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Abstract 

 

The concentration of sodium ions (Na+) is raised in solid tumours and can be measured at 

the cellular, tissue and patient levels. At the cellular level, the Na+ gradient across the 

membrane powers the transport of H+ ions and essential nutrients for normal activity. The 

maintenance of the Na+ gradient requires a large proportion of the cell’s ATP. Na+ is a major 

contributor to the osmolarity of the tumour microenvironment, which affects cell volume and 

metabolism as well as immune function. Here, we review evidence indicating that Na+ 

handling is altered in tumours, explore our current understanding of the mechanisms that 

may underlie these alterations and consider the potential consequences for cancer 

progression. Dysregulated Na+ balance in tumours may open opportunities for new imaging 

biomarkers and re-purposing of drugs for treatment. 
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Introduction 

 

The concentration of several key ions, including protons (H+) (1), potassium (K+) (2), calcium 

(Ca2+) (3) and sodium (Na+) (4) is altered in tumours. This ionic imbalance contributes to 

several cancer hallmarks, including altered growth signalling, proliferation, angiogenesis, 

invasion and metastasis (5). Just as intracellular ion concentrations can alter cancer cell 

behaviour, the extracellular “ionic tumour microenvironment” can determine how cancer, 

stromal and infiltrating immune cells behave (6). Dysregulation of ion homeostasis within the 

tumour microenvironment could therefore also contribute to tumour progression. Thus, ion 

channels and transporters, including those permeant to Na+, have potential as novel targets 

for therapeutic intervention. 

 

Control of Na+ is critical for normal cellular function and homeostatic dysregulation is a key 

feature of disease states such as acute inflammation (7) and ischaemia (8). Na+ handling is 

also altered in cancer: Na+ is raised in malignant tumours compared to corresponding 

healthy tissues (9). Tumorigenesis is accompanied by alterations to metabolism, pH 

regulation, vascularity and cell density that affect the distribution of Na+ within cancer cells 

and the extracellular tumour microenvironment. Here, we review the evidence showing that 

Na+ handling is altered in tumours, explore the mechanisms that may underlie these 

alterations and consider the potential consequences for cancer progression. We also 

highlight potential clinical applications for Na+ as a diagnostic biomarker and for targeting 

dysregulated Na+ within the ionic microenvironment of tumours alongside existing cancer 

therapeutics. 

 

The extracellular Na+ concentration ([Na+]e) is typically an order of magnitude higher (145 

mM) than intracellular [Na+] ([Na+]i; 12 mM) (10). Therefore, an increase in total tumour 

tissue [Na+] could be caused by an increase in the volume of extracellular fluid relative to the 

volume of intracellular fluid (extracellular volume fraction; Figure 1). The generation of 
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permeable vasculature in tumours by the angiogenic vascular endothelial growth factor 

(VEGF) allows leakage of plasma proteins, including glycosaminoglycans and collagen, into 

the interstitial space (11, 12). Protein leakage into the interstitium will also increase the 

colloid osmotic pressure, which contributes to the raised interstitial fluid pressure seen in 

solid tumours (13), potentially expanding the interstitial fluid volume (14, 15). Cell death 

following successful chemotherapeutic intervention would also be expected to increase the 

extracellular volume fraction. This would have implications for other ions. For example, K+ 

released into the extracellular space following tumour cell death results in an elevated 

extracellular [K+] that suppresses the anti-tumour activity of tumour infiltrating lymphocytes 

(16). Nevertheless, the increase in interstitial fluid volume may underlie the raised total 

tumour [Na+]. Although it has historically been difficult to measure accurately, there is some 

evidence that the interstitial fluid compartment is enlarged in some tumour types, including 

those which induce oedema, such as malignant gliomas and meningiomas (17-19). 

 

Raised total tumour tissue [Na+] may also be caused by increased [Na+]i, increased [Na+]e, or 

a combination of both. Quantitative measurement of tumour [Na+]e is lacking, however, there 

is evidence that [Na+]i is raised in tumours. Early studies using x-ray dispersion 

microanalysis and flame photometry indicated that the [Na+]i of cancer cells from various 

tumour types was more than double that of cells from adjacent healthy tissues (20, 21). 

Additional approaches, including measurement of 22Na radioisotope assimilation rate by 

atomic absorbance spectrophotometry, live cell imaging using the fluorescent Na+ reporter 

SBFI-AM, and 23Na magnetic resonance imaging (23Na MRI; Box 1) have broadly confirmed 

these observations in cultured cells and cancer patients (22-27). 

 

Cellular mechanisms underlying sodium handling in tumours 

 

Numerous plasma membrane channels and transporters facilitate Na+ flux down the 

electrochemical gradient from the extracellular space into the cytosol (Table 1; Figure 2). 
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Altered expression or activity of such mechanisms in cancer cells could account for the 

raised [Na+]i observed in tumours. The ubiquitous Na+/K+ ATPase is almost exclusively 

responsible for the removal of Na+ from cells and thus maintaining the inward gradient for 

Na+. As a result, this pump uses a significant proportion of the total ATP produced by non-

excitable cells (28, 29). Altered cellular metabolic activity may thus lead to changes in Na+/K+ 

ATPase activity. For example, when the usage of ATP for cellular proliferation is increased, 

the provision of ATP to the Na+/K+ ATPase may be reduced and, as a consequence, 

changes in [Na+]i and [Na+]e would occur (30). Raised [Na+]i and possibly [Na+]e can both 

increase Na+/K+ ATPase activity to maintain Na+ homeostasis (31-33). Since this pump is so 

energetically demanding, increasing Na+ influx would increase the cellular ATP consumption 

rate. Evidence suggests that the Na+/K+ ATPase is predominantly fuelled by glycolysis in 

breast cancer cells since this delivers ATP quickly to the site where it is being used (34, 35). 

However, hypoxia has been shown to inhibit Na+/K+ ATPase activity, suggesting that 

mitochondrial ATP supply is also needed (36, 37). 

