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Abstract. The Glauber dynamics can efficiently sample independent
sets almost uniformly at random in polynomial time for graphs in a
certain class. The class is determined by boundedness of a new graph
parameter called bipartite pathwidth. This result, which we prove for
the more general hardcore distribution with fugacity λ, can be viewed as
a strong generalisation of Jerrum and Sinclair’s work on approximately
counting matchings. The class of graphs with bounded bipartite path-
width includes line graphs and claw-free graphs, which generalise line
graphs. We consider two further generalisations of claw-free graphs and
prove that these classes have bounded bipartite pathwidth.

Keywords: Markov chain Monte Carlo algorithm · Fully polynomial-
time randomized approximation scheme · Independent set · Pathwidth

1 Introduction

We will show that we can approximate the number of independent sets in graphs
for which all bipartite induced subgraphs are well structured, in a sense that we
will define precisely. Our approach is to generalise the Markov chain analysis of
Jerrum and Sinclair [19] for the corresponding problem of counting matchings.
Their canonical path argument relied on the fact that the symmetric difference
of two matchings of a given graph G is a bipartite subgraph of G consisting
of a disjoint union of paths and even-length cycles. We introduce a new graph
parameter, which we call bipartite pathwidth, to enable us to give the strongest
generalisation of the approach of [19].

1.1 Independent set problems

For a given graph G, let I(G) be the set of all independent sets in G. The
independence number α(G) = max{|I| : I ∈ I(G)} is the size of the largest
independent set in G. The problem of finding α(G) is NP-hard in general, even
in various restricted cases, such as degree-bounded graphs. However, polynomial
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time algorithms have been constructed for finding a maximum independent set,
for various graph classes. The most important case has been matchings, which
are independent sets in the line graph L(G) of G. This has been generalised to
larger classes of graphs, for example claw-free graphs [24], which include line
graphs [4], and fork-free graphs [1], which include claw-free graphs.

Counting independent sets in graphs is known to be #P-complete in gen-
eral [26], and in various restricted cases [15, 30]. Exact counting is known only
for some restricted graph classes. Even approximate counting is NP-hard in gen-
eral, and is unlikely to be in polynomial time for bipartite graphs [11].

For some classes of graphs, for example line graphs, approximate counting is
known to be possible [19, 20]. The most successful Markov chain approach relies
on a close correspondence between approximate counting and sampling uni-
formly at random [21]. It was applied to degree-bounded graphs in [23] and [12].
In his PhD thesis [22], Matthews used a Markov chain for sampling independent
sets in claw-free graphs. His chain, and its analysis, generalises that of [19].

Several other approaches to approximate counting have been successfully
applied to the independent set problem. Weitz [31] used the correlation decay
approach on degree-bounded graphs, resulting in an FPTAS for counting inde-
pendent sets in graphs with degree at most 5. Sly [29] gave a matching NP-
hardness result. The correlation decay method was also applied to matchings
in [3], and was extended to complex values of λ in [16]. Recently, Efthymiou et
al. [14] proved that the Markov chain approach can (almost) produce the best
results obtainable by other methods.

The independence polynomial PG(λ) of a graph G is defined in (1) below.
The Taylor series approach of Barvinok [2] was used by Patel and Regts [25] to
give a FPTAS for PG(λ) in degree-bounded claw-free graphs. The success of the
method depends on the location of the roots of the independence polynomial.
Chudnovsky and Seymour [7] proved that all these roots are real, and hence they
are all negative. Then the algorithm of [25] is valid for all complex λ which are
not real and negative. In this extended abstract (for proofs see [13]), we return
to the Markov chain approach.

