-64 65-74 75-84 85 and 

over

Male 0.000639 0.001711 0.004275 0.013182 0.040947

Female 0.000178 0.000573 0.001994 0.008621 0.035576

*Adapted from Table 8 in Deaths registered in England and Wales, 2012 [15]
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Figure S3.1. Illustration of distributions for time to non-cardiac death

Male aged 45 years Male aged 55 years

Male 65 years Male 75 years
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Costs

Table S3.9. Cost estimates used in the base-case model

Event Data within 

source

Price year Estimates [25]

(2011/2012 price)

Original Source

MI - 1st year £3,996 2007  £  4,519.10 Ara et al. (2009) 

estimated using 

British National 

Formulary (2008) 

[26]

MI - subsequent 

year

£171 2004  £  214.89 NICE TA 94 (GP 

contacts + 

medication costs)

Stroke - 1st year £8,066 2007  £ 9,121.88 Ward, Lloyd-Jones 

[4]

Stroke - 

subsequent yr

£2,266 2007  £ 2,562.63 Ward, Lloyd-Jones 

[4]

Stable angina £171 2004  £ 214.89 NICE TA 94 (GP 

contacts + 

medication costs)

Documented 

angina

 £     587.07 2005  £ 713.94 Taylor et al. (2009)

Revascularisation 

- 1st yr

 £  5,857 2007  £ 6,623.71 Taylor et al. (2009); 

HRG

PAD (IC) £180 2009-

2010

£189.31 Kearns, Michaels 

[27]

PAD (CLI) £624 2009-

2010

£656.29 Kearns, Michaels 

[27]; National 

Clinical Guideline 

Centre [24]

Statin treatment £144.12 2014 £144.12 British National 

Formulary (2014); 

Estimated using the 

method by Ward et 

al. (2006)

Utilities

Baseline utility values by age and gender in the UK general population were estimated from a 

statistical model reported in Ara and Brazier [28].

The utility values associated with the health states included in the model were obtained from NICE 

TA94 and the HTA report by Ara et al. (2009). Table S3.10 describes the original sources of these 
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values. All the utilities were estimated using the EQ-5D, and were assumed to be multiplicative. 

Utility multiplier values were assumed to increase by 10% after the first year of the event as 

assumed in Ara et al. (2009). It was assumed that the history of revascularisation procedure did not 

affect the utility level, and the utility decrement for stable angina was used for individuals with 

history of angina. As a base-case, deterministic values for utility multipliers were used.

Alongside the current event, the history of the other health events was incorporated in the utility 

multiplier. For example, if a man aged 65 years who has just had a stroke has a history of MI, then 

the utility decrements for both stroke (first year multiplier for stroke: 0.629) and that for MI 

(subsequent-year multiplier: 0.836) were applied to the baseline utility (0.815); the utility weight for 

this person is thus 0.429 (i.e. 0.815*0.629*0.836). 

When more than one cardiac event occurs within one year, the first-year periods of those events 

overlap. For the time periods overlapping, utility multipliers associated with the events were applied 

multiplicatively. For instance, if an individual experiences an MI at time=2.3 years and subsequently 

a stroke at time=2.7 years, then for time between 2.3 and 2.7 years, only the utility multiplier for the 

first year of MI would be applied (0.760) whilst for time between 2.7 and 3.3 years, utility multipliers 

associated with both first-year MI and first-year stroke would be applied (0.760*0.629=0.478). In the 

same way, for time between 3.3 and 3.7 years, utilities associated with subsequent years of MI and 

first year of stroke are used (0.836*0.629=0.526) In the model for this paper, whenever individuals 

reach these time points, they are directed to the ‘utility cut off point’ event in order to update 

variables related to utility multiplier. 

Table S3.10. Utility multipliers by health state 

State First year - 

Mean (S.E.)

Subsequent years - Original Sources

MI 0.760 (0.018) 0.836 (10% increase) Goodacre, Nicholl [29]

Stroke 0.629 (0.04) 0.692 (10% increase) Tengs and Lin [30]

(Stable) angina 0.808 0.889 (10% increase) Melsop, Boothroyd [31]

Unstable angina 0.77 0.847 (10% increase) Goodacre, Nicholl [29]

Revascularisation 0.78 0.858 (10% increase) Serruys, Unger [32]

PAD IC 0.70 0.70 Kearns, Michaels [27]

PAD CLI 0.35 0.35 [Kearns, Michaels [27]]
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Appendix 4. Comparison of the single-disease models in this study with the published reference models
Study Model 

type 

(software)

Base-case 

Population

Intervent

ion

Compara

tor(s)

Outcomes Perspecti

ve

Time 

horizon/ 

price 

year

Health 

events 

included 

(e.g. Markov 

health 

states)

Stratified 

results 

(Yes/No)

Base-case 

ICER

Parameters driving 

ICER

Heart disease (HD)

HD single-

disease 

model in 

this paper

Discrete 

event 

simulation 

(Simul8)

General 

population 

aged 45 

years and 

over

Statins No 

statins

QALYs NHS Lifetime MI, stable 

angina, 

unstable 

angina, 

stroke, 

revascularisa

tion, PAD, 

CVD death, 

and non-

CVD death

Yes – Base-

case reported 

for the total 

population; 

and by age 

and gender, 

by prevention 

type 

1) Secondary 

prevention - 

£1.5k – 

4.0k/QALY 

vary by age 

and gender

2) Primary 

prevention - 

£2.2k-2.8k 

varied by age 

and gender

Reduced cost of 

statins (updated to 

2012 values); 

Population age and 

sex distribution at 

model entry;

Added event of PAD 

could lower ICERs 

compared to the 

results from Ward 

et al. (2006) 

HD 

reference 

model by 

Ward et al. 

(2006) [1]

Markov 

model

A 

population 

with CHD 

or at 

increased 

risk of CHD 

events 

(annual 

CHD risk of 

0.5%-3%)

Statins

as a 

group

No 

statins

QALYs NHS Lifetime/

2004

Discount 

rates of 

6% for 

costs and 

1.5% for 

health 

benefits

MI, stable 

angina, 

unstable 

angina, CHD 

death, TIA, 

stroke, and 

CVD death 

or non-CVD 

death

Yes – 

Base-case 

reported by 

prevention 

level, age and 

sex, and 

predicted 

annual CHD 

risk levels

Multiple base-

case values

1) Secondary 

prevention - 

£10k-£17k 

/QALY

2) Primary 

prevention – 

at annual CHD 

risk of 3%, 

£10k-37k 

/QALY for 

men and 

£14k-48k 

/QALY for 

women

Results were most 

sensitive to the cost 

of

statins, discount 

rates and the 

timeframe of the 

model; Larger 

incremental costs 

than the model in 

this study;

ICERs sharply 

increased with age 

of the population
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Alzheimer’s disease (AD)

AD model 

in this 

paper

Discrete 

event 

simulation 

(Simul8)

General 

population 

aged 45 

years and 

over

Donepezil 

and 

memanti

ne 

BSC QALYs NHS and 

PSS

Lifetime AD onset; 

diagnosis; 

pre-

institutionali

sation; 

institutionali

sation; and 

death

Yes – results 

reported for 

two age 

groups aged 

>45 and >65 

years

Donepezil and 

memantine 

therapy 

dominated 

BSC (cost 

saving £14 

with 0.001 

QALY gain)

The model results 

were generally 

comparable with 

those from Bond et 

al. (2012).

Incremental QALYs 

from the model for 

this study were 

smaller than those 

from Bond et al. 

(2012) as the 

general population 

was modelled with 

the added events of 

the onset and 

diagnosis of AD. 

AD 

reference 

model by 

Bond et al. 

(2012) [2]

Markov 

model 

(Microsoft 

Excel)

People 

with mild, 

moderate 

or severe 

AD

donepezil

, 

galantami

ne,

rivastigmi

ne, for 

mild-to-

moderate 

AD, and 

memanti

ne, for 

moderate

-to-

severe AD

BSC QALYs NHS and 

PSS 

20 years

/ 2009 

price

pre-

institutionali

sation; 

institutionali

sation; and 

death

Yes – by 

disease 

severity 

Donepezil for 

mild-to-

moderate AD 

dominated 

BSC; 

Memantime 

for moderate-

to-severe AD: 

£32.1K/ QALY 

(increC=£405; 

increQ 

=0.013)

Results sensitive to 

assumptions on 

discontinuation 

rates; Costs of 

institutionalisation 

Osteoporosis

Osteoporo

sis model 

in this 

paper

Discrete 

event 

simulation 

(Simul8)

General 

population 

aged 45 

years and 

70mg 

alendron

ate taken 

once 

No 

alendron

ate 

treatmen

QALYs NHS and 

PSS

Lifetime Hip fracture; 

vertebral 

fracture, 

wrist 

Yes – by age 

and gender, 

BMD level, 

status of 

Alendronate  

dominated no 

treatment for 

75-year-old 

Age, BMD level and 

history of previous 

fracture altered the 

incremental costs 
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over weekly t fracture; 

proximal 

humerus 

fracture; 

fracture-

related 

death; non-

fracture 

death

previous 

fracture

women with 

T-score of -3 

SDs and -2.5 

SDs with no 

previous 

fracture

and QALYs. 

However, 

regardless of the 

willingness-to-pay 

threshold per QALY, 

the alendronate is 

likely to be a cost-

effective option for 

fracture prevention.

Osteoporo

sis 

reference 

model by 

Stevenson 

et al. 

(2009) [3]

Patient-

level 

Markov 

model 

(Microsoft 

Excel)

Postmenop

ausal 

women 

aged 50 

years and 

over

Vitamin 

K; 

alendron

ate; 

risedrona

te; 

strontium

ranelate

No 

alendron

ate; next 

cost-

effective 

treatmen

t options

QALYs NHS and 

PSS

10 years 

(the 

results 

subseque

ntly 

adjusted 

to 

account 

for 

treatmen

t benefits 

beyond 

the initial 

10 years)

Hip fracture; 

vertebral 

fracture, 

wrist 

fracture; 

proximal 

humerus 

fracture; 

nursing 

home entry 

from hip 

fracture; 

breast 

cancer; and 

coronary 

heart 

disease; and 

non-fracture 

related 

death

Yes – by age, 

BMD level, 

and status of 

previous 

fracture

Alendronate  

dominated no 

treatment for 

75-year-old 

women with 

T-score of -3 

SDs with no 

previous 

fracture; 

£1,226/QALY 

for 75-year-

old women 

with T-score 

of -2.5 SDs. 

Age, fracture risks, 

BMD and history of 

previous fracture 

could alter the ICER 

estimates. 
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Appendix 5. Dealing with stochastic uncertainty around the results 

from the linked model

Background : Uncertainty around DES model outputs can be represented by both first-order 

uncertainty, defined as stochastic variability between simulated observations assuming identical 

parameter values, and second-order uncertainty, defined as uncertainty in the parameters of the 

economic model [1]. 

Aim: The degree of first order uncertainty in the linked model was examined in order to identify the 

appropriate number of simulated individuals to ensure stable model results.  Stability was defined as 

an adoption decision being robust with sufficiently small random errors.