 

The inward electrochemical Na+ gradient set up by the Na+/K+ ATPase powers the activity of 

a number of different Na+-dependent transport mechanisms. The Na+/H+ exchanger (NHE) 

family is one such mechanism, which uses the inward Na+ gradient to move H+ into the 

extracellular space, thus playing a central role in pH homeostasis (38). The ubiquitously 

expressed NHE1 is activated by receptor tyrosine kinase signalling, in particular via the Ras-

extracellular signal-regulated kinase (ERK) pathway, and by osmotic stress, hormones and 

growth factors (39). NHE1 is also allosterically activated by an increase in intracellular [H+], 

as may be found in glycolytic tumour cells (40, 41). Another major pH regulation mechanism 

coupled to inward Na+ transport is the electroneutral Na+/HCO3
- cotransporter (NBCn1), 

which is upregulated in hypoxic tumours (42, 43). The imported HCO3
- neutralises H+ 

generated from high metabolic activity by forming H2O and CO2. The Na+ gradient also 

powers the import of amino acids into cells via Na+-dependent amino acid transporters, 

many of which are overexpressed in cancers (44). Na+-dependent glucose transporters 
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(SGLTs), normally responsible for active glucose uptake in the kidney, are also functionally 

expressed in many cancers (45, 46). In addition, the Na+-K+-Cl− cotransporter (NKCC), a key 

regulator of osmotic balance and cell volume which facilitates the transport of Na+, K+ and 

2.Cl- into the cell, is also upregulated in numerous cancers (47, 48). The combined activity of 

such nutrient and electrolyte transport mechanisms is not only dependent on Na+ 

homeostasis within the tumour microenvironment, but is also predicted to raise [Na+]i, thus 

potentially contributing to the elevated Na+ signal observed in tumours. 

 

Na+ channels expressed on tumour cells also enable Na+ influx and elevation of [Na+]i. 

Voltage-gated Na+ channels (VGSCs), classically expressed in electrically excitable cells 

where they initiate action potentials via Na+ influx, are also expressed in many tumour cell 

types where they promote cancer cell invasion and metastasis (49, 50). Although the 

voltage-dependent opening of these channels is transient, they also conduct a ‘persistent’ 

inward Na+ current under resting conditions, thus providing a route for Na+ to enter the 

cytosol in non-excitable tumour cells (51-55). The amiloride-sensitive epithelial Na+ channel 

(ENaC) and the related acid-sensing ion channels (ASICs) are also Na+-selective ion 

channels which permit voltage-independent inward Na+ current. ENaC and ASICs have been 

linked to proliferation, migration, invasion and metastasis in various cancers (56, 57). Flow of 

Na+ through ENaC and ASICs is regulated by extracellular H+ (58, 59). Thus, both channels 

may contribute to elevation of [Na+]i in acidic tumours. In addition, N-methyl-D-aspartate 

(NMDA) receptors may also permit elevated [Na+]i in tumours. These ligand-gated, 

nonselective cation channels are typically expressed in the central nervous system (CNS) 

and activated by glutamate. NMDA receptors are expressed in numerous tumour types, 

including non-neuronal tumours such as pancreatic, breast and ovarian cancers, where they 

regulate invasion and correlate with poor prognosis (60-62). Proteins forming the G protein-

coupled receptor-activated Na+ leak channel (NALCN) have been suggested as potential 

cancer susceptibility loci (63), and although evidence for its involvement in cancer is limited, 

NALCN may provide an additional route for Na+ influx, thus elevating [Na+]i. Finally, the two-
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pore channel (TPC) family of lysosomal and endosomal cation channels can increase 

cytosolic Ca2+ and Na+ and have been shown to promote lung cancer cell migration (64) and 

epithelial-mesenchymal transition of breast cancer cells (65). 

 

Pathophysiological consequences of altered tumour Na+ 

 

Dysregulated Na+ handling in tumours can lead to significant physiological changes at the 

cellular level, such as altered electrical potential difference across the plasma membrane 

(membrane potential; Vm), pH, or metabolic activity. These physiological alterations can 

induce myriad effects on key tumour hallmarks from proliferative ability to invasion into 

healthy tissue and immune evasion (Figure 3). 

 

Membrane potential depolarisation 

Influx of Na+ into non-excitable cells depolarises the Vm (around 5-10 mV) (22, 66-68). In 

general, cancer cells exhibit a more depolarised Vm than their normal counterparts (around -

5 to -50 mV vs. -50 to -95 mV), which may correlate with their increased proliferative 

capacity (69). This phenomenon may be due to the changes in Vm that accompany different 

stages of the cell cycle (70). Indeed, a relatively negative Vm (Vm hyperpolarisation) can 

prevent DNA synthesis and mitosis (71). Furthermore, stem cell differentiation can only 

occur if the Vm is hyperpolarised (72). Vm depolarisation leads to reorganisation of charged 

phospholipids in the inner leaflet of the plasma membrane, which in turn enhances 

nanoclustering and activation of K-Ras promoting mitogenic signalling (73). Vm 

depolarisation is also functionally instructive in regulating cytoskeletal reorganisation, 

morphogenesis, regeneration and tumorigenesis (68, 74-78). In effect, persistent Na+ entry 

via ENaCs and VGSCs may increase proliferation, maintain a poorly differentiated 

phenotype and increase migration via depolarisation of the Vm, all aiding tumour progression. 

However, Vm depolarisation in tumour cells is likely tightly regulated given that it can also 
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promote apoptosis and isotonic volume decrease (79, 80)  and may thus present an 

interesting therapeutic target. 

 

Regulation of pH dynamics 

The extracellular microenvironment of solid tumours is commonly acidic (pH 6.5–7.2), 

whereas the intracellular pH of cancer cells is typically neutral or slightly alkaline (81, 82). 

The acidic tumour microenvironment is a critical contributory factor to many cancer hallmarks 

such as invasion, altered metabolism, drug resistance and immune evasion (83). The Na+ 

gradient across the plasma membrane impacts on pH regulation mechanisms. For example, 

an altered inward Na+ gradient will influence the pH-regulating capacity of cancer cells by 

regulating influx of HCO3
- via NBCn1 and efflux of H+ via NHE1. NBCn1 is the predominant 

means of H+ extrusion from tumour cells when pHi is > 6.6, whereas NHE1 is important 

under more acidic conditions, such as those observed in highly glycolytic cancer cells in a 

hypoxic tumour (42, 84, 85). Since both transport mechanisms are present in cancer cells 

(42, 86), they may work in tandem to facilitate Na+-dependent tumour progression. Increased 

NHE1 activity leads to intracellular alkalinisation (87) and this may be a critical early event in 

oncogene-induced malignant transformation (88). Maintenance of a high pHi by NHE1 

activity is permissive for upregulation of both glycolytic activity and protein synthesis required 

for rapid cell growth and division (1, 89, 90). On the other hand, extracellular acidification 

promotes invasion and suppresses the immune response (91, 92). Thus, inhibition of the 

inward Na+ gradient may provide an effective intervention to manipulate tumour pH for 

therapeutic benefit. 

 

The acidic pH of tumours may also reciprocally regulate Na+ conductance. For example, 

ENaC and ASIC channels are regulated by pHe (58, 59) and the persistent inward Na+ 

current carried by VGSCs is increased under hypoxia or extracellular acidification (93, 94). 