1.2 Preliminaries

We write [m] = {1, 2, . . . ,m} for any positive integer m, and let A ⊕ B denote
the symmetric difference of sets A,B. For graph theoretic definitions not given
here, see [10]. Throughout this paper, all graphs are simple and undirected.
G[S] denotes the subgraph of G induced by the set S and N(v) denotes the
neighbourhood of vertex v. Given a graph G = (V,E), let Ik(G) be the set
of independent sets of G of size k. The independence polynomial of G is the
partition function

PG(λ) =
∑

I∈I(G)

λ|I| =

α(G)
∑

k=0

Nk λ
k, (1)
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where Nk = |Ik(G)| for k = 0, . . . , α. Here λ ∈ C is called the fugacity. We
consider only real λ and assume λ ≥ 1/n to avoid trivialities. We have N0 = 1,

N1 = n and Nk ≤
(n
k

)

for k = 2, . . . , n. Thus it follows that for any λ ≥ 0,

1 + nλ ≤ PG(λ) ≤

α(G)
∑

k=0

(n
k

)

λk ≤ (1 + λ)n. (2)

Note also that PG(0) = 1 and PG(1) = |I(G)|.
An almost uniform sampler for a probability distribution π on a state Ω

is a randomised algorithm which takes as input a real number δ > 0 and
outputs a sample from a distribution µ such that the total variation distance
1
2

∑

x∈Ω |µ(x) − π(x)| is at most δ. The sampler is a fully polynomial almost
uniform sampler (FPAUS) if its running time is polynomial in the input size n
and log(1/δ). The word “uniform” here is historical, as it was first used in the
case where π is the uniform distribution. We use it in a more general setting.

If w : Ω → R is a weight function, then the Gibbs distribution π satisfies
π(x) = w(x)/W for all x ∈ Ω, where W =

∑

x∈Ω w(x). If w(x) = 1 for all x ∈ Ω

then π is uniform. For independent sets with w(I) = λ|I|, we have

π(I) = λ|I|/PG(λ), (3)

and is often called the hardcore distribution. Jerrum, Valiant and Vazirani [21]
showed that approximating W is equivalent to the existence of an FPAUS for π,
provided the problem is self-reducible. Counting independent sets in a graph is
a self-reducible problem. (2) can be tightened to

PG(λ) ≤

α
∑

k=0

(

n
k

)

λk ≤

α
∑

k=0

(nλ)k

k!
≤ (nλ)α

α
∑

k=0

1

k!
≤ e(nλ)α. (4)

2 Markov chains

2.1 Mixing time

For general information on Markov chains and approximate counting see [18].
Consider a Markov chain on state space Ω with stationary distribution π

and transition matrix P. Let pn be the distribution of the chain after n steps.
We will assume that p0 is the distribution which assigns probability 1 to a fixed
initial state x ∈ Ω. The mixing time of the Markov chain, from initial state
x ∈ Ω, is τx(ε) = min{n : dTV(pn, π) ≤ ε}, where dTV(pn, π) is the total
variation distance between pn and π. In the case of the Glauber dynamics for
independent sets, the stationary distribution π satisfies (3), and in particular
π(∅)−1 = PG(λ). We will always use ∅ as our starting state.

Let βmax = max{β1, |β|Ω|−1|}, where β1 is the second-largest eigenvalue and
β|Ω|−1 is the smallest eigenvalue of P. From [9, Proposition 3] follows τx(ε) ≤
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(1 − βmax)
−1

(

ln(π(x)−1) + ln(1/ε)
)

, see also [28, Proposition 1(i)]. Hence for
λ ≥ 1/n,

τ∅(ε) ≤ (1− βmax)
−1 (α(G) ln(nλ)) + 1 + ln(1/ε)) , (5)

using (4). We can easily prove that (1+β|Ω|−1)
−1 is bounded above by min{λ, n},

see (9). It is more difficult to bound the relaxation time (1− β1)
−1.

2.2 Canonical paths method

To bound the mixing time of our Markov chain we will apply the canonical paths
method of Jerrum and Sinclair [19]. This may be summarised as follows. Let the
problem size be n (in our setting, n is the number of vertices in the graph G,
Ω = I(G) and hence |Ω| ≤ 2n). For each pair of states X,Y ∈ Ω we define
a path γXY from X to Y , namely X = Z0 → Z2 → · · · → Zℓ = Y such that
successive pairs along the path are given by a transition of the Markov chain.
Write ℓXY = ℓ for the length of the path γXY , and let ℓmax = maxX,Y ℓXY . We
require ℓmax to be at most polynomial in n. This is usually easy to achieve, but
the set of paths {γXY } must also satisfy the following property.