Method: Incremental values were computed in comparison with no treatments for all three of the 

diseases (heart disease, Alzheimer’s disease and osteoporosis). The first-order uncertainty around 

the mean incremental cost and QALYs, incremental net monetary benefit (NMB) and cost per QALY 

gained (CPQ) was quantified for the results from the correlated linked model for the population aged 

45 years and older. 

The jackknife approach was used to estimate a confidence interval for the mean cost per QALY with 

a reduced level of bias associated with the classical estimation of non-linear statistics [2, 3]. The 

standard errors of the mean results were estimated having varied the numbers of simulated 

individuals ranging from 1,000 to 700,000.  The jackknife 95% confidence interval for the mean CPQ 

and the NMB results with more than 400,000 simulated individuals were derived using R 

programming language (R version 3.2.1, © The R Foundation) due to limited capacity of the 

spreadsheet software. Jackknifing execution time for the data from 700,000 simulated individuals 

was 4.69 hours on an Intel ® Core ™ i5 CPU 2.30 GHz processor with 4.00 GB of RAM (3.54 hours for 

600,000 data points). 

Results: Figure S5.1 shows that the incremental cost and QALYs stabilised when more than 200,000 

individuals were simulated. The standard errors of the mean NMB and CPQ started to stabilise after 

running more than 500,000 simulated individuals. The chosen number of individuals to simulate was 

700,000 for the base-case all-disease linked models (with and without correlations) in order to 

further reduce the variability of the results. 
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Figure S5.1. First order uncertainty in relation to the number of patients simulated in the all-disease 

linked model with correlations (base-year population aged 45 years and over)

1) Incremental cost (compared with none of the three treatments)

Undiscounted Discounted

2) Incremental QALYs (compared with none of the treatments for the three diseases)

Undiscounted Discounted

3) Cost per QALYs (95% jackknife confidence interval)

Undiscounted Discounted
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4) Net monetary benefit (£20,000 threshold)

Undiscounted Discounted

Each figure includes error bars showing the standard error in the mean estimates of (incremental) cost and 

QALYs.
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Appendix 6. Summary of the results from the individual disease models for comparison

1) 

Heart disease only model

2) 

Alzheimer’s disease only model

3) 

Osteoporosis only model

4) 

Sum of 

incremental values 

across 1)-3)

Treatment No 

treatment

Incremental 

values (A)

Treatment No 

treatment

Incremental 

values (B)

Treatment No 

treatment

Incremental 

values (C)

(A)+(B)+(C)

Cost - 

Discounted

£ 8,091 £ 7,569 £ 522 £4,582 £4,596 -£ 14 £ 2,847 £ 2,947 -£ 100 £ 408

QALYs - 

Discounted

9.249 8.978 0.271 10.642 10.641 0.001 11.191 11.184 0.008 0.280

Cost £ 14,224 £ 13,197 £ 1,027 £8,845 £8,869 -£ 23 £ 6,151 £ 6,324 -£ 173 £ 831

QALYs 13.843 13.257 0.586 16.548 16.545 0.003 17.759 17.751 0.009 0.597

Life years 

lived

21.319 20.319 1.000 21.653 21.650 0.003 23.530 23.525 0.004 1.007

ICER – 

Discounted 

£ 1,926 

/QALY

Dominating Dominating £ 1,458 /QALY

ICER £ 1,754 / 

QALY

Dominating Dominating £ 1,391 / QALY

HD: based on n=200,000; AD n=200,000; Osteoporosis n=400,000
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Appendix 7. Hypothetical scenario with similar levels of QALY gains 

assumed for all three interventions

In order to examine the effect of sampling error when all three treatments have a similar level of 

QALY gains, the scenarios in Table S7.1 were assumed: these are not meant to provide accurate 

evaluations of current treatments but to show that the results would have face validity when QALY 

gains are comparable. For all three individual diseases, populations aged 65 years and older were 

simulated. Scenarios for larger QALY gains for AD and osteoporosis and reduced QALY gain for HD 

were explored. Table S7.1 shows the scenario assumptions applied to each of the three disease 

models in comparison with the base-case assumptions. 

Table S7.1. Comparison of scenario assumptions and base-case assumptions

Base-case assumptions Scenario assumptions

1. Heart disease model

Relative risks were assumed to be 0.656, 

0.754, 0.876, 0.59, 0.74, and 0.656 for MI, 

non-fatal stroke, fatal stroke, stable angina, 

fatal CHD, and non-cardiac death, 

respectively. 

Relative risks of 0.98 for statin treatment 

were assumed for all events. 

Utility values for MI, stroke and 

revascularisation were set to 0.76, 0.629, and 

0.78, respectively.

Utility values for MI, stroke, and 

revascularisation were reduced to 0.5.

2. Alzheimer’s disease model 

4% of monthly treatment discontinuation 

rate was assumed. 

Lifetime treatment: No treatment 

discontinuation was assumed

6 months duration of treatment effect was 

assumed.

Lifetime treatment effect was assumed.

Utility value for institutionalised individuals 

was 0.33.

Utility value for those institutionalised was 

reduced to 0.1

The average annual improvements in MMSE 

score were 2.48 for donepezil and 1.4 for 

memantine per year. 

Double treatment effect on MMSE score: 

the average improvements in MMSE score 

were set to 4.96 for donepezil and 2.8 for 

memantine per year. 

Some individuals are institutionalised at 

model entry, and some patients are 

institutionalised immediately after diagnosis.

No individuals start at the 

institutionalisation state at model entry, nor 

get institutionalised immediately after the 

diagnosis (i.e. No individuals move to the 
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institutionalisation event from the diagnosis 

event with zero time passed.)

3. Osteoporosis model

Relative risks of fracture for alendronate 

treatment were set to 0.72, 0.58, and 0.82 

for hip, vertebral, and other fractures, 

respectively. 

Relative risks were assumed to be 0.33 for 

all fracture types. 

5 years of treatment duration was assumed. Lifetime treatment duration was assumed. 

Table S7.2 compares incremental outcomes from the three individual disease models with those for 

each of the individual treatments from the linked model where the diseases were assumed to be 

independent. Under the hypothetical scenarios, a comparable magnitude of QALY gains across all 

three individual disease models (Table S7.2 Column a) was achieved.  The margins of error around 

incremental costs and QALYs at 95% confidence level are shown in brackets. 

Table S7.2 reports results under the scenarios in Table S7.1, assuming the diseases were 

independent. When none of the treatments have much larger impact on QALYs gained the linked 

model produced similar results to those from the individual disease models. This shows the 

robustness of the adoption decision within the linked model for individual treatments.  
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Table S7.2. Cost-effectiveness results under larger QALY gain scenarios for individual treatments 

from the individual disease models and the independently linked model

1. Heart disease

a. Individual heart 

disease model†

b. Independently linked model (n=700,000)

Incremental values 

(Margin of error) ‡

All 

treatments

No HD 

treatment*

Incremental 

values

DCost £ 683 (£ 66) £ 11,001 £ 10,201 £ 800

DQALYs 0.0539 (0.0179) 4.9232 4.8784 0.0448

TCost £ 913 (£ 94) £ 15,499 £ 14,380 £ 1,119

TQALYs 0.0875 (0.0267) 6.2589 6.1861 0.0728

ICER (disc.) £ 12,665 £ 17,878

ICER £ 10,433 £ 15,360

2. Alzheimer’s disease (AD)

a. Individual AD 

model†

b. Independently linked model (n=700,000)

Incremental values 

(Margin of error) ‡

All 

treatments

No AD 

treatment*

Incremental 

values

DCost -£ 4,551 (£ 93) £ 11,001 £ 15,413 -£ 4,412

DQALYs 0.0508 (0.0020) 4.9232 4.8855 0.0377

TCost -£ 6,319 (£ 130) £ 15,499 £ 21,582 -£ 6,083

TQALYs 0.0688 (0.0028) 6.2589 6.2089 0.0500

ICER (disc.) Dominating Dominating

ICER Dominating Dominating

3. Osteoporosis

a. Individual 

osteoporosis 

model†

b. Independently linked model (n=700,000)

Incremental values

(Margin of error) ‡

All 

treatments

No osteoporosis 

treatment*

Incremental 

values

DCost -£ 1,186 (£ 74) £ 11,001 £ 11,983 -£ 982

DQALYs 0.0545 (0.0128) 4.9232 4.8918 0.0314

TCost -£ 1,856 (£ 123) £ 15,499 £ 16,970 -£ 1,471

TQALYs 0.0900 (0.0204) 6.2589 6.2090 0.0499

ICER (disc.) Dominating Dominating 

ICER Dominating Dominating

† Based on n=200,000 for HD and AD models; and n=400,000 for osteoporosis model, as in the base-case; ‡ Margin of error 

at 95% confidence level; *The other two default treatments were assumed to be available; D=discounted.
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When all the individual disease models produce similar QALY gains (without any disease with a 

significantly larger impact) the impact of Monte Carlo error for one disease on the incremental 

outcomes and cost-effectiveness of the other diseases can be much less influential. None of the 

margin of error estimates in Table S7.2 (0.0179, 0.0020, and 0.0128 for HD, AD, and osteoporosis 

models, respectively) will have a significant effect that changes the +/- signs of the values on the 

incremental QALY results from the linked model (0.0448, 0.0377, and 0.0314 for HD, AD, and 

osteoporosis treatments, respectively).  Hence, when QALY gains are similar across all diseases, the 

results are less susceptible to sampling error from the other diseases. The base-case estimated very 

small QALY gains for AD and osteoporosis treatments which could fluctuate between positive and 

non-positive values due to the sampling error associated with the treatment for HD. In cases where 

QALY gains are similar, however, the proposed methods of linking individual disease models are 

likely to produce more accurate cost-effectiveness estimates for individual treatments. 
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Appendix 8. Probabilistic sensitivity analysis of the correlated linked 

model results

The correlated linked model for the three diseases (HD, AD and osteoporosis) was built 

probabilistically to take account of the uncertainty around input parameter point estimates. This 

section provides probabilistic results in order to show the feasibility of probabilistic sensitivity 

analysis (PSA) using the linked model described in this paper. 

A probability distribution was defined for selected input parameters. The selection of parametric 

distributions was based on the nature of the data. For example, utilities were assumed beta-

distributed as the data were assumed to be bounded by zero and one. Wherever possible, 

probabilistic distributions reported in the original publications of the reference models [1-3] were 

used. Where this was not possible, the distribution was parameterised using estimates of the error 

around mean or assumed standard errors for the purpose of this feasibility run of PSA.  Table S8.1 

shows the PSA input parameters and their distributional properties. 