Similarly, the Na+/Ca2+ exchanger (NCX) is also regulated by pH, with an acidic pHi inhibiting 

forward (Ca2+ efflux/Na+ influx) mode action (95). Moreover, given that the sensitivity of NCX 
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to H+ requires intracellular Na+ (96), it is tempting to speculate that the altered pH and Na+ 

levels in tumours work in tandem to perturb Ca2+ signalling and homeostasis. 

 

Regulation of metabolic activity 

Altered tumour [Na+] leads to changes in glucose metabolism that facilitate cancer 

progression. In a phenomenon first reported by Warburg in the 1920s (97), cancer cells 

exhibit upregulated glycolysis with conversion of glucose to lactic acid despite the presence 

of abundant oxygen (‘aerobic glycolysis’). This shift in metabolism towards a more glycolytic 

phenotype confers numerous survival advantages for cancer cells, including survival within a 

hypoxic tumour core, and is associated with rapid cell proliferation, acidification of the 

tumour microenvironment, metastasis and poor patient outcome (98). In addition to directly 

regulating cancer cell metabolism via the hypoxia sensor HIF-1α, tumour hypoxia may 

indirectly contribute to a highly glycolytic phenotype via elevation of tumour [Na+]. Elevations 

in both tissue and intracellular [Na+] are observed in ischaemic tissue (99), and hypoxia is 

known to increase the persistent inward Na+ current through VGSCs (100, 101). This 

increase in the persistent Na+ current would be expected to elevate [Na+]i in cancer cells 

expressing these channels. Moreover, in hypoxic tumours, upregulation of glycolysis and 

increased extrusion of H+ by NHE would increase [Na+]i (102). 

 

In vitro studies indicate that elevations in [Na+]e can drive a highly glycolytic phenotype via 

the induction of various signalling pathways. For example, early studies revealed that 

glycolytic lactic acid production of HeLa cells increased as [Na+]e increased (103). Elevated 

[Na+]e upregulates the key cancer-associated glycolytic enzymes pyruvate kinase M2, lactate 

dehydrogenase A and hexokinase II, leading to increased glucose consumption and lactate 

production (104). Elevated [Na+]i may influence cancer cell metabolism due to increased 

energy demands from Na+ homeostasis mechanisms. Indeed, Na+/K+ ATPase activity can 

also regulate the expression of glycolytic enzymes, and G-protein GPR35 mutations, which 

increase Na+/K+ ATPase activity, increase the glycolytic rate (105). Conversely, inhibition of 
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the Na+/K+ ATPase reduces expression of the hypoxia sensor HIF-1α, preventing it from 

upregulating glycolysis via increased expression of the glucose transporter GLUT-1 and 

hexokinase (106). 

 

Altered [Na+]i may also directly affect mitochondrial metabolism by facilitating Ca2+ transport 

between the mitochondria and the cytosol. The mitochondrial Na+/Ca2+ (lithium) exchanger 

(NCLX) regulates mitochondrial Ca2+ content by extruding Ca2+ into the cytosol in exchange 

for Na+ or Li+ (107), and is regulated by the cytoplasmic [Na+]. Thus, NCLX uses Na+ 

transport to fine-tune the mitochondrial [Ca2+], thereby regulating mitochondrial metabolism, 

redox homeostasis and ATP production (108, 109). Inhibition of NCLX induces apoptosis in 

prostate cancer cells (110), suggesting that an elevated [Na+]i in cancer cells might promote 

apoptosis resistance via NCLX. Taken together, these data suggest that elevated tumour 

[Na+] and Na+/K+ ATPase activity contribute to a highly glycolytic cancer cell phenotype, 

which would be expected to promote proliferation, tumour acidification and resistance to 

apoptosis. However, the underlying mechanisms linking tumour [Na+] to cancer metabolism 

remain poorly characterised and require further research. 

 

Nutrient transport 

Amino acids regulate cancer cell signalling and metabolism (111), raising the possibility that 

altered amino acid uptake through Na+-dependent systems might influence cancer 

progression following changes to the transmembrane Na+ gradient. For example, the Na+-

dependent SGLT glucose transporters facilitate glucose uptake into cancer cells, and 

specific blockade of SGLT2 reduces mitochondrial ATP production and cellular proliferation 

and increases tumour necrosis (45, 112). Moreover, the Na+-dependent amino acid 

transporter SLC1A5, which is highly expressed in cancers and is driven by myc expression, 

imports glutamine (among other amino acids), and activates mammalian target of rapamycin 

complex 1 (mTORC1) to facilitate proliferation (113, 114). Many cancers, including triple-
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negative breast cancer, have a “glutamine addiction” since this amino acid is a key carbon 

source for fatty acid production and mitochondrial ATP production (115, 116). Changes to 

the Na+ gradient may therefore regulate nutrient uptake in cancer cells and these 

observations raise the interesting possibility that pharmacologically reducing the inward Na+ 

gradient may impair the ability of cancer cells to import nutrients. 

 

Cell volume regulation 

Na+ salts are the main contributors to the osmolarity of extracellular fluid, and the osmolarity 

of intracellular and extracellular fluids must be balanced to prevent cell shrinkage or swelling. 

The Na+/K+/Cl- cotransporter NKCC1 activity is driven by the inward Na+ gradient and acts to 

regulate cell volume by facilitating the accumulation of intracellular Cl- (117). Solid tumours 

exhibit a high interstitial colloid osmotic pressure (COP) and hydrostatic pressure in the 

interstitial fluid (13) which would be expected to hinder cell expansion. In vitro evidence 

shows that breast cancer cells in spheroids under compression actively extrude Na+ through 

NHE1 to reduce intracellular tonicity, leading to osmosis into the cell to resist compressive 

forces (118). In this circumstance, NHE1 functions in the reverse mode, importing H+ leading 

to intracellular acidification. Thus, by regulating Na+ as well as H+, NHE1 activity must 

balance the cell’s pH and volume regulation needs. In hypotonic conditions, cancer cells 

regulate [Na+]i to protect against volume increase (119). Therefore, tight regulation of Na+ 

transport is critical for maintaining cell volume in response to changes in COP and 

hydrostatic pressure in the tumour microenvironment. 

 

Effects of Na+ on tumour progression  

 

As a result of its impact on physiological behaviour of cancer and stromal cells, substantial 

experimental evidence supports the role of raised [Na+] in promoting key aspects of tumour 

progression, including proliferation, migration, invasion and inflammation (22, 120-122) 

(Figure 4). 
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Proliferation 

High osmolarity in the tumour microenvironment promotes proliferation via modulation of 

[Na+]i. Because the tumour interstitial fluid COP is higher than in healthy tissues (123, 124), 

and this contributes to a higher osmolarity, inward Na+ current is enhanced in cancer cells. 