For any transition (Z,Z ′) of the chain there must exist an encoding W , such
that, given (Z,Z ′) and W , there are at most ν distinct possibilities for X and
Y such that (Z,Z ′) ∈ γXY . That is, each transition of the chain can lie on at
most ν |Ω∗| canonical paths, where Ω∗ is some set which contains all possible
encodings. We usually require ν to be polynomial in n. It is common to refer to
the additional information provided by ν as “guesses”, and we will do so here.
In our situation, all encodings will be independent sets, so we may assume that
Ω∗ = Ω. The congestion ̺ of the chosen set of paths is given by

̺ = max
(Z,Z′)

{

1

π(Z)P(Z,Z ′)

∑

X,Y :γXY ∋(Z,Z′)

π(X)π(Y )

}

, (6)

where the maximum is taken over all pairs (Z,Z ′) with P(Z,Z ′) > 0 and Z ′ 6= Z
(that is, over all transitions of the chain), and the sum is over all paths containing
the transition (Z,Z ′). A bound on the relaxation time (1−β1)

−1 will follow from
a bound on congestion, using Sinclair’s result [28, Cor. 6]:

(1− β1)
−1 ≤ ℓmax ̺. (7)

2.3 Glauber dynamics

The Markov chain we employ will be the Glauber dynamics. In fact, we will
consider a weighted version of this chain, for a given value of the fugacity (also
called activity) λ > 0. Define π(Z) = λ|Z|/PG(λ) for all Z ∈ I(G), where PG(λ)
is the independence polynomial defined in (1). A transition from Z ∈ I(G) to
Z ′ ∈ I(G) will be as follows. Choose a vertex v of G uniformly at random.

– If v ∈ Z then Z ′ ← Z \ {v} with probability 1/(1 + λ).
– If v /∈ Z and Z ∪ {v} ∈ I(G) then Z ′ ← Z ∪ {v} with probability λ/(1 + λ).
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– Otherwise Z ′ ← Z.

This Markov chain is irreducible and aperiodic, and satisfies the detailed balance
equations π(Z)P(Z,Z ′) = π(Z ′)P(Z ′, Z) for all Z,Z ′ ∈ I(G). Therefore, the
Gibbs distribution π is the stationary distribution of the chain. If Z ′ is obtained
from Z by deleting a vertex v then

P(Z,Z ′) =
1

n(1 + λ)
and P(Z ′, Z) =

λ

n(1 + λ)
. (8)

The unweighted version is given by setting λ = 1, and has uniform stationary
distribution. Since the analysis for general λ is hardly any more complicated than
that for λ = 1, we will work with the weighted case.

It follows from the transition procedure that P(Z,Z) ≥ min{1, λ}/(1 + λ)
for all states Z ∈ I(G). That is, every state has a self-loop probability of at least
this value. Using a result of Diaconis and Saloff-Coste [8, p. 702], we conclude
that the smallest eigenvalue β|I(G)|−1 of P satisfies

(1 + β|I(G)|−1)
−1 ≤

1 + λ

2min{1, λ}
≤ min{λ, n} (9)

for λ ≥ 1/n. This bound will be dominated by our bound on the relaxation time.
We will always use the initial state Z0 = ∅, since ∅ ∈ I(G) for any graph G.

In order to bound the relaxation time (1−β1)
−1 we will use the canonical path

method. A key observation is that for any X,Y ∈ I(G), the induced subgraph
G[X ⊕ Y ] of G is bipartite. This can easily be seen by colouring vertices in
X \ Y black and vertices in Y \X white, and observing that no edge in G can
connect vertices of the same colour. To exploit this observation, we introduce
the bipartite pathwidth of a graph in Section 3. In Section 4 we show how to use
the bipartite pathwidth to construct canonical paths for independent sets, and
analyse the congestion of this set of paths to prove our main result, Theorem 1.