Table S8.1. Variables and distributions used in the probabilistic sensitivity analysis (PSA)

PSA Variable Point estimate* Distribution Distributional properties

Clinical effectiveness

RR of statin treatment for 

MI

0.656 Lognormal Lognormal(logmean=-0.4219, 

logSE=0.0233)

RR of statin treatment for 

stroke

0.754 Lognormal Lognormal(logmean=-0.2826, 

logSE=0.0203)

Change in MMSE when using 

Donepezil 10mg 

1.24** Normal Normal(1.24, 0.22)

Change in MMSE when using 

Memantine 20mg

0.70** Normal Normal(0.70, 0.35)

Proportion of patients 

compliant to medication

0.75 Beta Beta(13.31, 4.44)

Utilities of health states

Stable angina 0.808 Beta Beta(86.00, 20.44)

Unstable angina 0.77 Beta Beta(93.67, 27.98)

MI 0.76 Beta Beta(427.09, 134.87)

Stroke 0.628 Beta Beta(91.07, 53.94)

MMSE: 0-9 0.33 Beta Beta(36.59, 74.28)

MMSE: 10-14 0.49 Beta Beta(78.04, 81.22)

MMSE: 15-20 0.5 Beta Beta(856.27, 856.27)

MMSE: 21-25 0.64 Beta Beta(1137.19, 639.67)

MMSE: 26-30 0.69 Beta Beta(282.51, 126.92)

Institutionalised 0.33 Beta Assumed the same as the utility 

Page 88 of 141



3

value for MMSE:0-9

Vertebral fracture – 1st year 0.626 Beta Beta(14.03, 8.38)

Vertebral fracture –  

subsequent year

0.909 Beta Beta(6.61, 0.66)

Hip fracture –  1st year 0.792 Beta Beta(12.26, 3.22)

Hip fracture – subsequent 

year

0.813 Beta Beta(11.55, 2.66)

Costs

Cost of institutionalisation £2941 Normal Normal(2941, 108)

Cost of death from hip 

fracture

£9525.86 Gamma Gamma(scale=67.19, 

shape=141.78)***

MMSE: mini mental score examination; *mean values used in base-case analysis; **6month 

estimate; ***calculated from assumed standard error of 800.

The probabilistic model results are shown in Table S8.2 based on 300 PSA runs in each of which 

700,000 individuals were simulated. The mean cost and QALYs of the PSA results in Table S8.2 

showed comparable results with the base-deterministic results from the correlated linked model 

albeit not identical. All of the PSA samples in Figure S8.1 showed cost per QALY being lower than the 

threshold of £20,000 per QALY gained. 

Table S8.2. Comparison of probabilistic model results with the base-case deterministic results*

Deterministic results Probabilistic resultsAll-disease 

linked 

model with 

correlations

All three 

treatments 

assumed

None of 

the three 

treatments 

assumed

Incremental 

values

All three 

treatments 

assumed

None of 

the three 

treatments 

assumed

Incremental 

values

Mean cost £14,741 £13,894 £847 £14,392 £13,575 £816

Mean 

QALYs

8.962 8.725 0.236 8.972 8.731 0.241

ICER £3,583/QALY £3,391/QALY**

*Based on 300 PSA runs; each deterministic run is based on 700,000 simulated individuals; 

**Jackknife 95% C.I. £3,360-£3,423.
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Figure S8.1. Probabilistic sensitivity analysis scatterplot of incremental costs and QALYs

                      *Based on 300 PSA runs

The results show that the adoption decision is robust when assuming the willingness-to-pay 

threshold of £20,000 per QALY gained. Each deterministic run of 700,000 individuals took 

approximately 15 minutes to run and hence, conducting 300 PSA runs for each intervention arm 

took 1.9 days of computing time (Intel CoreTM i7CPU 3.40GHz processor with 16GB RAM). Such time 

scales indicate it is feasible to conduct PSA using the multi-disease linked model. The probabilistic 

analysis of discrete event simulation model will become more achievable by using a computer with 

more processing power or parallel computing. The number of runs required would be affected by 

the homogeneity of the population studied. Hence, the use of a more narrowly defined population 

with specific characteristics and higher disease prevalence, than the general population adopted in 

the current analysis, would accelerate convergence due to higher number of disease events 

simulated and more homogeneous parameter values. 
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Modelling the economic impact of interventions for older populations with multimorbidity: a method of linking multiple single-disease models

Figure 1. A schematic diagram of the linked disease model
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Figure 2. Discrete event simulation (DES) model with and without model linkage†

a. DES model vs. a cohort model with fixed time cycles (Markov model)

i) DES model ii) Markov model

b. Single-disease DES models vs. a linked DES model

i) Two single-disease models for Disease A and Disease B ii) A linked DES model with Disease A and Disease B events merged
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†All y-axes of the diagrams show examples of variables defining the respective models and changes in their values over simulation time (x-axes); *Global parameters: 

variables that apply to all simulated individuals such as discount rates, unit cost of interventions and utility associated with health events; **Individual attributes: variables 

that reflect changes in individual characteristics over time such as age, a previous experience of disease events and utility multipliers relevant to the individual at specific 

event times; ‡Central routing variable was added after combining all single-disease model variables in the linked model to indicate in which disease model the next event is 

scheduled to occur. 
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Figure 3. The structure of the individual disease models

a) Heart disease model*

MI: myocardial infarction; PAD: peripheral artery disease; Revasc: revascularisation;

The heart disease model included MI, stroke, angina, revascularisation PAD and cardiac and non-

cardiac deaths as qualifying health events. Each non-fatal cardiac event except PAD (MI, angina, 

stroke and revascularisation) was divided into two temporal categories: first-year and subsequent 

years after the event.

b) Alzheimer’s disease model

Alzheimer’s disease: The onset and diagnosis of AD were added to the structure of the model by 

Bond et al. (2012) in order to model a general population.

c) Osteoporosis model*
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Osteoporosis model: Four fractures (hip, vertebral, wrist and proximal humerus) were included as 

osteoporotic fracture events. The events also included nursing home entry from hip fracture; death 

following fracture; and non-fracture related death (see Stevenson et al. 2009).

*The ‘utility updates’ event was included in Figure 2a and 2c in order to reflect the differences in costs 

and utilities for the first year and subsequent years after each event. This event activated a transient 

utility state where a different utility value is applied when there is no actual disease event but there is a 

change in utilities and costs.  

Figure 4. Comparison of incremental costs and QALYs from the three individual disease models
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Appendix 1. Justification for disease selection

The criteria used for selecting the diseases to be modelled in the case study are summarised in Box 1. 

Box 1. Criteria for selecting diseases to model

o Diseases with major cost implications: High costs to the UK NHS and Personal Social Services 

of treating/managing the diseases

o Diseases of the elderly: Diseases with significant mortality and morbidity burden for older 

population and diseases whose incidence is expected to increase as population ages.

o Establishing a balance between different disease areas in order to cover a spectrum of 

conditions.

o Diseases that are correlated with respect to their incidence/prevalence and thus are more 

likely to co-occur

o Whether there are sufficiently recent HTA reports undertaken for the disease in order that a 

peer-reviewed model could be replicated.

o Diseases of hard endpoints, rather than those being risk factors for other diseases 

themselves, such as diabetes and hypertension

Diseases with significant cost implications to the UK NHS and Personal Social Services (PSS) for an 

ageing population were considered for inclusion in the model. Diseases expected to become more 

prevalent as a population ages were given a priority. 

A balance between different disease areas was also considered as one of the criteria. Including 

diseases from one or two areas of diseases whose mechanisms are similar may be misleading in 

estimating the broad impact of population ageing on healthcare expenditure and the interactions 

between diseases. Among diseases of significant economic, mortality and morbidity burdens, a 

spectrum of diseases that affect different parts of the body were included. 

Diseases that are potentially correlated were considered for inclusion in the case study. Seemingly 

unrelated health conditions may co-occur in individuals as they often share common underlying risk 

factors (for further details, see Appendix 2). 
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Fracture risks are influenced by the presence of cardiovascular disease (CVD).  In a study that was a 

part of the Rochester Epidemiology Project, myocardial infarction (MI) was associated with higher 

risk of all types of osteoporotic fracture [1]. Excess fracture risks after MI were found with the 

overall adjusted hazard ratio (HR) of 1.32 (95% CI 1.12-1.56) across all anatomic sites. 

Further, the prevalence of heart disease (HD) among Alzheimer’s disease (AD) patients was 

considered higher than that of HD within an age- and gender-matched general population.  A 

number of studies have found that AD often co-exists with vascular conditions such as hypertension, 

hyper-cholesterolaemia, and diabetes mellitus [2-6]. 

Osteoporosis and stroke share several risk factors, including age, smoking, low physical activity, and 

hypertension. Thus, low bone mineral density (BMD) and high stroke risk can be correlated. Studies 

have shown that low BMD or a history of fracture has an association with the incidence of stroke [7-

9]. Jørgensen et al. [9] reported that women with BMD values in the lowest quartile had a higher risk 

of stroke than women with BMD values in the highest quartile (odds ratio (OR)= 4.8), and a linear 

trend over the quartiles was statistically significant. The OR for stroke increased 1.9 per SD (0.13 

g/cm2) reduction in BMD. The association between low BMD and stroke in women remained 

significant when the analysis was adjusted for potential confounders. In men, however, no 

statistically significant difference in BMD between the stroke patients and their controls was found.  

The presence of recently published (or in press) NIHR HTA reports was considered as it was deemed 

as evidence of the importance of the disease to major stakeholders such as decision-makers in local 

government, policy-makers (including the National Institute for Health and Care Excellence (NICE)), 

health professionals, and the general public. Further, the model structures reported in the HTA 

reports were largely replicated. 

Diseases with hard endpoints were preferred to those which were surrogate risk factors for other 

diseases. It was believed that such diseases could be embedded as a risk factor, and the 

consequences of the diseases could be represented in the models of other diseases. 

Using the selection criteria, the three diseases with significant mortality and disability burdens for 

the elderly – heart disease (including stroke and MI), Alzheimer’s disease, and osteoporosis – were 

chosen for the case study.  

The most expensive disease category was cardiovascular disease.  Heart conditions, such as coronary 

heart disease (CHD) and MI, and stroke were selected for modelling as they account for the largest 
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proportion of mortality and prevalent cases in cardiovascular disease among older individuals [10], 

and impose significant economic burden on the overall healthcare system [11]. 

Dementia was selected for modelling considering its cost, potential association with CVD, the 

balance between the chosen diseases, and likely impact of population ageing. Amongst brain 

disorders, dementia was the most expensive category of spending [12], and affects older people in 

particular with the incidence positively correlated with age [13]. Only the most common form of 

dementia, Alzheimer’s disease (AD), was modelled in this study as the current NICE guidance and 

relevant model-based studies (including HTA reports) focussed on AD.

It was considered appropriate to include one or more musculoskeletal disorders due to the 

increasing prevalence and incidence with age. Amongst the musculoskeletal conditions, osteoporosis 

was deemed appropriate to include in the model due to its high cost.  Osteoarthritis (OA) was not 

selected as previous models have been built for OAs at different anatomical sites such as knees, hips, 

and joints of hands, which make OA more difficult to include given the aim of this paper. 