For example, high osmolarity increases inward Na+ current through ENaC, which elevates 

[Na+]i, promotes tumour cell proliferation and inhibits apoptosis (121, 125, 126). This 

hyperosmolarity-induced inward current may promote proliferation by triggering brx-

dependent activation of the small GTPase Rac1 thus stimulating the mitogen-activated 

protein kinase (MAPK)/ERK1/2 cascade (127, 128). High [Na+]e has also been shown to 

increase phosphorylation of the salt-inducible serine/threonine kinase SIK3 in breast cancer 

cells, which promotes proliferation via release from G1/S-phase arrest (129). Moreover, 

NKCC1 expression, cell shrinkage and Na+-dependent Cl- accumulation have been 

established as important regulators of the cell cycle and proliferation in cancer cells (48, 117, 

130). On the other hand, moderate hypertonicity has been shown to lead to dormancy (131), 

suggesting that the level of osmotic pressure within tumours, and the cellular response to 

this, may be critical for determining fate. High [Na+]e has also been shown to induce DNA 

breaks and temporary cell cycle arrest (132). However, unlike most cases of DNA damage-

induced cell cycle arrest, these DNA breaks are not repaired during this period, and the DNA 

damage persists when cells adapt to high [NaCl]e and start to proliferate, with implications 

for oncogenesis (133-135). 

 

Migration 

Several Na+ transport systems have been shown to control tumour cell migration. For 

example, NHE1 has been shown to work in concert with aquaporins to allow cancer cells to 

move through confined spaces by taking in water and ions at the leading edge and expelling 

water from the trailing edge. This is achieved partly by concentrating NHE1 and aquaporin 

AQP5 at the leading edge of cells (136). Similarly, ENaC expression is increased at the 
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leading edge of migrating choriocarcinoma cells, promoting their motility (137). In addition, a 

glioma-specific Na+ channel made up of ENaC and ASIC subunits promotes migration and 

cell cycle progression (138). VGSC activity has also been shown to promote acquisition of a 

mesenchymal-like elongate morphology and thus increase migration of cells from a range of 

different types of cancer (139-144). 

 

The Na+ gradient across the plasma membrane is tightly linked to Ca2+ transport by the 

Na+/Ca2+ exchanger (NCX), which is also upregulated in tumour cells (145, 146). NCX 

classically acts to extrude cytosolic Ca2+ following large increases in [Ca2+]i, thereby 

importing Na+ (147). Importantly, small changes to the Na+ gradient across the plasma 

membrane can alter the equilibrium potential for NCX and thereby lead to its operating in 

reverse (Ca2+ entry/Na+ exit) mode (148, 149). NCX reverse mode action has been 

implicated as a key mediator of transforming growth factor β (TGF-β)-induced Ca2+-

dependent migration in hepatocellular and pancreatic cancer cells (150, 151). NCX may thus 

provide a mechanism linking elevations in [Na+]i to protumour Ca2+ signalling (149, 152). 

Interestingly, NCX inhibition has also been reported to decrease the intracellular 

accumulation of 11C-choline in cancer cells. This has important implications for positron 

emission tomography (PET) imaging, since alterations in tumour Na+ content might 

compromise NCX action and thus lead to poor contrast agent accumulation within tumours 

(153). 

 

Invasion 

A cancer hallmark commonly associated with aberrant Na+ homeostasis is the ability of 

cancer cells to invade into healthy tissues and migrate around the body to form metastases 

(49). Invasion requires proteolytic breakdown of the extracellular matrix by enzymes such as 

matrix metalloproteases and cathepsins. Cathepsins in particular are activated by low pH 

(154) so Na+-dependent tumour acidification may thus facilitate invasion. NHE1 is expressed 

in the invadopodia of migrating breast cancer cells and colocalises with the invadopodial 
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marker cortactin (155). NHE1 activity in the invadopodia leads to local acidification of the 

extracellular compartment, providing the ideal pH conditions at the leading edge of an 

invading cell for digestion of the extracellular matrix (87, 120, 156-159). 

 

VGSCs also promote the invasiveness and metastatic ability of a range of different cancer 

cell types (26, 141, 160, 161) and VGSC expression correlates with lymph node metastasis 

and a poor prognosis in breast cancer patients (54, 160). This appears to rely on the Na+ 

conductance properties of VGSCs, since silencing VGSC expression or specific blockade 

results in decreased invasion in vitro (22, 161) and metastasis in vivo (162, 163). VGSCs 

facilitate an invasive phenotype by inducing transcriptional changes in genes contributing to 

Wnt, MAPK and Ca2+ signalling (161, 164). VGSC activity may also increase cancer cell 

invasiveness through altering pH homeostasis. VGSC-dependent Na+ influx in caveolae 

promotes H+ extrusion by NHE1, thus acidifying the extracellular space and increasing 

cathepsin B protease activity (120, 142, 152). The authors proposed a putative allosteric 

interaction between VGSCs and NHE1 as the mechanism by which this interaction is 

mediated, since Na+ influx would otherwise be expected to reduce the Na+ gradient driving 

H+ export by NHE1 (142). 

 

ASICs are also upregulated in tumour cells where they promote pH-dependent migration and 

invasion (165). For example, ASIC1a increases [Ca2+]i and promotes migration as a result of 

pHe acidification (166) and ASIC2 mediates acidosis-induced invasion and metastasis (56). 

ASIC opening also results in activation of RhoA and induction of the epithelial-mesenchymal 

transition in pancreatic cancer cells (167). Co-expression of NMDA receptors and glutamate 

transporters (vGlut1–3) in glioma, pancreatic and ovarian cancer cells correlates with poor 

prognosis, suggesting an autocrine signalling mechanism that drives disease progression 

(60). Moreover, in vitro invasion and in vivo tumour burden are both decreased following 

treatment with a selective non-competitive NMDA receptor antagonist (60). Although these 

effects were attributed to Ca2+ entry-induced activation of the Ca2+/calmodulin-dependent 
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protein kinase (CaMK) and mitogen-activated protein kinase kinase (MEK)-MAPK pathways, 

it remains to be determined whether elevated Na+ entry via NMDA receptors also contributes 

to their pro-invasive potential. 

 

NKCC1 is also localised to the leading processes of migrating glioma cells, where it 

facilitates invasive behaviour by regulating focal adhesions, Cl- accumulation and cell 

volume (47, 117, 168). The cell shrinkage that results from Na+-linked Cl- accumulation 

allows the invading cell to navigate narrow gaps in the peritumoural space. Interestingly, 

NKCC1 expression in hepatoma cells is upregulated in response to hyperosmolarity (169), 

suggesting that an elevation in tumour [Na+]e could promote an aggressive cell phenotype 

overexpressing NKCC1. These findings implicate NKCC1 as an important mediator of 

invasive potential and suggest that elevated Na+ may exacerbate metastatic behaviour by 

upregulating NKCC1 expression and Na+-linked Cl- accumulation. 