3 Pathwidth and bipartite pathwidth

The pathwidth of a graph was defined by Robertson and Seymour [27], and has
proved a very useful notion in graph theory [6, 10]. A path decomposition of a
graph G = (V,E) is a sequence B = (B1, B2, . . . , Br) of subsets of V such that

1. for every v ∈ V there is some i ∈ [r] such that v ∈ Bi,
2. for every e ∈ E there is some i ∈ [r] such that e ⊆ Bi, and
3. for every v ∈ V the set {i ∈ [r] : v ∈ Bi} forms an interval in [r].

The width and length of this path decomposition B are w(B) = max{|Bi| :
i ∈ [r]} − 1 and ℓ(B) = r and the pathwidth pw(G) of a given graph G is
pw(G) = minB w(B), where the minimum taken over all path decompositions
B of G. Condition 3 is equivalent to Bi ∩ Bk ⊆ Bj for all i, j and k with
1 ≤ i ≤ j ≤ k ≤ r. If we refer to a bag with index i /∈ [r] then by default Bi = ∅.



6 Martin Dyer, Catherine Greenhill, and Haiko Müller

a c e g i

b d f h j

Fig. 1. A bipartite graph

The graph in Fig. 1 has a path decomposition with the following bags:

B1 = {a, b, d, g} B2 = {a, c, d, g} B3 = {c, d, g, e} B4 = {d, e, f, g}
B5 = {d, f, g, j} B6 = {f, g, h, j} B7 = {g, h, i, j}

This path decomposition has length 7 and width 3. If P is a path, C is a cycle,
Kn is a complete graph and Ka,b is a complete bipartite graph then

pw(P ) = 1, pw(C) = 2, pw(Kn) = n− 1, pw(Ka,b) = min{a, b} . (10)

The following result will be useful for bounding the pathwidth. The first state-
ment is [5, Lemma 11], while the second appears in [27, equation (1.5)].

Lemma 1. For every subgraph H of G, pw(H) ≤ pw(G) holds. If W ⊆ V (G)
then pw(G) ≤ pw(G−W ) + |W |.

The bipartite pathwidth bpw(G) of a graph G is the maximum pathwidth of
an induced subgraph of G that is bipartite. For any integer p ≥ 2, let Cp be the
class of graphs G with bpw(G) ≤ p. By Lemma 1 Cp is a hereditary class.

Clearly bpw(G) ≤ pw(G), but the bipartite pathwidth of G may be much
smaller than its pathwidth. A more general example is the class of unit in-
terval graphs. These may have cliques of arbitrary size, and hence arbitrary
pathwidth. However they are claw-free, so their induced bipartite subgraphs are
linear forests, and hence they have bipartite pathwidth at most 1 from Equa-
tion 10. The even more general interval graphs do not contain a tripod (depicted
in Section 5.3), so their bipartite subgraphs are forests of caterpillars, and hence
they have bipartite pathwidth at most 2.

Lemma 2. Let p be a positive integer.
(i) Every graph with at most 2p+ 1 vertices belongs to Cp.
(ii) No element of Cp can contain Kp+1,p+1 as an induced subgraph.

A fixed linear order < on the vertex set V of a graph G, extends to subsets
of V as follows: if A,B ⊆ V then A < B if and only if (a) |A| < |B|; or (b)
|A| = |B| and the smallest element of A⊕B belongs to A. Next, given two path
decompositions A = (Aj)

r
j=1 and B = (Bj)

s
j=1 of G, we say that A < B if and

only if (a) r < s; or (b) r = s and Aj < Bj , where j = min{i : Ai 6= Bi}.