Furthermore, the incidence of OA is difficult to estimate as the onset is not well-defined due to the 

discrepancy between the symptomatic OA and OA based on the radiological changes.  Rheumatoid 

arthritis (RA) was considered for inclusion as RA mainly affects people aged 65 years and older [14]. 

However, RA was not chosen for the modelling given that the cost of RA did not exceed that of OA 

and chronic obstructive pulmonary disease. 
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Appendix 2. Incorporating correlations between diseases

The following correlations were incorporated in the proof-of-concept model.

1) Prevalence of AD for people with and without HD

2) Incidence of AD for people with and without HD

3) Incidence of hip fracture for people with and without a history of MI

4) Stroke risks among people with and without a history of hip fracture

5) Incidence of AD with and without low BMD

AD=Alzheimer’s disease; HD= heart disease; MI= myocardial infarction; BMD=bone mineral density

This section describes only the correlations between the prevalence of HD and AD ((1) in above table) 

and the incidence of osteoporotic fracture and the presence of HD ((3) in above) incorporated in the 

linked model and how these correlations were implemented. The correlations 1)-5) were selected 

due to the data availability. Different incidence and prevalence estimates were applied to two 

groups of people with and without the other underlying condition.  Similar calculation methods to 

those described in this section were applied to other correlations. 

Targeted literature searches in the Medline and/or EMBASE databases using a combination of the 

disease names were conducted to identify the required data on correlations between the modelled 

diseases. Wherever possible, data on the incidence and prevalence of one disease with and without 

the other diseases was obtained. Further details on the correlations 2), 4) and 5) can be found in 

Youn (2016) [15].

Correlation between Heart disease and Alzheimer’s disease

Systematic searches for literature reporting the prevalence of AD and other co-existing conditions 

and the outcomes of intervention for patients with AD and other relevant conditions were 

conducted within the Medline and EMBASE databases. However, very few papers that could provide 

numerical data for populating the model were identified. 

A small number of studies that discussed empirical data on the effect of one disease on another 

were identified. As Maslow [2] noted, studies mainly listed common co-existing conditions that were 
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present in their study population only, or intentionally excluded people with AD who have other co-

morbidities as the effect of other diseases could confound the effect of AD. Studies focussing on 

heart disease reported similar results. 

Correlation of prevalence

The prevalence of HD among AD patients was considered higher than that of HD within an age- and 

gender-matched general population.  A number of studies have found that AD often co-exists with 

vascular conditions such as hypertension, hyper-cholesterolaemia, and diabetes mellitus [2-6]. 

For instance, the US National Center for Health Statistics survey found that 82% of people in assisted 

living facilities where help is provided for daily activities such as bathing and dressing had one or 

more of dementia, hypertension, and heart disease (Figure S2.1) [16]. 42% of the residents had 

Alzheimer’s disease or other forms of dementia and 34% had heart disease. 14% of people had both 

dementia and heart disease and 9% of them had all three of the diseases. However, as this survey 

was conducted in assisted living centres, the survey respondents were likely to be older than other 

study populations. 
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Figure S2.1. Co-morbidities of residents in assisted living facilities

Source: The National Center for Health Statistics, 2010 [16]

In order to incorporate the linkages between AD and HD, those with and without HD had different 

prevalence of AD: the total proportion of people who have AD was divided into the proportion of AD 

patients among people with heart disease and the proportion among people without HD. 

For each age and sex group, the total prevalence of AD, , can be seen as a weighted 

average of two conditional probabilities  and  as follows; 

         

[Eq. 1]

where AD and HD are binary variables taking the value of one when the disease is present and zero 

otherwise. Therefore,   and  are the prevalence of AD and HD, respectively. 

 denotes the probability of having AD conditional on the presence of HD, or the 

prevalence of AD among those with HD, and  the prevalence of HD among those 

with AD. 

In the same way, the total prevalence of heart disease can be calculated as:

        

[Eq. 2]
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Eq. 2 expresses the total prevalence of HD in terms of  and  

using the value of AD prevalence, . Regardless of which equation to use, the split should 

be the same as  and  represent the same coloured area in 

Figure S2.2 although the actual figures of the conditional probabilities differ depending on which 

disease status is assumed to be known. 

Figure S2.2. Prevalence linkage between AD and heart disease

However, Eq. 2 could not be used as the total prevalence of heart disease had to be partitioned 

among the cardiac events included in the model and data required for using Eq. 2 were not available 

from the literature searches.  Hence, the prevalence of AD was divided into the prevalence of AD for 

people with and without HD using Eq. 1.

Using Bayes’ theorem,  in Eq. 1 was calculated as 

  [Eq. 3]. The relationship in Eq. 1 was used to 

calculate .  The following sections describe the methodology and report the 

calculation results. 

Calculation and calibration of the prevalence of Alzheimer’s disease among heart disease patients

The prevalence of AD among people with HD, , was calculated by combining the 

results on  and  using Eq. 3. Subsequently, the prevalence of AD 

among people without HD, ,  was also estimated using Eq. 1. 
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The resulting prevalence of AD divided into  and  is shown 

in Table S2.1. These values were used in the linked model as the prevalence of AD in relation to the 

presence of heart disease. The ratio   varied with age group and sex as the prevalence 

of individual diseases,  and , differ between age and sex. 
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Table S2.1. Prevalence of AD divided into the prevalence for people with HD and that for people 

without HD (before calibration)

Prevalence of AD

 People with HD ① People without HD ② Ratio (①/②)

Age Men Women Men Women Men Women

<65 0 0 0 0 NA NA

65-69 0.018267 0.044718 0.006785 0.005929 2.69 7.54

70-74 0.036962 0.05099 0.015618 0.009068 2.37 5.62

75-79 0.051255 0.091056 0.032751 0.034654 1.57 2.63

80-84 0.095646 0.180764 0.058681 0.068831 1.63 2.63

85+ 0.196727 0.363585 0.108037 0.132586 1.82 2.74

The prevalence of AD before and after applying the correlations were compared using the values 

sampled at the model entry in order to see whether the estimation method used for splitting 

prevalence produced similar results. The total prevalence of AD and the prevalence for people with 

and without HD are compared in Table S2.2. The prevalence values of AD with and without HD were 

combined for comparison with the total AD prevalence before splitting using 100,000 simulated 

individuals for each age group (in order to have enough numbers of simulated individuals in each age 

group). The absolute percentage differences ranged from 0.23% to 5.09% between the total 

population values and the split values of prevalence.  The percentage difference was the largest for 

female population aged 70-74 years. The differences could be due to the use of the single estimate 

of  in Eq. 3 for all age groups and sex, which fails to reflect variation among 

different populations in the estimation equation.  

Although the differences could be considered small, the prevalence of AD split for people with and 

without HD was calibrated to match the total prevalence. Calibration was performed in order to 

start the model with the same population with respect to the total prevalence of AD. Based on the 

total prevalence values, age- and sex-specific calibration multipliers were applied to the prevalence 

values for people with and without HD. These were calculated as the total prevalence divided by the 

combined prevalence using split values. The calibrated prevalence after these multipliers were 

applied was used in all models for this paper where AD and heart disease were correlated. 
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Table S2.2. Comparison of simulated proportions of people with Alzheimer’s disease (AD): between 

when the total prevalence of AD was used and when the prevalence of AD split into HD and non-HD 

groups was used 

Total prevalence of 

AD (before splitting)

Combined 

prevalence of AD 

using split 

prevalence values*

% Difference 

(compared with the 

total prevalence AD)

Age Men Women Men Women Men Women

<65 0 0 0 0 0 0

65-69 0.0101 0.0108 0.0098 0.0104 -3.01% -3.98%

70-74 0.0223 0.0158 0.0232 0.0166 3.88% 5.09%

75-79 0.0403 0.0511 0.0387 0.0503 -3.94% -1.52%

80-84 0.0734 0.1015 0.0732 0.1020 -0.38% 0.44%

85+ 0.1411 0.1980 0.1451 0.1985 2.79% 0.23%

*Based on the results of 100,000 simulated individuals for each age group. 

In order to examine the effect of the calibration at the population level, the numbers of people with 

AD across all age groups in the models before and after calibration were compared in Table S2.3 

when 200,000 individuals aged 65 years and over were simulated for each model (the age 

distribution for people aged 65 and over was adapted from the ONS mid-2012 UK population 

estimates). The total numbers of people with AD among 200,000 simulated individuals from models 

with and without calibrated prevalence values were compared with that from the model where 

heart disease and AD were independently linked. The calibration reduced the difference between 

when the total AD prevalence was applied and when the split prevalence values were used from 

0.50% to 0.24% for male population and from 1.89% to 1.18% for females. 

There still existed differences in the number of people with AD after calibration due to Monte Carlo 

sampling error. Perfect calibration would have been possible if the calibration factors were 

calculated using the model results with the infinite number of runs for each age and sex group. In 

addition, if the infinite number of individuals were simulated in the perfectly calibrated model and 

the independently linked model for figures in Table S2.3, the differences would have been 

eliminated. 
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Table S2.3. Number of individuals with Alzheimer’s disease (AD) before and after calibration 

compared with when total prevalence without correlations was applied

Number with AD when 

Total AD prevalence was 

used**

Number with AD when split prevalence values were used* 

(difference (n; %))

Men Women Men Women Men Women

Before calibration After calibration

3378 6292
3395

(+17; +0.50%)

6411

(+119; 1.89%)

3386

(+8; 0.24%)

6366

(+74; +1.18%)

*Among 200,000 simulated individuals aged 65 years and older; **Results from the model where 

heart disease and AD were linked with independence between diseases assumed. 
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Correlation between Heart disease and Osteoporosis 

The model in this study focussed specifically on correlations regarding hip fracture, and MI and 

stroke as these events are associated with the highest costs and utility effects. This section describes 

the correlation between hip fracture and a history of MI. Similar calculation was performed for the 

correlation between the risk of stroke and a history of hip fracture. 

Incidence of hip fracture and prevalent cardiovascular disease

Fracture risks are influenced by the presence of CVD.  In a study by Gerber and colleagues [1], MI 

was associated with higher risk of all types of osteoporotic fracture. Excess fracture risks after MI 

were found with the overall adjusted hazard ratio (HR) of 1.32 (95% CI 1.12-1.56) across all anatomic 

sites. Trends of the fracture incidence rates for three time-periods (1979-1989; 1990-1999; 2000-

2006) were tested and an increase in fracture rates over time was found among MI patients. An HR 

of 1.66 for both men and women for hip fracture was used in the model, which was for the most 

recent time period (2000-2006). Data reported in Gerber et al. [1] was used in the model as this 

study was based on a large sample size and similar ethnic group to that of the UK, and provided 

relatively recent data in the format suitable to be applied to the time-to-event distributions used in 

the model.  Only a transient increase of fracture risks after MI was identified in the study. In the 

Gerber et al. (2011) study, as the mean follow-up time was only 4 years and the association between 

and MI and 5-year risk of osteoporotic fracture was reported, HR was applied for five years after MI. 

The incidence of hip fracture was split between that for those with MI and that for those without. 