 

Tumour inflammation 

In sites of acute inflammation induced by inoculation with complete Freund adjuvant, BCG, 

or Leishmania, [Na+]e is increased (170, 171), leading to alterations in immune cell function 

(172, 173). The [Na+]e within inflamed solid tumours has not been studied, but it may be 

similarly altered. Chronic inflammation plays a critical role in cancer progression due to the 

abundance of cytokines and chemokines which stimulate proliferation and angiogenesis, and 

the release of reactive oxygen and nitrogen species from inflammatory cells which can 

cause DNA damage (174). Inflamed tissue has an increased extracellular osmolarity (171, 

175, 176), and hyperosmolar conditions (e.g. high [Na+]e) exacerbate inflammation (177, 

178). Hyperosmotic stress is detected by many cell types including epithelial cells where it 

leads to activation of the nuclear factor of activated T-cells (NFAT-5) transcription factor. 

NFAT-5 is responsible for mediating integrin-induced breast cancer cell invasion (122). In 

macrophages, NFAT-5 activation in response to a hyperosmolar extracellular environment 

results in secretion of VEGF-C which stimulates angiogenesis (179). Hyperosmotic stress 



 16 

upregulates production of inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-8 and 

tumour necrosis factor-α (TNF-α) via the transcription factor nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB) (171). High Na+ in the microenvironment also provides 

a mitogenic stimulus to macrophages via activation of the p38 MAPK cascade (180). In 

addition, hyperosmolarity prolongs survival of macrophages by reducing production of the 

pro-apoptotic molecules p53 and bax (171). Tumour-associated macrophages (TAMs), 

which promote many aspects of cancer progression (181), may therefore be more prevalent 

in hyperosmotic tumour microenvironments. However, while evidence indicates that high 

[Na+]e stimulates an immune response in the skin via p38/MAPK and NFAT5 signalling and 

classical (M1) macrophage activation (170), studies have also shown that high [Na+]e 

induces peripheral macrophages to switch to an anti-inflammatory M2 (alternative activation) 

phenotype with poor phagocytic capacity, which would be expected to facilitate tumour 

progression rather than inhibit it (182). Based on these data, it appears that the regulation of 

the anti-tumour immune response by Na+ is highly complex and may be tissue-specific 

(183). 

 

Many pro-inflammatory effects of elevated [Na+]e are mediated by the cytokine IL-17. IL-17 is 

produced by CD4+ T-helper 17 (Th17) cells in response to high [Na+]e, downstream of 

NFAT-5 activation (177). IL-17 signalling facilitates tumour development and progression 

(184-186). Thus, IL-17 induction by hyperosmotic stress links high [Na+]e to both tumour cell 

survival and metastasis. Indeed, elevated [Na+]e and IL-17 have been shown to induce 

expression of the promigratory VEGF-A (187). The synergistic proinflammatory effects of 

high [Na+]e and IL-17 can also be mediated by SIK3 to increase arginine metabolism, 

reactive nitrogen species production, CXCL-12 expression and matrix metalloproteinase 

(MMP9) activation (129). Interestingly, the high [Na+]e-induced component of the 

inflammatory response could be blocked by inhibiting Ca2+ influx or by knockdown of the 

store-operated Ca2+ entry (SOCE) regulatory molecules stromal interaction molecule 
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(STIM1) and Orai1, suggesting that these changes are governed by store-operated Ca2+ 

entry (188). These studies show that elevated [Na+]e can drive tumourigenicity via NFAT5, 

NF-κB, SIK3 activation and SOCE mechanisms. 

 

Diagnostic implications 

 

The accumulating body of evidence implicating altered Na+ handling in regulating cancer cell 

behaviour, tumour metabolism, acidosis, growth, inflammation and invasion raises the 

intriguing possibility that the tumour [Na+] may have value as a diagnostic or predictive 

biomarker in response to treatment. For example, measurement of [Na+]i may serve as a 

biomarker for both hypoxia-induced necrosis and cell death in response to successful 

chemotherapy treatments. Earlier detection of treatment response using techniques such as 

23Na MRI (Box 1) may thus facilitate more timely selection of optimal therapies for individual 

patients, thereby improving clinical outcomes (189). 23Na MRI was first applied to 

supratentorial brain tumours in patients (190). Subsequently, this under-represented imaging 

methodology was used to show that the tissue [Na+] is higher in malignant gliomas 

compared to normal brain tissue (4). A similar pattern was observed for breast (9, 191) and 

prostate tumours (25). This elevated tissue [Na+] is present in both tumour tissue and 

oedema. Furthermore, [Na+] is heterogeneous across the peritumoral region, suggesting that 

altered tissue [Na+] may be demonstrating local physiological or biochemical changes within 

the tumour microenvironment (Figure 1) (9). Additionally, relaxation-weighted 23Na-MRI can 

differentiate between brain tumours of grades I-III and grade IV (192). However, while similar 

trends linking tumour grade to [Na+] have been observed in breast and prostate cancers, any 

differences between tumour grades were below the threshold of statistical significance (25, 

193). As such, future clinical studies with larger cohorts are needed to better determine the 

correlation between tumour [Na+] and tumour type and grade. 
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A limitation with these observations using 23Na MRI is that they did not differentiate between 

Na+ located within the intracellular and extracellular compartments. To investigate this, Neto 

et,al. (2018) determined [Na+]i and [Na+]e in brain tumours (194). This revealed that although 

lesions have higher total [Na+] than the normal appearing white matter, the extracellular 

volume fraction is also consistently elevated, whereas the apparent [Na+]i is lower than in 

white matter. This would imply that that increased extracellular volume may underlie the 

majority of the elevated tissue [Na+]. However, relaxation-weighted 23Na MRI has shown that 

[Na+]i is elevated in glioblastomas and cerebral metastases (192) and is supported by in vitro 

data (22, 26). This observation of elevated [Na+]i has since been supported by additional 

studies in breast and prostate tumours using fluid suppression by inversion recovery and 

diffusion-weighted MRI approaches (25, 193, 195). Taken together, these studies suggest 

that both increases in extracellular volume fraction and [Na+]i can contribute to elevated total 

tissue [Na+] in cancer, although the relative contributions of these two compartments may 

vary between tumour type and location. 