4 Canonical paths for independent sets

Suppose that G ∈ Cp, so that bpw(G) ≤ p. Take X,Y ∈ I(G) and let H1, . . . , Ht

be the connected components of G[X ⊕ Y ] in lexicographical order. The graph
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G[X⊕Y ] is bipartite, so every component H1, . . . , Ht is connected and bipartite.
We will define a canonical path γXY from X to Y by processing the components
H1, . . . , Ht in order. LetHa be the component ofG[X⊕Y ] which we are currently
processing, and suppose that after processing H1, . . . , Ha−1 we have a partial
canonical path X = Z0, . . . , ZN . If a = 0 then ZN = Z0 = X. The encoding WN

for ZN is defined by

ZN ⊕WN = X ⊕ Y and ZN ∩WN = X ∩ Y. (11)

In particular, when a = 0 we have W0 = Y . We remark that (11) will not
hold during the processing of a component, but always holds immediately after
the processing of a component is complete. Because we process components
one-by-one, in order, and due to the definition of the encoding WN , we have

ZN ∩Hs = Y ∩Hs for s = 1, . . . , a− 1 (processed), (12)

ZN ∩Hs = X ∩Hs for s = a, . . . , t (not processed), (13)

WN ∩Hs = X ∩Hs for s = 1, . . . , a− 1 (processed), (14)

WN ∩Hs = Y ∩Hs for s = a, . . . , t (not processed). (15)

We now describe how to extend this partial canonical path by processing the
component Ha. Let h = |Ha|. We will define a sequence ZN , ZN+1, . . . , ZN+h

of independent sets, and a corresponding sequence WN , WN+1, . . . ,WN+h of
encodings, such that Zℓ⊕Wℓ ⊆ X⊕Y and Zℓ∩Wℓ = X∩Y for j = N, . . . , N+h.
Define the set of “remembered vertices” Rℓ = (X ⊕ Y ) \ (Zℓ ⊕ Wℓ) for ℓ =
N, . . . , N + h. By definition, the triple (Z,W,R) = (Zℓ,Wℓ, Rℓ) satisfies

(Z ⊕W ) ∩R = ∅ and (Z ⊕W ) ∪R = X ⊕ Y. (16)

This immediately implies that |Zℓ|+ |Wℓ|+ |Rℓ| = |X|+ |Y | for ℓ = N, . . . , N+h.
Let B = (B1, . . . , Br) be the lexicographically-least path decomposition of

Ha. Here we use the ordering on path decompositions defined at the end of
Section 3. Since G ∈ Cp, the maximum bag size in B is d ≤ p+ 1.

We process Ha by processing the bags B1, . . . , Br in order. Initially RN = ∅,
by (11). If bag Bi is currently being processed and the current independent set
is Z and the current encoding is W , then

(

X ∩ (B1 ∪ · · · ∪Bi−1)
)

\Bi =
(

W ∩ (B1 ∪ · · · ∪Bi−1)
)

\Bi, (17)
(

Y ∩ (B1 ∪ · · · ∪Bi−1)
)

\Bi =
(

Z ∩ (B1 ∪ · · · ∪Bi−1)
)

\Bi, (18)
(

X ∩ (Bi+1 ∪ · · · ∪Br)
)

\Bi =
(

Z ∩ (Bi+1 ∪ · · · ∪Br)
)

\Bi, (19)
(

Y ∩ (Bi+1 ∪ · · · ∪Br)
)

\Bi =
(

W ∩ (Bi+1 ∪ · · · ∪Br)
)

\Bi. (20)

Let Zℓ, Wℓ, Rℓ denote the current independent set, encoding and set of
remembered vertices, immediately after the processing of bag Bi−1. We will write
Rℓ = R+

ℓ ∪ R−
ℓ where vertices in R+

ℓ are added to Rℓ during the preprocessing
phase (and must eventually be inserted into the current independent set), and
vertices in R−

ℓ are added to Rℓ due to a deletion step (and will go into the
encoding during the postprocessing phase). When i = 0 we have ℓ = N and in
particular, RN = R+

N = R−
N = ∅.
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Preprocessing: We “forget” the vertices of Bi ∩ Bi+1 ∩Wℓ and add them to
R+

ℓ . This does not change the independent set or add to the canonical path.
R+

ℓ ← R+
ℓ ∪ (Bi ∩Bi+1 ∩Wℓ); Wℓ ←Wℓ \ (Bi ∩Bi+1);

Deletion steps: for each u ∈ Bi ∩ Zℓ, in lexicographical order, do
Zℓ+1 ← Zℓ \ {u};
if u 6∈ Bi+1 then Wℓ+1 ←Wℓ ∪ {u}; R