Using the prevalence estimates of MI used to populate the individual heart disease model, the total 

incidence of hip fracture was split between the incidence of hip fracture for patient who had an MI 

within 5 years and that for patients who did not have MI for the last 5 years. These were reported in 

Table S2.4 for those on no treatment (A) and on drug treatment for osteoporosis (B) where an RR of 

72% for hip fracture was applied [17]. Due to the low prevalence of MI among younger age groups, 

the baseline incidence for those without MI was similar to the total incidence including both groups 

with and without MI. 
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Table S2.4. Hip fracture incidence split between rates for those with MI and without MI

A. Hip fracture incidence with and without MI – No drug treatment

 Total incidence of hip 

fracture

Baseline rate r (without 

MI)

Rate for patients with MI

Age Men Women Men Women Men Women

45-50 0.00030 0.00020 0.00030 0.00020 0.00049 0.00033

50-55 0.00030 0.00020 0.00030 0.00020 0.00049 0.00033

55-60 0.00070 0.00050 0.00067 0.00049 0.00112 0.00082

60-65 0.00030 0.00080 0.00029 0.00079 0.00048 0.00131

65-70 0.00080 0.00130 0.00073 0.00127 0.00121 0.00211

70-75 0.00110 0.00210 0.00100 0.00206 0.00167 0.00341

75-80 0.00200 0.00420 0.00180 0.00396 0.00299 0.00658

80-85 0.0068 0.0097 0.00613 0.00915 0.01017 0.01519

85+ 0.0099 0.0217 0.00892 0.02047 0.01481 0.03398

B. Hip fracture incidence with and without MI – For individuals on drug treatment for 

osteoporosis

 Total incidence of hip 

fracture – on drug 

treatment

Baseline rate r (without 

MI)

Rate for patients with MI

Age Men Women Men Women Men Women

45-50 0.00025 0.00018 0.00025 0.00017 0.00041 0.00029

50-55 0.00024 0.00017 0.00024 0.00017 0.00040 0.00028

55-60 0.00050 0.00033 0.00048 0.00032 0.00080 0.00054

60-65 0.00020 0.00055 0.00019 0.00054 0.00032 0.00090

65-70 0.00060 0.00092 0.00054 0.00090 0.00090 0.00149

70-75 0.00081 0.00150 0.00074 0.00147 0.00123 0.00244

75-80 0.00145 0.00303 0.00131 0.00286 0.00217 0.00475

80-85 0.00490 0.00695 0.00442 0.00656 0.00733 0.01088

85+ 0.00713 0.01557 0.00643 0.01469 0.01067 0.02439

The incidence rates of hip fracture with and without a recent MI reported in Table S2.4 were used as 

the baseline event rates for hip fracture for the first 5 year period after MI. The relative risks 

associated with factors that can influence the event rates, such as low BMD and previous fracture, 

were applied onto these baseline rates. When sampling time to next hip fracture, these baseline 

incidence rates of hip fracture were updated when the sampled time to event was longer than the 

time before a change in age band, or the time left to a change in the drug efficacy due to the 
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treatment fall time after discontinuation. Hence, all three time intervals for which different event 

rates are applied – time to 5 years after MI, time to next age band, and time to next efficacy change 

due to the fall time of treatment effect – were continuously compared with the sampled time to 

event (TTE) value. When the sampled TTE value is longer than any of the three, the baseline 

incidence rates were changed accordingly and TTE was resampled. 
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Appendix 3. Parameter estimates and data sources

Event Rates 

This section describes the event rates used for the base-case model only for HD due to the addition 

of PAD and updated parameters. Parameter estimates used in the AD and osteoporosis models were 

based on the data reported in the HTA reports [13, 17] and are detailed in Youn [15]. The data 

sources were identified from the six UK-based studies [18-23]. The most appropriate parameter 

estimates reported for similar populations and contexts in the six studies and their sources of data 

were used for the model in this research. UK-sourced data were used wherever possible, and age-

dependent time-variant rates of transitions between health events were preferred.

All included HD disease states except PAD were split into two temporal categories – first year and 

subsequent years after the event – due to the difference in the rates for transitions to other events, 

costs, and/or utility weights between the first year of the event and thereafter.  Various sources for 

cardiac death rates were used dependent on the ‘from’ state of the transition. The rate of transition 

to cardiac death varied with the age group and the temporal period (first year or subsequent years 

after the event), and time to cardiac death was sampled from an exponential distribution, the 

parameter of which produced the appropriate rate. 

The event rates used in the model are summarised in the next sections by the origin of transitions, 

with each section followed by a summary table of the estimates. In addition, rates of transitions to 

fatal stroke and PAD were described in separate sections as they applied regardless of the origin of 

transitions. 

Transitions from event-free state (at model initiation)

Event rates differed depending on whether an individual is on primary or secondary prevention 

interventions, or is untreated. Rates of transitions from the event-free state are summarised in Table 

S3.1. 
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Table S3.1. Baseline annual rates of transition from event-free state

Baseline rates for individuals not receiving statin treatment

From To Estimates Sources

Event free MI Rate for men = 0.01624; Rate for 

women = 0.01123

WOSCOPS 

(Shepherd et al. 

1995 [24]) and 

Framingham 

studies 

(D’Agostino et al. 

2008 [25])

Stroke Exponential mean of Exp(9.218 + (-

0.064)*age at event + (-

0.176)*gender) for time to event 

distribution . Then, the 

prob of stroke being fatal applied. 

P(fatal stroke)=e^xb/[1+e^xb] where 

xb= -4.874 + 0.043*age – 

0.074*gender.  

Anglo-

Scandinavian 

Cardiac Outcomes 

Trial (ASCOT) trial 

results [22]

Angina Rate = 0.0027 per patient-year. ASCOT-LLA data 

[26] 

Revascularisation For only primary and secondary 

prevention populations, 

Exponential mean of Exp(5.250 + (-

0.013)*age at event + 

(0.479)*gender) for time to event 

distribution . 

Otherwise, the national average rate 

of revascularisation was used. 

ASCOT trial [22]

National Audit of 

PCI [27]

PAD Rate= 0.021149= the incidence of 

PAD with intermittent claudication.

Edinburgh Artery 

Study [28]

CVD death For individuals not receiving any 

interventions, 

Males (females): 45-54 years 

0.000639 (0.000178); 55-64 years 

0.001711 (0.000573); 65-74 years 

0.004275 (0.001994); 75-84 years 

0.013182 (0.008621); 85 years and 

over 0.040947 (0.035576).

For only primary and secondary 

prevention populations, 

Exponential mean of Exp(6.576 + (-

0.035)*age at event + 

(0.437)*gender) for time to event 

distribution .

Mortality 

Statistics: Deaths 

registered in 2012 

[29]

ASCOT trial [22]
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Transitions from MI

Table S3.2. Baseline annual rates of transitions from myocardial infarction

Baseline rates for individuals not receiving statin treatment

From To Estimate Sources

MI MI For age groups 1-5: First 

(subsequent) year(s) rates: 

0.13697 (0.01633),  

0.12239 (0.01806), 0.10747 

(0.01867), 0.09146 (0.0180), 

0.07375 (0.01613).

NICE TA94 Table 

52 [30]; 

Nottingham Heart 

Attack Register 

(NHAR) [31].

Stroke For age groups 1-5: First 

(subsequent) year(s) rates: 

Group 1 (< 55): 0.00150 (0.0004),  

Group 2 (55-65): 0.00321 (0.00100), 

Group 3 (65-75): 0.00682 (0.00220), 

Group 4 (75-85): 0.01420 (0.00471), 

Group 5 (> 85): 0.02819 (0.00914).

NICE TA94 (Table 

52); Nottingham 

Heart Attack 

Register (NHAR); 

Angina Exponential rate =  0.05975 Ara et al. 2009. 

Table 8 [23]; Fox et 

al. 2005 [32]

Revascularisation First year rate = 0.504347 TNT trial

[20]

PAD Rate= 0.021149= the incidence of 

PAD with intermittent claudication.

Edinburgh Artery 

Study (Leng et al. 

1996)

CVD death For age groups 1-5: First 

(subsequent) year(s) rates: 

Group 1 (< 55): 0.01755 (0.00541),  

Group 2 (55-65): 0.03387 (0.00955), 

Group 3 (65-75): 0.06465 (0.01603), 

Group 4 (75-85): 0.12059 (0.02482), 

Group 5 (> 85): 0.21791 (0.03615).

NICE TA94 (Table 

52); Nottingham 

Heart Attack 

Register (NHAR) 

[31].
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Transitions from Stroke 

Table S3.3. Baseline annual rates of transitions from Stroke

Baseline rates for individuals not receiving statin treatment

From To Estimate Sources

Stroke MI Rates by age group: 

Group 1 (< 55): 0.00160,

Group 2 (55-65): 0.00310,

Group 3 (65-75): 0.00552,

Group 4 (75-85): 0.00803,

Group 5 (> 85): 0.01045.

NICE TA94 (Table 

52); Nottingham 

Heart Attack 

Register (NHAR) 

[31].

Stroke

(Stroke 

recurrence)

Baseline rates for 0-1, 1-5, 5-10 

years for individuals aged <65:

0-1 year rate= 0.06401 (mean = 

15.6237); 1-5 year rate= 0.02694; 5-

10 year rate= 0.01887.

Then, probability of stroke being 

fatal= e^xb/[1+e^xb], where

xb= -4.874 + 0.043*age – 

0.074*gender, was applied. 

Mohan et al. 2009 

[33] – Stroke 

recurrence; ASCOT 

trial [22]

Angina Rate = 0.0027 Assumed the same 

as the rate of 

transition from 

event free to 

angina state (NICE 

TA 94 Table 52) 

Revascularisation Rate= 0.01056 TNT trial [20]

PAD Rate= 0.021149= the incidence of 

PAD with intermittent claudication.

Edinburgh Artery 

Study [28]

CVD death For age groups 1-5: First 

(subsequent) year(s) rates: 

Group 1 (< 55): 0.00924 (0.00421),  

Group 2 (55-65): 0.02245 (0.00985), 

Group 3 (65-75): 0.05340 (0.02102), 

Group 4 (75-85): 0.12466 (0.04207), 

Group 5 (> 85): 0.27839 (0.07796).

NICE TA94 (Table 

52); Nottingham 

Heart Attack 

Register (NHAR) 

[31]
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Transitions to Fatal Stroke

If the reported data did not explicitly state that the event probabilities were for non-fatal stroke only, 

then a proportion of the patients who experience a stroke was assumed to die due to the stroke. 

The proportion of fatal stroke among all stroke events was estimated using the logistic regression 

equation reported in the ASCOT trial results [22] with an exception of transitions from 

revascularisation state where a 50% probability of stroke being fatal was assumed as in Ara et al. 

(2009). Thus, the transitions to stroke from event free, stroke, angina and revascularisation states 

included a subset of patients having a fatal event and subsequently moving to cardiac death state.

Transitions from Angina

Rates of transitions from angina are given in Table S3.4. Individuals were assumed to have stable 

angina first and then progress to unstable angina, which requires more intense medical treatments. 