 

23Na MRI may have the potential to complement standard of care radiological imaging 

approaches including positron emission tomography (PET). Elevated [Na+]i in brain tumours 

correlates with the proliferation marker MIB-1 (192), raising the possibility that 23Na MRI may 

complement 18F-fluorothymidine positron emission tomography ([18F]FLT-PET) for 

proliferation assessment in CNS tumours (196). In addition, 23Na MRI measurement of total 

tumour [Na+] has been shown to be superior to isocitrate dehydrogenase (IDH) mutation 

status in predicting progression-free survival, suggesting that tumour [Na+] may be a 

promising tool for non-invasive outcome prediction (197). Furthermore, 23Na MRI may also 

have value for detecting changes in real-time during treatment as a potential early biomarker 

for therapy assessment (198). However, it must be noted that [Na+] is likely to change 

following initiation of treatment as a result of physiological changes in the tumour and so the 

relationship between [Na+] and therapy response may be complex. For example, in a 

preclinical mouse xenograft model of prostate cancer, [Na+]i increased within 24 h of 
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initiation of chemotherapy treatment (24), whereas in a rat glioma model, [Na+]i was 

significantly reduced 5 days after onset of chemotherapy (199). In broad agreement with the 

latter, total tumour [Na+] is reduced in breast cancer patients responding to neoadjuvant 

chemotherapy (189, 200). However, the heterogeneity of [Na+] within the tumour following 

therapy is likely to be critical. For example, chemotherapy-induced cellular necrosis would be 

expected to increase the extracellular volume fraction, likely underpinning the early increase 

in total tissue [Na+] observed in preclinical tumour models following onset of therapy (201-

203). Clearly, it is necessary to evaluate changes in both [Na+]i and [Na+]e in response to 

therapeutic intervention in order to evaluate predictive value of Na+ in the clinical setting. 

Whether MRI can do this remains to be explored across both preclinical and clinical theatres. 

 

Therapeutic potential of manipulating Na+ levels 

 

Directly or indirectly manipulating tumour Na+ levels, for example by using pharmacological 

tools to manipulate transporter activity, may present novel treatment options to complement 

existing therapeutics. Indeed, numerous studies are presently ongoing to evaluate targeting 

tumour [Na+] (Table 2). Given that tumour acidification can induce drug resistance (1, 81, 

204) and Na+ and pH are very closely linked, pharmacological modification of tumour [Na+] 

may be a useful adjunct to other chemotherapeutics. For example, the ENaC/NHE1 blocker 

amiloride strongly synergises with doxorubicin to induce apoptosis and reduce glycolysis in 

osteosarcoma cells (205). On the other hand, Na+/K+ ATPase activity is increased in 

hepatocarcinoma cells upon development of resistance to chemotherapeutics (206). 

Similarly, high [Na+]e increases expression of the multi-drug resistance protein P-

glycoprotein in breast cancer cells in a Ca2+-dependent manner (188). In addition, elevated 

[Na+]i-mediated acidification of the tumour microenvironment may help cancer cells to evade 

immune surveillance. Acidotic conditions correlate with low leukocyte counts (207) and 

decrease cytotoxicity of natural killer (NK) cells (208) and cytotoxic T-lymphocytes (209). 
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Thus, tumour [Na+]e may modulate response to existing chemotherapeutics and emerging 

immunotherapeutics via pH- and non pH-dependent mechanisms. 

 

Extracellular [Na+] in tumours would be expected to follow serum [Na+] and indeed, 

hypertonic interstitial fluid accumulates in the skin of rats fed on a high salt diet (179). Since 

elevated tumour [Na+]e may promote tumour progression, serum [Na+] is likely critical in 

cancer patients. Hypernatremia, which has a high mortality rate, is an uncommon side effect 

of some chemotherapy regimes (210). Significantly, NaHCO3 infusions, currently under test 

as a treatment to increase extracellular pH in cancer (Table 2), should be considered in the 

light of these findings. The risks associated with elevating [Na+]e (211) will need to be 

balanced against any advantages of reducing tumour acidity. Recently TRIS-base has been 

identified as a well-tolerated and effective anti-metastatic oral pH buffer in mice which does 

not require a counter-ion and would therefore not be expected raise [Na+]e (212). 

 

Several studies have examined whether normalising tumour [Na+] might be a useful 

treatment strategy. The use of VGSC inhibitors to prevent cancer growth and metastasis has 

been investigated in several preclinical studies (162, 213-215), and is currently the subject of 

several ongoing clinical trials (Table 2). In support of this, in retrospective observational 

studies, VGSC-inhibiting tricyclic antidepressants and antiepileptic medications have been 

shown to associate with reduced incidence of several common cancers including lung and 

colorectal cancer and glioma (216, 217). On the other hand, antiepileptic medications 

associate with increased mortality in breast, bowel and prostate cancer patients, although 

this may be a result of confounding by indication (218, 219). Significant improvements in 

cancer outcomes have been associated with local anaesthetic drugs such as lidocaine (220) 

and the anti-epileptic drug valproate in combination with doxorubicin (221) or a 

topoisomerase inhibitor (222); however the benefits may be attributed to other mechanisms 

in addition to VGSC inhibition. For example, regional anaesthesia reduces the need for 

general anaesthetic drugs and opioids, which have various deleterious effects on immunity 
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(223). The local anaesthetic lidocaine stimulates natural killer cell cytolytic activity (224) and 

several local anaesthetics inhibit src activity independently of VGSC blockade (225). As well 

as inhibiting VGSCs, valproic acid acts as a histone deacetylase inhibitor, and this action is 

commonly considered responsible for its anti-cancer properties (226). VGSCs are also 

inhibited by omega 3 fatty acids, which may explain some of the beneficial effects shown by 

these molecules in the diet of cancer patients (227, 228). A low Na+ diet, which reduces the 

risk of hypertension, has been hypothesised to be beneficial in preventing cancer (229). 

While speculative, this is supported by data from a meta-analysis of prospective studies 

examining habitual salt intake (230). However, a low Na+ diet may be difficult to achieve as a 

therapeutic intervention in the clinic as factors such as patient nutrition and blood pressure 

are already very difficult to control in patients with advanced disease. Furthermore, a 

complicating factor when considering VGSC inhibition as a therapeutic strategy is that these 

channels may also play a role in regulating immune cell function (231). 