−
ℓ+1 ← R−

ℓ

else Wℓ+1 ←Wℓ; R
−
ℓ+1 ← R−

ℓ ∪ {u};
ℓ← ℓ+ 1;

Insertion steps: for each u ∈
(

Bi ∩ (Wℓ ∪R+
ℓ )

)

\Bi+1, in lexicogr. order, do
Zℓ+1 ← Zℓ ∪ {u};
if u ∈Wℓ then Wℓ+1 ←Wℓ \ {u}; R

+
ℓ+1 ← R+

ℓ ;
else Wℓ+1 ←Wℓ; R

+
ℓ+1 ← R+

ℓ ∪ {u};
ℓ← ℓ+ 1;

Postprocessing: All elements of R−
ℓ+1 which do not belong to Bi+1 can now be

safely added to Wℓ. This does not change the current independent set or add
to the canonical path.
Wℓ ←Wℓ ∪ (R−

ℓ \Bi+1); R
−
ℓ ← R−

ℓ ∩Bi+1;

By construction, vertices added to R+
ℓ are removed from Wℓ, so the “otherwise”

case for insertion is precisely u ∈ R+
ℓ .

Observe that both Zℓ and Wℓ are independent sets at every step. This is true
initially (when ℓ = N) and remains true. The preprocessing phases removes all
vertices of Bi∩Bi+1 from Wℓ, which makes room for other vertices to be inserted
into the encoding later. A deletion step shrinks the current independent set and
adds the removed vertex into Wℓ or R−

ℓ . A deleted vertex is only added to R−
ℓ

if it belongs to Bi ∩Bi+1, and so might have a neighbour in Wℓ. In the insertion
steps we add vertices from

(

Bi∩(Wℓ∪R
+
ℓ )

)

\Bi+1 to Zℓ, now that we have made
room. Here Bi is the last bag which contains the vertex being inserted into the
independent set, so any neighbour of this vertex in X has already been deleted
from the current independent set. This phase can only shrink the encoding Wℓ.
Also observe that (16) holds for (Z,W,R) = (Zℓ,Wℓ, Rℓ) at every point. Finally,
by construction we have Rℓ ⊆ Bi at all times. Table 1 illustrates this construction
for the graph in Fig. 1.

Each step of the canonical path alters the current independent set Zi by
exactly one element of X ⊕ Y . Every vertex of X \ Y is removed from the
current independent set at some point, and is never re-inserted, while every
vertex of Y \X is inserted into the current independent set once, and is never
removed. Vertices outside X ⊕ Y are never altered and belong to all or none of
the independent sets in the canonical path. Therefore ℓmax ≤ 2α(G).

Lemma 3. At any transition (Z,Z ′) which occurs during the processing of bag
Bi, the set R of remembered vertices satisfies R ⊆ Bi, with |R| ≤ p unless
Z ∩ Bi = W ∩ Bi = ∅. In this case R = Bi, which gives |R| = p + 1, and
Z ′ = Z ∪ {u} for some u ∈ Bi.

Lemma 4. Given a transition (Z,Z ′), the encoding W of Z and the set R of
remembered vertices, we can uniquely reconstruct (X,Y ) with (Z,Z ′) ∈ γXY .
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Bi preprocessing after 1st step after 2nd step
after 3rd step postprocessing

B1 d b a g d b a g
−

d b a g
− −

d b a g
− −

B2 d c a g
− − d c a g

−

B3 d c e g
−

d c e g
− −

d c e g
− −

B4 d f e g
− − d f e g

−

B5 f d j g
− f d j g

B6 f h j g f h j g
−

f h j g
−

B7 h j i g
− h j i g

−
h j i g
−

h j i g
−

h j i g

Table 1. The steps of the canonical path, processing each bag in order.

Theorem 1. Let G ∈ Cp be a graph with n vertices and let λ ≥ 1/n, where
p ≥ 2 is an integer. Then the Glauber dynamics with fugacity λ on I(G) (and
initial state ∅) has mixing time

τ∅(ε) ≤ 2eα(G)np+1 λp
(

1 + max(λ, 1/λ)
)(

α(G) ln(nλ) + 1 + ln(1/ε)
)

.