Once unstable angina was developed, it was assumed that patients could not improve to stable 

angina. 
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Table S3.4. Baseline annual rates of transitions from angina

Baseline rates for individuals not receiving statin treatment

From To Estimates Sources

Angina MI 1) From Stable angina: Rate = 0.01520;

2) Unstable angina

5%, 4.9%, 4.7%, 4.3% from 1st year event.

3.5%, 6.3%, 11.2%, 18.5% from subsequent 

yrs event for those aged <55, 55-65, 65-75, 

75-85 yrs, respectively. 

Juul-Moller, 

Edvardsson [34]; 

Ara, Pandor [23], 

Table 8; Gray and 

Hampton [31]; 

Stroke 1) From Stable angina: 

Rate = 0.00791; Then, the prob of stroke 

being fatal applied, probability = 

e^xb/[1+e^xb], where xb= -4.874 + 

0.043*age – 0.074*gender. 

2) From Unstable angina: For age groups of 

<65, <75, <85, >85 years,

[1st year rate] To non-fatal stroke: 0.2%, 

0.5%, 1%, 2%; To fatal stroke: 2.6%, 4.3%, 

7%, 10.3%; 

[subsequent yrs rate] To non-fatal stroke: 

0.1%, 0.1%, 0.3%, 0.7%;  Fatal stroke: 

0.4%, 0.5%, 0.6%, 0.7%.

1) Juul-Moller, 

Edvardsson [34]; 

NICE [30]; Lindgren, 

Buxton [22]

2) Ara et al. 2009 

(HTA) Table 8.; 

Gray and Hampton 

[31]

Angina 

(unstable)

Annual probability from stable angina to 

unstable angina: 

Group 1 (< 55): 0.0013,

Group 2 (55-65): 0.0029,

Group 3 (65-75): 0.0060,

Group 4 (75-85): 0.0091, 

Group 5 (> 85): 0.0122. 

NICE TA 94: Table 

52. 

Revascularisat

ion

Rate=0.00269 Assumed the same 

as the minimum 

revascularisation 

rate from PAD state. 

(Leng et al. 1996)

PAD Rate= 0.021149= the incidence of PAD with 

intermittent claudication.

Edinburgh Artery 

Study (Leng et al. 

1996)

CVD death 1) If no history of angina= 

Group 1 (< 55): 0.009, 

Group 2 (55-65): 0.0035, 

Group 3 (65-75): 0.007, 

Group 4 (75-85): 0.007, 

Group 5 (> 85): 0.007.  

2) From unstable angina = (CHD and CVD 

death rates combined for 1st and 

subsequent years.

NICE TA94 (Table 

52); Nottingham 

Heart Attack 

Register (NHAR).
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Transitions from Revascularisation

Table S3.5. Baseline annual rates of transitions from revascularisation

Individuals not receiving statin treatment

From State To State Estimate Sources

Revascularisation MI Rate= 0.03874 Fox, Poole-Wilson 

[32]; Ara et al. 

(2009) [23]

Stroke Rate=0.002 with 50% of stroke 

being assumed to be fatal. 

Henderson, 

Pocock [35]; Ara 

et al. (2009) [23]

Angina Rate = 0.032523 Henderson et al. 

(2003); Ara et al. 

(2009) [23]

Revascularisation First-year rate  of having a 2nd 

revascularisation= 0.14491

TNT trial [20] 

PAD Rate= 0.021149= the incidence of 

PAD with intermittent claudication.

Edinburgh Artery 

Study [28]

CVD death Rate = 0.005785 RITA-2 trial [35]
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Transitions from PAD

Table S3.6. Baseline rates of transitions from peripheral arterial disease

Baseline rates for individuals not receiving statin treatment

From To Estimate Sources

PAD MI Rate = 0.01711 Edinburgh Artery 

Study [28]

Stroke Rate= 0.01408 Edinburgh Artery 

Study [28]

Angina Rate= 0.02019 Edinburgh Artery 

Study [28]

Revascularisation Rate=0.00269 Edinburgh Artery 

Study [28]

PAD Rate=0 Assumed

CVD death Exponential mean of Exp(6.576 + (-

0.035)*age at event + 

(0.437)*gender) for time to event 

distribution .

The same rate as 

the transition 

from event free 

to CVD death: 

ASCOT trial [22]

Transitions to PAD

The incidence of PAD reported in the Edinburgh Artery Study was used for the estimation of 

transition rates to PAD. The incidence of symptomatic PAD (i.e. with intermittent claudication, IC) in 

general population aged 55 and over was used for all transitions to PAD event due to the lack of 

published evidence [28]. Age dependent incidence was not included as it was not statistically 

significant in the Edinburgh Artery Study [28]. However, there was some evidence of an increase 

with age in earlier longitudinal studies [36, 37].  

Among patients with PAD, approximately 20% progress to develop severe symptoms with critical 

limb ischaemia (CLI) over a 5-year period and 1-2% undergo amputation over a lifetime [38]. In the 

model, 20% of people with IC were randomly sampled to develop CLI at the time of developing PAD 

for simplicity, to whom higher costs and lower utility weights were applied. 
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Effectiveness of statin treatments

Statin interventions was assumed to reduce the risks of coronary events (MI, angina, and fatal CHD 

events) and stroke. The model assumes that a proportion of individuals entering the model are 

receiving a statin intervention for primary and secondary prevention of CVD events. The relative 

risks (RRs) of events associated with statin use were applied to the baseline risks converted from the 

event rates reported in Tables S3.1-S3.6, and are shown in Table S3.7.  

Table S3.7. Relative risks associated with statin use compared with placebo

Transitions to Relative Risk Source

MI 0.656 Ward et al. (2006) [18]

Non fatal stroke 0.754 Ara et al. (2009): Simvastatin 

40mg/day

Fatal stroke (from Angina 

state)

0.876 Ara et al. (2009): Simvastatin 

40mg/day

Stable Angina (from event free 

state)

0.59 Ward et al. (2006) [18]

To Fatal CHD event (CVD 

death)

0.74 Ward et al. (2006) [18]

Non CVD death (from event 

free state)

0.656 Ward et al. (2006) [18]
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Non-disease mortality

Non-cardiac mortality rates used to construct distribution profiles for time to non-disease death 

were calculated by subtracting cardiac mortality rates from the all-cause death probability profiles. 

Cardiac mortality rates were estimated by combining the rates reported for heart disease (ICD-10 

code I00-I52) and stroke (I64) using data obtained from the Mortality Statistics: Deaths registered in 

2012 [29]. Cardiac mortality rates used to calculate the non-disease mortality are shown in Table 

S3.8. These were the same rates used for transitions to cardiac death from event-free state.

Figure S3.1 shows distributions for time to non-cardiac death for a few selected age groups. As the 

cardiac death rates were assumed constant across the 10-year age bands whilst the all-cause 

mortality rates were specified at every age  between 45 and 100 years, the probability profiles 

created were not smooth, but had a few stepped decreases at the age cut off values. 

Table S3.8. Cardiac death rates used to estimate non-cardiac mortality rates*

Age group

Sex 45-54 55-64 65-74 75-84 85 and 

over

Male 0.000639 0.001711 0.004275 0.013182 0.040947

Female 0.000178 0.000573 0.001994 0.008621 0.035576

*Adapted from Table 8 in Deaths registered in England and Wales, 2012 [29]
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Figure S3.1. Illustration of distributions for time to non-cardiac death

Male aged 45 years Male aged 55 years

Male 65 years Male 75 years
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Costs

Table S3.9. Cost estimates used in the base-case model

Event Data within 

source

Price year Estimates [39]

(2011/2012 price)

Original Source

MI - 1st year £3,996 2007  £  4,519.10 Ara et al. (2009) 

estimated using 

British National 

Formulary (2008) 

[40]

MI - subsequent 

year

£171 2004  £  214.89 NICE TA 94 (GP 

contacts + 

medication costs)

Stroke - 1st year £8,066 2007  £ 9,121.88 Ward, Lloyd-Jones 

[18]

Stroke - 

subsequent yr

£2,266 2007  £ 2,562.63 Ward, Lloyd-Jones 

[18]

Stable angina £171 2004  £ 214.89 NICE TA 94 (GP 

contacts + 

medication costs)

Documented 

angina

 £     587.07 2005  £ 713.94 Taylor et al. (2009)

Revascularisation 

- 1st yr

 £  5,857 2007  £ 6,623.71 Taylor et al. (2009); 

HRG

PAD (IC) £180 2009-

2010

£189.31 Kearns, Michaels 

[41]

PAD (CLI) £624 2009-

2010

£656.29 Kearns, Michaels 

[41]; National 

Clinical Guideline 

Centre [38]

Statin treatment £144.12 2014 £144.12 British National 

Formulary (2014); 

Estimated using the 

method by Ward et 

al. (2006)

Utilities

Baseline utility values by age and gender in the UK general population were estimated from a 

statistical model reported in Ara and Brazier [42].

The utility values associated with the health states included in the model were obtained from NICE 

TA94 and the HTA report by Ara et al. (2009). Table S3.10 describes the original sources of these 
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values. All the utilities were estimated using the EQ-5D, and were assumed to be multiplicative. 

Utility multiplier values were assumed to increase by 10% after the first year of the event as 

assumed in Ara et al. (2009). It was assumed that the history of revascularisation procedure did not 

affect the utility level, and the utility decrement for stable angina was used for individuals with 

history of angina. As a base-case, deterministic values for utility multipliers were used.

Alongside the current event, the history of the other health events was incorporated in the utility 

multiplier. For example, if a man aged 65 years who has just had a stroke has a history of MI, then 

the utility decrements for both stroke (first year multiplier for stroke: 0.629) and that for MI 

(subsequent-year multiplier: 0.836) were applied to the baseline utility (0.815); the utility weight for 

this person is thus 0.429 (i.e. 0.815*0.629*0.836). 

When more than one cardiac event occurs within one year, the first-year periods of those events 

overlap. For the time periods overlapping, utility multipliers associated with the events were applied 

multiplicatively. For instance, if an individual experiences an MI at time=2.3 years and subsequently 

a stroke at time=2.7 years, then for time between 2.3 and 2.7 years, only the utility multiplier for the 

first year of MI would be applied (0.760) whilst for time between 2.7 and 3.3 years, utility multipliers 

associated with both first-year MI and first-year stroke would be applied (0.760*0.629=0.478). In the 

same way, for time between 3.3 and 3.7 years, utilities associated with subsequent years of MI and 

first year of stroke are used (0.836*0.629=0.526) In the model for this paper, whenever individuals 

reach these time points, they are directed to the ‘utility cut off point’ event in order to update 

variables related to utility multiplier. 

Table S3.10. Utility multipliers by health state 

State First year - 

Mean (S.E.)