 

The reverse approach has also been considered: given that apoptosis is initiated by a large 

influx of Na+ into cells (232), attempts have been made to replicate this mechanism to kill 

cancer cells. Viral vector delivery of a constitutively open ASIC channel into culture glioma 

cells caused Na+ entry and cell death (233). However, viral delivery of Na+ channels would 

need to be precisely targeted to neoplastic cells in order for this method to be of use. In a 

different study, targeted osmotic lysis of VGSC-expressing tumours in mice was 

demonstrated by systemic administration of the Na+/K+ ATPase-inhibiting cardiac glycoside 

ouabain in conjunction with electrical pulses to open VGSCs, leading to cytotoxic influx of 

Na+ into tumour cells (234). Blocking the Na+ efflux activity of Na+/K+ ATPase with cardiac 

glycosides has the added advantage of decreasing inflammation and increasing specific 

anti-tumour immunity (235). A retrospective study showed improved survival in cancer 

patients that were being prescribed cardiac glycosides despite these patients having cardiac 

conditions (236). This has led to the development of several clinical trials examining the 

effect of adding the cardiac glycosides to various chemotherapy protocols (Table 2). 
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Conclusion 

 

Na+ homeostasis is disrupted in cancer, leading to accumulation of Na+ in solid tumours. At 

the cellular level, Na+ transport is linked to pH and Ca2+ regulation and it alters plasma 

membrane potential, metabolism and proliferation. At the tissue level, high [Na+]i aids 

proliferation, migration and invasion of cancer cells and high [Na+]e induces an inflammatory 

microenvironment which promotes tumour progression. Systemic changes in [Na+] affect 

blood pressure and immune function, together with secretion of pro-angiogenic mediators. 

Given that Na+ is the predominant extracellular cation and its distribution can be affected by 

diet and many drugs in common use, it is imperative that we further improve understanding 

of how Na+ regulation affects cancer progression. There is plenty of evidence that by doing 

so, we will uncover new modes of cancer detection and monitoring, e.g. through use of 23Na-

MRI, and may also improve cancer treatment via pharmacological and dietary modulation of 

Na+ homeostasis. 
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Table 1. Na+ transport mechanisms with altered expression in cancer. 

Transporter Subtype Cancer Change Effects References 

Na+/K+ 
ATPase 

α3 subunit Liver, gastric ↑ ↑ proliferation 

↑ migration 

↑ invasion 

↓ apoptosis 

(206, 237) 

ENaC αENaC, γENaC Glioblastoma, 
HCC, 
melanoma, 
placenta 
 

↑ ↑ migration 

↑ proliferation 

(121, 137, 238, 239) 
 

ASIC ASIC1, ASIC1a, 
ASIC2, ASIC2a, 
ASIC3 

Liver, 
glioblastoma, 
PDAC, 
colorectal, 
adenoid 

↑ ↑ invasion  

↑ migration 

↑ EMT 

(56, 165, 167, 238, 240) 

VGSC Nav1.2, Nav1.4, 
Nav1.5, Nav1.6, 
Nav1.7 

NSCLC, 
prostate, 
cervical, 
colorectal, 
breast, 
ovarian 

↑ ↑ invasion 

↑ migration 

  

(26, 140, 144, 160, 161, 
241-243) 

NKCC NKCC1 HCC, 
glioblastoma, 
NSCLC 

↑ 

 

↑ invasion 

↑ migration 

↑ proliferation 

 

(47, 244, 245) 

NMDA-R NMDAR2B Glioblastoma 
NSCLC 
ESCC 
gastric 
colorectal 
breast 

↓/↑ 

 

↓ proliferation/ 

↑ proliferation 

 

(246) 

Na+/H+ 
Exchanger 

NHE1 Glioma, 
HNSCC, 
breast, HCC, 
cervical 

↑ ↑ acid 

extrusion 
↑ invasion 

(247-250) 

Na+/HCO3- 
transporter 

NBCn1  Breast ↑ ↑ acid 

extrusion 

(42, 251, 252) 

Na+/glucose 
cotransporter 

SGLT2 Breast ↑ ↑ glucose 

uptake? 

(46) 

Amino acid 
transporters 

SLC1a5/ASCT2  NSCLC, 
glioblastoma, 
eye, kidney, 
liver, lymph 
node, breast, 
muscle, 
placenta, 
skin, gastric, 
colorectal 

↑ ↑ amino 

acid/glutamine 
metabolism 

(253-257) 

SLC6A14 Cervical, 
colon, PDAC, 
breast 

↑ ↑ amino acid 

uptake? 

(114, 258, 259) 

 SLC38a3/SNAT3 
 

Glioma ↑ ↑ amino acid 

uptake? 

(260) 
 

SLC38a1/SNAT1 HCC, bile 
duct 

↑ ↑ growth 

↑ survival 

(261, 262) 

NCX  Kidney ↓ ↓ EMT (263) 
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Abbreviations: ENaC, epithelial Na+ channel; VGSC, voltage-gated Na+ channel; NKCC, 
Na+/K+/2Cl- co-transporter; NMDA-R, N-methyl D-aspartate receptor; NCX, sodium calcium 
exchanger; HCC, hepatocellular carcinoma; HNSCC, head and neck squamous cell 
carcinoma; ESCC, oesophageal squamous cell carcinoma; NSCLC, non-small cell lung 
cancer; PDAC, pancreatic ductal adenocarcinoma, EMT, epithelial-mesenchymal transition. 
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Table 2. Na+-regulating mechanisms as potential therapeutic targets1. 

Transporter Compound Category Cancer 
types 

Highest 
phase 

Clinical trial NCT numbers 
and references 

ENaC Amiloride ENaC inhibitor Solid 
tumours 

Preclinical (264) 
 

NHE1 Cariporide NHE1 inhibitor NA Phase III 
(stopped) 

(265) 
 

VGSC Lidocaine VGSC blocker, 
local 
anaesthetic 

Breast, 
colorectal 

Phase III NCT01916317, 
NCT02786329, 
NCT01841294, 
NCT02839668, 
NCT02647385, (266) 

 Ropivacaine VGSC blocker, 
local 
anaesthetic 

Abdominal/t
horacic 

NA NCT03134430 

 Bupivacaine VGSC blocker, 
local 
anaesthetic 

Breast, 
colon 

Phase III NCT00938171, (267) 

 Valproate VGSC blocker, 
HDAC 
inhibitor, 
antiepileptic 

HNSCC, 
cervical, 
melanoma, 
mesothelio
ma, 
bladder, 
thyroid, 
NSCLC 

Phase III NCT01695122, 
NCT01738815, 
(222, 268-270) 

 Phenytoin VGSC blocker, 
antiepileptic 

Breast Preclinical (213) 

 Ranolazine VGSC blocker, 
antianginal 

Breast Preclinical (162) 

Na+/K+ ATPase Digoxin Cardiac 
glycoside, 
Na+/K+ 
ATPase 
inhibitor 

Prostate, 
breast, 
melanoma, 
acute 
myeloid 
leukaemia/
myelodyspa
stic 
syndromes, 
HNSCC 

Phase II NCT02138292, 
NCT03113071, 
NCT02906800, 
NCT01763931, 
NCT01887288, (221, 271) 
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 Ouabain Cardiac 
glycoside, 
Na+/K+ 
ATPase 
inhibitor 