When p is constant, this upper bound is polynomial in n and max(λ, 1/λ).

5 Recognisable subclasses of Cp

Theorem 1 shows that the Glauber dynamics for independent sets is rapidly
mixing for any graph G in the class Cp, where p is a fixed positive integer.
However, the complexity of recognising membership in the class Cp is unknown.
Therefore, we consider here three classes of graphs determined by small excluded
subgraphs. These classes have polynomial time recognition algorithms. Note that
we must always exclude large complete bipartite subgraphs. The three classes
are nested. We will obtain better bounds for pathwidth in the smaller classes,
and hence better mixing time bounds in Theorem 1.

5.1 Claw-free graphs

Claw-free graphs exclude the K1,3, the claw. Claw-free graphs form an important
superclass of line graphs [4], and independent sets in line graphs are matchings.
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Lemma 5. Let G be a claw-free graph with independent sets X,Y ∈ I(G). Then
G[X ⊕ Y ] is a disjoint union of paths and cycles.

Lemma 6. Claw-free graphs are a proper subclass of C2.

5.2 Graphs with no fork or complete bipartite subgraph

Fork-free graphs exclude the following induced subgraph, the fork:

Two vertices u and v are false twins if N(u) = N(v). In Figure 2, vertices to
which false twins can be added are indicated by red colour. Hence each graph
containing a red vertex represents an infinite family of augmented graphs.

Fig. 2. The path P9, the cycle C8, the augmented bipartite wheel BW ∗

3 , the cube Q3,
an augmented domino, followed by augmented paths P ∗

2 ,P
∗

4 and P ∗

5 .

Lemma 7. A bipartite graph is fork-free if and only if every connected compo-
nent is a path, a cycle of even length, a BW ∗

3 , a cube Q3, or can be obtained from
a complete bipartite graph by removing at most two edges that form a matching.

Lemma 8. For all integers d ≥ 1 the fork-free graphs without induced Kd+1,d+1

have bipartite pathwidth at most max(4, d+ 2).

5.3 Graphs free of armchairs, stirrers and tripods

The graphs depicted below are called armchair, stirrer and tripod. A fast graph
is a graph that contains none of these three as an induced subgraph.

Theorem 2. For every integer d ≥ 1, a fast bipartite graph that does not contain
Kd+1,d+1 as an induced subgraph has pathwidth at most 4d− 1.
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6 Conclusions and further work

It is clearly NP-hard in general to determine the bipartite pathwidth of a graph,
since it is NP-complete to determine the pathwidth of a bipartite graph. How-
ever, we need only determine whether bpw(G) ≤ d for some constant d. The
complexity of this question is less clear. Bodlaender [5] has shown that the ques-

tion pw(G) ≤ d, can be answered in O(2d
2

n) time. However, this implies nothing
about bpw(G).

In the case of claw-free graphs we can prove stronger sampling results using
log-concavity. How far does log-concavity extends in this setting? Does it hold
for fork-free graphs? Does some generalisation of log-concavity hold for graphs
of bounded bipartite pathwidth? Where log-concavity holds, it allows us to ap-
proximate the number of independent sets of a given size. However, there is still
the requirement of “amenability” [19]. Jerrum, Sinclair and Vigoda [20] have
shown that this can be dispensed with in the case of matchings. Can this be
done for claw-free graphs? More ambitiously, can the result of [20] be extended
to fork-free graphs and larger classes of graphs of bounded bipartite pathwidth?

An extension would be to consider bipartite treewidth, btw(G). Since tw(G) =
O(pw(G) log n) [6, Thm. 66], our results here immediately imply that bounded
bipartite treewidth implies quasipolynomial mixing time for the Glauber dynam-
ics. Can this be improved to polynomial time?

Finally, can approaches to approximate counting be employed for the inde-
pendent set problem in particular graph classes? Patel and Regts [25] have used
the Taylor expansion approach for claw-free graphs. Could this be extended?
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