Subsequent years - Original Sources

MI 0.760 (0.018) 0.836 (10% increase) Goodacre, Nicholl [43]

Stroke 0.629 (0.04) 0.692 (10% increase) Tengs and Lin [44]

(Stable) angina 0.808 0.889 (10% increase) Melsop, Boothroyd [45]

Unstable angina 0.77 0.847 (10% increase) Goodacre, Nicholl [43]

Revascularisation 0.78 0.858 (10% increase) Serruys, Unger [46]

PAD IC 0.70 0.70 Kearns, Michaels [41]

PAD CLI 0.35 0.35 [Kearns, Michaels [41]]

Page 124 of 141



29

Appendix 4. Comparison of the single-disease models in this study with the published reference models
Study Model 

type 

(software)

Base-case 

Population

Intervent

ion

Compara

tor(s)

Outcomes Perspecti

ve

Time 

horizon/ 

price 

year

Health 

events 

included 

(e.g. Markov 

health 

states)

Stratified 

results 

(Yes/No)

Base-case 

ICER

Parameters driving 

ICER

Heart disease (HD)

HD single-

disease 

model in 

this paper

Discrete 

event 

simulation 

(Simul8)

General 

population 

aged 45 

years and 

over

Statins No 

statins

QALYs NHS Lifetime MI, stable 

angina, 

unstable 

angina, 

stroke, 

revascularisa

tion, PAD, 

CVD death, 

and non-

CVD death

Yes – Base-

case reported 

for the total 

population; 

and by age 

and gender, 

by prevention 

type 

1) Secondary 

prevention - 

£1.5k – 

4.0k/QALY 

vary by age 

and gender

2) Primary 

prevention - 

£2.2k-2.8k 

varied by age 

and gender

Reduced cost of 

statins (updated to 

2012 values); 

Population age and 

sex distribution at 

model entry;

Added event of PAD 

could lower ICERs 

compared to the 

results from Ward 

et al. (2006) 

HD 

reference 

model by 

Ward et al. 

(2006) [18]

Markov 

model

A 

population 

with CHD 

or at 

increased 

risk of CHD 

events 

(annual 

CHD risk of 

0.5%-3%)

Statins

as a 

group

No 

statins

QALYs NHS Lifetime/

2004

Discount 

rates of 

6% for 

costs and 

1.5% for 

health 

benefits

MI, stable 

angina, 

unstable 

angina, CHD 

death, TIA, 

stroke, and 

CVD death 

or non-CVD 

death

Yes – 

Base-case 

reported by 

prevention 

level, age and 

sex, and 

predicted 

annual CHD 

risk levels

Multiple base-

case values

1) Secondary 

prevention - 

£10k-£17k 

/QALY

2) Primary 

prevention – 

at annual CHD 

risk of 3%, 

£10k-37k 

/QALY for 

men and 

£14k-48k 

/QALY for 

women

Results were most 

sensitive to the cost 

of

statins, discount 

rates and the 

timeframe of the 

model; Larger 

incremental costs 

than the model in 

this study;

ICERs sharply 

increased with age 

of the population
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Alzheimer’s disease (AD)

AD model 

in this 

paper

Discrete 

event 

simulation 

(Simul8)

General 

population 

aged 45 

years and 

over

Donepezil 

and 

memanti

ne 

BSC QALYs NHS and 

PSS

Lifetime AD onset; 

diagnosis; 

pre-

institutionali

sation; 

institutionali

sation; and 

death

Yes – results 

reported for 

two age 

groups aged 

>45 and >65 

years

Donepezil and 

memantine 

therapy 

dominated 

BSC (cost 

saving £14 

with 0.001 

QALY gain)

The model results 

were generally 

comparable with 

those from Bond et 

al. (2012).

Incremental QALYs 

from the model for 

this study were 

smaller than those 

from Bond et al. 

(2012) as the 

general population 

was modelled with 

the added events of 

the onset and 

diagnosis of AD. 

AD 

reference 

model by 

Bond et al. 

(2012) [13]

Markov 

model 

(Microsoft 

Excel)

People 

with mild, 

moderate 

or severe 

AD

donepezil

, 

galantami

ne,

rivastigmi

ne, for 

mild-to-

moderate 

AD, and 

memanti

ne, for 

moderate

-to-

severe AD

BSC QALYs NHS and 

PSS 

20 years

/ 2009 

price

pre-

institutionali

sation; 

institutionali

sation; and 

death

Yes – by 

disease 

severity 

Donepezil for 

mild-to-

moderate AD 

dominated 

BSC; 

Memantime 

for moderate-

to-severe AD: 

£32.1K/ QALY 

(increC=£405; 

increQ 

=0.013)

Results sensitive to 

assumptions on 

discontinuation 

rates; Costs of 

institutionalisation 

Osteoporosis

Osteoporo

sis model 

in this 

paper

Discrete 

event 

simulation 

(Simul8)

General 

population 

aged 45 

years and 

70mg 

alendron

ate taken 

once 

No 

alendron

ate 

treatmen

QALYs NHS and 

PSS

Lifetime Hip fracture; 

vertebral 

fracture, 

wrist 

Yes – by age 

and gender, 

BMD level, 

status of 

Alendronate  

dominated no 

treatment for 

75-year-old 

Age, BMD level and 

history of previous 

fracture altered the 

incremental costs 

Page 126 of 141



31

over weekly t fracture; 

proximal 

humerus 

fracture; 

fracture-

related 

death; non-

fracture 

death

previous 

fracture

women with 

T-score of -3 

SDs and -2.5 

SDs with no 

previous 

fracture

and QALYs. 

However, 

regardless of the 

willingness-to-pay 

threshold per QALY, 

the alendronate is 

likely to be a cost-

effective option for 

fracture prevention.

Osteoporo

sis 

reference 

model by 

Stevenson 

et al. 

(2009) [17]

Patient-

level 

Markov 

model 

(Microsoft 

Excel)

Postmenop

ausal 

women 

aged 50 

years and 

over

Vitamin 

K; 

alendron

ate; 

risedrona

te; 

strontium

ranelate

No 

alendron

ate; next 

cost-

effective 

treatmen

t options

QALYs NHS and 

PSS

10 years 

(the 

results 

subseque

ntly 

adjusted 

to 

account 

for 

treatmen

t benefits 

beyond 

the initial 

10 years)

Hip fracture; 

vertebral 

fracture, 

wrist 

fracture; 

proximal 

humerus 

fracture; 

nursing 

home entry 

from hip 

fracture; 

breast 

cancer; and 

coronary 

heart 

disease; and 

non-fracture 

related 

death

Yes – by age, 

BMD level, 

and status of 

previous 

fracture

Alendronate  

dominated no 

treatment for 

75-year-old 

women with 

T-score of -3 

SDs with no 

previous 

fracture; 

£1,226/QALY 

for 75-year-

old women 

with T-score 

of -2.5 SDs. 

Age, fracture risks, 

BMD and history of 

previous fracture 

could alter the ICER 

estimates. 
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Appendix 5. Dealing with stochastic uncertainty around the results 

from the linked model

Background : Uncertainty around DES model outputs can be represented by both first-order 

uncertainty, defined as stochastic variability between simulated observations assuming identical 

parameter values, and second-order uncertainty, defined as uncertainty in the parameters of the 

economic model [47]. 

Aim: The degree of first order uncertainty in the linked model was examined in order to identify the 

appropriate number of simulated individuals to ensure stable model results.  Stability was defined as 

an adoption decision being robust with sufficiently small random errors.

Method: Incremental values were computed in comparison with no treatments for all three of the 

diseases (heart disease, Alzheimer’s disease and osteoporosis). The first-order uncertainty around 

the mean incremental cost and QALYs, incremental net monetary benefit (NMB) and cost per QALY 

gained (CPQ) was quantified for the results from the correlated linked model for the population aged 

45 years and older. 

The jackknife approach was used to estimate a confidence interval for the mean cost per QALY with 

a reduced level of bias associated with the classical estimation of non-linear statistics [48, 49]. The 

standard errors of the mean results were estimated having varied the numbers of simulated 

individuals ranging from 1,000 to 700,000.  The jackknife 95% confidence interval for the mean CPQ 

and the NMB results with more than 400,000 simulated individuals were derived using R 

programming language (R version 3.2.1, © The R Foundation) due to limited capacity of the 

spreadsheet software. Jackknifing execution time for the data from 700,000 simulated individuals 

was 4.69 hours on an Intel ® Core ™ i5 CPU 2.30 GHz processor with 4.00 GB of RAM (3.54 hours for 

600,000 data points). 

Results: Figure S5.1 shows that the incremental cost and QALYs stabilised when more than 200,000 

individuals were simulated. The standard errors of the mean NMB and CPQ started to stabilise after 

running more than 500,000 simulated individuals. The chosen number of individuals to simulate was 

700,000 for the base-case all-disease linked models (with and without correlations) in order to 

further reduce the variability of the results. 
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Figure S5.1. First order uncertainty in relation to the number of patients simulated in the all-disease 

linked model with correlations (base-year population aged 45 years and over)

1) Incremental cost (compared with none of the three treatments)

Undiscounted Discounted

2) Incremental QALYs (compared with none of the treatments for the three diseases)

Undiscounted Discounted

3) Cost per QALYs (95% jackknife confidence interval)

Undiscounted Discounted
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4) Net monetary benefit (£20,000 threshold)

Undiscounted Discounted

Each figure includes error bars showing the standard error in the mean estimates of (incremental) cost and 

QALYs.
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Appendix 6. Summary of the results from the individual disease models for comparison

1) 

Heart disease only model

2) 

Alzheimer’s disease only model

3) 

Osteoporosis only model

4) 

Sum of 

incremental values 

across 1)-3)

Treatment No 

treatment

Incremental 

values (A)

Treatment No 

treatment

Incremental 

values (B)

Treatment No 

treatment

Incremental 

values (C)

(A)+(B)+(C)

Cost - 

Discounted

£ 8,091 £ 7,569 £ 522 £4,582 £4,596 -£ 14 £ 2,847 £ 2,947 -£ 100 £ 408

QALYs - 

Discounted

9.249 8.978 0.271 10.642 10.641 0.001 11.191 11.184 0.008 0.280

Cost £ 14,224 £ 13,197 £ 1,027 £8,845 £8,869 -£ 23 £ 6,151 £ 6,324 -£ 173 £ 831

QALYs 13.843 13.257 0.586 16.548 16.545 0.003 17.759 17.751 0.009 0.597

Life years 

lived

21.319 20.319 1.000 21.653 21.650 0.003 23.530 23.525 0.004 1.007

ICER – 

Discounted 

£ 1,926 

/QALY

Dominating Dominating £ 1,458 /QALY

ICER £ 1,754 / 

QALY

Dominating Dominating £ 1,391 / QALY

HD: based on n=200,000; AD n=200,000; Osteoporosis n=400,000
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Appendix 7. Hypothetical scenario with similar levels of QALY gains 

assumed for all three interventions

In order to examine the effect of sampling error when all three treatments have a similar level of 

QALY gains, the scenarios in Table S7.1 were assumed: these are not meant to provide accurate 

evaluations of current treatments but to show that the results would have face validity when QALY 

gains are comparable. For all three individual diseases, populations aged 65 years and older were 

simulated. Scenarios for larger QALY gains for AD and osteoporosis and reduced QALY gain for HD 

were explored. Table S7.1 shows the scenario assumptions applied to each of the three disease 

models in comparison with the base-case assumptions. 

Table S7.1. Comparison of scenario assumptions and base-case assumptions

Base-case assumptions Scenario assumptions

1. Heart disease model

Relative risks were assumed to be 0.656, 

0.754, 0.876, 0.59, 0.74, and 0.656 for MI, 

non-fatal stroke, fatal stroke, stable angina, 

fatal CHD, and non-cardiac death, 

respectively. 

Relative risks of 0.98 for statin treatment 

were assumed for all events. 

Utility values for MI, stroke and 

revascularisation were set to 0.76, 0.629, and 

0.78, respectively.

Utility values for MI, stroke, and 

revascularisation were reduced to 0.5.

2. Alzheimer’s disease model 

4% of monthly treatment discontinuation 

rate was assumed. 

Lifetime treatment: No treatment 

discontinuation was assumed

6 months duration of treatment effect was 

assumed.

Lifetime treatment effect was assumed.

Utility value for institutionalised individuals 

was 0.33.

Utility value for those institutionalised was 

reduced to 0.1

The average annual improvements in MMSE 

score were 2.48 for donepezil and 1.4 for 

memantine per year. 

Double treatment effect on MMSE score: 

the average improvements in MMSE score 

were set to 4.96 for donepezil and 2.8 for 

memantine per year. 

Some individuals are institutionalised at 

model entry, and some patients are 

institutionalised immediately after diagnosis.

No individuals start at the 

institutionalisation state at model entry, nor 

get institutionalised immediately after the 

diagnosis (i.e. No individuals move to the 
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institutionalisation event from the diagnosis 

event with zero time passed.)

3. Osteoporosis model

Relative risks of fracture for alendronate 

treatment were set to 0.72, 0.58, and 0.82 

for hip, vertebral, and other fractures, 

respectively. 

Relative risks were assumed to be 0.33 for 

all fracture types. 

5 years of treatment duration was assumed. Lifetime treatment duration was assumed. 

Table S7.2 compares incremental outcomes from the three individual disease models with those for 

each of the individual treatments from the linked model where the diseases were assumed to be 

independent. Under the hypothetical scenarios, a comparable magnitude of QALY gains across all 

three individual disease models (Table S7.2 Column a) was achieved.  The margins of error around 

incremental costs and QALYs at 95% confidence level are shown in brackets. 

Table S7.2 reports results under the scenarios in Table S7.1, assuming the diseases were 

independent. When none of the treatments have much larger impact on QALYs gained the linked 

model produced similar results to those from the individual disease models. This shows the 

robustness of the adoption decision within the linked model for individual treatments.  
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Table S7.2. Cost-effectiveness results under larger QALY gain scenarios for individual treatments 

from the individual disease models and the independently linked model

1. Heart disease

a. Individual heart 

disease model†

b. Independently linked model (n=700,000)

Incremental values 

(Margin of error) ‡

All 

treatments

No HD 

treatment*

Incremental 

values

DCost £ 683 (£ 66) £ 11,001 £ 10,201 £ 800

DQALYs 0.0539 (0.0179) 4.9232 4.8784 0.0448

TCost £ 913 (£ 94) £ 15,499 £ 14,380 £ 1,119

TQALYs 0.0875 (0.0267) 6.2589 6.1861 0.0728

ICER (disc.) £ 12,665 £ 17,878

ICER £ 10,433 £ 15,360

2. Alzheimer’s disease (AD)

a. Individual AD 

model†

b. Independently linked model (n=700,000)

Incremental values 

(Margin of error) ‡

All 

treatments

No AD 

treatment*

Incremental 

values

DCost -£ 4,551 (£ 93) £ 11,001 £ 15,413 -£ 4,412

DQALYs 0.0508 (0.0020) 4.9232 4.8855 0.0377

TCost -£ 6,319 (£ 130) £ 15,499 £ 21,582 -£ 6,083

TQALYs 0.0688 (0.0028) 6.2589 6.2089 0.0500

ICER (disc.) Dominating Dominating

ICER Dominating Dominating

3. Osteoporosis

a. Individual 

osteoporosis 

model†

b. Independently linked model (n=700,000)

Incremental values

(Margin of error) ‡

All 

treatments

No osteoporosis 

treatment*

Incremental 

values

DCost -£ 1,186 (£ 74) £ 11,001 £ 11,983 -£ 982

DQALYs 0.0545 (0.0128) 4.9232 4.8918 0.0314

TCost -£ 1,856 (£ 123) £ 15,499 £ 16,970 -£ 1,471

TQALYs 0.0900 (0.0204) 6.2589 6.2090 0.0499

ICER (disc.) Dominating Dominating 

ICER Dominating Dominating

† Based on n=200,000 for HD and AD models; and n=400,000 for osteoporosis model, as in the base-case; ‡ Margin of error 

at 95% confidence level; *The other two default treatments were assumed to be available; D=discounted.
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When all the individual disease models produce similar QALY gains (without any disease with a 

significantly larger impact) the impact of Monte Carlo error for one disease on the incremental 

outcomes and cost-effectiveness of the other diseases can be much less influential. None of the 

margin of error estimates in Table S7.2 (0.0179, 0.0020, and 0.0128 for HD, AD, and osteoporosis 

models, respectively) will have a significant effect that changes the +/- signs of the values on the 

incremental QALY results from the linked model (0.0448, 0.0377, and 0.0314 for HD, AD, and 

osteoporosis treatments, respectively).  Hence, when QALY gains are similar across all diseases, the 

results are less susceptible to sampling error from the other diseases. The base-case estimated very 

small QALY gains for AD and osteoporosis treatments which could fluctuate between positive and 

non-positive values due to the sampling error associated with the treatment for HD. In cases where 

QALY gains are similar, however, the proposed methods of linking individual disease models are 

likely to produce more accurate cost-effectiveness estimates for individual treatments. 
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Appendix 8. Probabilistic sensitivity analysis of the correlated linked 

model results

The correlated linked model for the three diseases (HD, AD and osteoporosis) was built 

probabilistically to take account of the uncertainty around input parameter point estimates. This 

section provides probabilistic results in order to show the feasibility of probabilistic sensitivity 

analysis (PSA) using the linked model described in this paper. 

A probability distribution was defined for selected input parameters. The selection of parametric 

distributions was based on the nature of the data. For example, utilities were assumed beta-

distributed as the data were assumed to be bounded by zero and one. Wherever possible, 

probabilistic distributions reported in the original publications of the reference models [13, 17, 18] 

were used. Where this was not possible, the distribution was parameterised using estimates of the 

error around mean or assumed standard errors for the purpose of this feasibility run of PSA.  Table 

S8.1 shows the PSA input parameters and their distributional properties. 

Table S8.1. Variables and distributions used in the probabilistic sensitivity analysis (PSA)

PSA Variable Point estimate* Distribution Distributional properties

Clinical effectiveness

RR of statin treatment for 

MI

0.656 Lognormal Lognormal(logmean=-0.4219, 

logSE=0.0233)

RR of statin treatment for 

stroke

0.754 Lognormal Lognormal(logmean=-0.2826, 

logSE=0.0203)

Change in MMSE when using 

Donepezil 10mg 

1.24** Normal Normal(1.24, 0.22)

Change in MMSE when using 

Memantine 20mg

0.70** Normal Normal(0.70, 0.35)

Proportion of patients 

compliant to medication

0.75 Beta Beta(13.31, 4.44)

Utilities of health states

Stable angina 0.808 Beta Beta(86.00, 20.44)

Unstable angina 0.77 Beta Beta(93.67, 27.98)

MI 0.76 Beta Beta(427.09, 134.87)

Stroke 0.628 Beta Beta(91.07, 53.94)

MMSE: 0-9 0.33 Beta Beta(36.59, 74.28)

MMSE: 10-14 0.49 Beta Beta(78.04, 81.22)

MMSE: 15-20 0.5 Beta Beta(856.27, 856.27)

MMSE: 21-25 0.64 Beta Beta(1137.19, 639.67)

MMSE: 26-30 0.69 Beta Beta(282.51, 126.92)

Institutionalised 0.33 Beta Assumed the same as the utility 
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value for MMSE:0-9

Vertebral fracture – 1st year 0.626 Beta Beta(14.03, 8.38)

Vertebral fracture –  

subsequent year

0.909 Beta Beta(6.61, 0.66)

Hip fracture –  1st year 0.792 Beta Beta(12.26, 3.22)

Hip fracture – subsequent 

year

0.813 Beta Beta(11.55, 2.66)

Costs

Cost of institutionalisation £2941 Normal Normal(2941, 108)

Cost of death from hip 

fracture

£9525.86 Gamma Gamma(scale=67.19, 

shape=141.78)***

MMSE: mini mental score examination; *mean values used in base-case analysis; **6month 

estimate; ***calculated from assumed standard error of 800.

The probabilistic model results are shown in Table S8.2 based on 300 PSA runs in each of which 

700,000 individuals were simulated. The mean cost and QALYs of the PSA results in Table S8.2 

showed comparable results with the base-deterministic results from the correlated linked model 

albeit not identical. All of the PSA samples in Figure S8.1 showed cost per QALY being lower than the 

threshold of £20,000 per QALY gained. 

Table S8.2. Comparison of probabilistic model results with the base-case deterministic results*

Deterministic results Probabilistic resultsAll-disease 

linked 

model with 

correlations

All three 

treatments 

assumed

None of 

the three 

treatments 

assumed

Incremental 

values

All three 

treatments 

assumed

None of 

the three 

treatments 

assumed

Incremental 

values

Mean cost £14,741 £13,894 £847 £14,392 £13,575 £816

Mean 

QALYs

8.962 8.725 0.236 8.972 8.731 0.241

ICER £3,583/QALY £3,391/QALY**

*Based on 300 PSA runs; each deterministic run is based on 700,000 simulated individuals; 

**Jackknife 95% C.I. £3,360-£3,423.

Figure S8.1. Probabilistic sensitivity analysis scatterplot of incremental costs and QALYs
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                      *Based on 300 PSA runs

The results show that the adoption decision is robust when assuming the willingness-to-pay 

threshold of £20,000 per QALY gained. Each deterministic run of 700,000 individuals took 

approximately 15 minutes to run and hence, conducting 300 PSA runs for each intervention arm 

took 1.9 days of computing time (Intel CoreTM i7CPU 3.40GHz processor with 16GB RAM). Such time 

scales indicate it is feasible to conduct PSA using the multi-disease linked model. The probabilistic 

analysis of discrete event simulation model will become more achievable by using a computer with 

more processing power or parallel computing. The number of runs required would be affected by 

the homogeneity of the population studied. Hence, the use of a more narrowly defined population 

with specific characteristics and higher disease prevalence, than the general population adopted in 

the current analysis, would accelerate convergence due to higher number of disease events 

simulated and more homogeneous parameter values. 
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