Breast Preclinical (234) 

NKCC Bumetanide NKCC1 
inhibitor 

HCC Preclinical (244) 

NMDA-R Memantine & 
MK-801 

NMDA-R 
blocker 

Breast Preclinical (272) 

NCX KB-R7943 NCX reverse 
mode inhibitor 

Prostate Preclinical (273) 

SGLT2 Empagliflozin 
and others 

SGLT2 
inhibitors 

Urinary 
tract 

Observati
onal 

NCT03464045 

N/A NaHCO3 Neutral pH 
buffer 

Any Phase I NCT02531919 

1ENaC, epithelial Na+ channel; VGSC, voltage-gated Na+ channel; NKCC, Na+/K+/2Cl- co-
transporter; NMDA-R, N-methyl D-aspartate receptor; NCX, sodium calcium exchanger; 
HDAC, histone deacetylase; HCC, hepatocellular carcinoma; HNSCC, head and neck 
squamous cell carcinoma; NSCLC, non-small cell lung cancer; EMT, epithelial-mesenchymal 
transition. 
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Box 1: Development of 23Na MRI 

 

23Na MRI is non-invasive and presents a unique mechanism for measuring Na+ in tissue. 

23Na MRI does not disturb the tissue state, unlike Na+ measurements that require physical 

tissue sampling. Na+ is endogenous to human tissue, which enables imaging without 

external contrast. 23Na MRI can differentiate intracellular Na+ from total tissue Na+. The non-

invasive quantification of cancer Na+ content with MRI has the potential to provide a large 

amount of information on tissue microstructure and function that could improve our 

understanding of the changes occurring in this disease both early on in formation and in 

response to therapy. 23Na MRI is currently primarily used for research due to the non-

standard hardware necessary to enable Na+ signal acquisition. The signal from 23Na MRI is 

much lower than the signal in conventionally used H+ MRI for several reasons: Na+ has a 

lower abundance in the human body compared to H+, which proportionally reduces the 

available magnetization and therefore signal-to-noise; the gyromagnetic ratio of Na+ (11.26 

MHz/Tesla) is 4 times smaller than that of H+, which results in 25 % fewer 23Na spins being 

magnetized; and Na+ has a spin of 3/2, which causes electrostatic field sensitivity and fast 

T2* signal decay. Thus, the total Na+ signal available on MRI in human tissue is only about 

1/22,000th the size of the H+ signal (274). High static magnetic fields are commonly used 

with Na+ imaging to improve the signal to noise ratio. Moving to higher MRI field strengths, 

such as 7 Tesla, further increases the signal-to-noise, enabling higher spatial resolutions in 

faster acquisition times, which improves the probing of the tumour Na+ microenvironment 

(193). 

 

Interest in performing 23Na MRI dates back as far as the 1980s. It was postulated that 23Na 

MRI would allow for superior contrast in distinguishing features of brain tumours such as 

oedema, necrosis and non-necrotic tumour, compared to conventional proton spin density 

imaging (275). Initial studies focused on healthy volunteers and animal models of stroke and 

myocardial infarction (275, 276), followed by the first images of brain tumour patients (277). 
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A set of publications followed (278-280) after which the focus turned to spectroscopic and 

animal model studies and small investigative human studies (190, 281). It was shown that 

23Na MRI reliably revealed brain tumour lesions, albeit no correlation to histology or grading 

(190). Imaging developments in pulse sequence design and quantification methods were 

subsequently made to overcome shortcomings of previous studies, namely to increase 

spatial resolution and to capture the Na+ signal in its entirety by using ultra-short echo time 

imaging (282-284). Further detailed 23Na MRI studies followed in human brain and breast 

tumours (4, 9, 285). More recent advances in sodium imaging have shown that 23Na MRI 

can both predict IDH status (197) and show early response to pre-clinical therapeutic 

interventions (198). Furthermore, relaxation-weighted 23Na MRI has now been shown to 

differentiate between brain tumours of grades I-III and grade IV when spin-weighted 23Na 

MRI was unable to do so (286).  
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Figure legends 

 

Figure 1. Accumulation of Na+ in tumours. Converse to the reported decrease in pO2 and 

pH, many tumours (such as breast cancer) exhibit elevated [Na+] (9). This elevated tumour 

[Na+] may be due to increases in the extracellular volume fraction relative to the intracellular 

volume fraction, or due to increases in the [Na+] concentration within either compartment. 

Moreover, tumour [Na+] is likely influenced by the heterogeneity of the tumour 

microenvironment. Factors that could increase the extracellular volume fraction (interstitial 

volume) include increases in colloidal and interstitial pressure (13) due to vasculature 

permeabilisation, blood plasma protein release and the formation of fibrin (11, 12), and 

cancer cell death as a result of targeted chemotherapy or poor vascularisation within the 

necrotic tumour core. Moreover, Na+ binding to protein sequestered within the desmoplastic 

tumour microenvironment (e.g. glycosaminoglycans) could contribute to an increase in the 

extracellular Na+ content (287). Alternatively, the increased cellularity observed within poorly 

vascularised tumours (193) suggests that increases in intracellular volume fraction can 

contribute to elevated tumour [Na+]; indeed, [Na+]i has been reported to be elevated in 

cultured cancer cells (20, 22, 23), potentially due to altered transporter expression (Table 1). 

 

Figure 2. Cellular Na+ import and export mechanisms. Cells exhibit a diverse repertoire of 

Na+ channels and transporters, many of which exhibit altered expression in cancer (Table 1) 

and are being explored as potential therapeutic targets (Table 2). The activity and 

conductance of these channels is regulated by [Na+]i, [Na+]e, membrane potential and 

auxiliary regulatory proteins. Channels that facilitate Na+ influx include voltage gated Na+ 

channels (VGSC), epithelial Na+ channels (ENaC), acid-sensing channels (ASIC), 

glutamate-activated N-methyl-D-aspartate receptors (NMDA), ATP-activated P2X 

purinoceptor 7 (P2X7) and the G protein-coupled Na+ leak channel, non-selective (NALCN). 

The inward Na+ gradient and a hyperpolarised membrane potential are maintained by the 

ATP-driven Na+/K+ ATPase. Na+ influx is also linked to the transport of numerous other ions 
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and substrates, namely H+ efflux (Na+/H+ exchanger 1, NHE1), Cl- and K+ influx (Na+-K+-Cl- 

cotransporter, NKCC), cytosolic and mitochondrial Ca2+ efflux (Na+/Ca2+ exchanger, NCX and 

mitochondrial Na+-Ca2+(Li+) exchanger, NCLX, respectively) glucose uptake (sodium-glucose 

linked transporter, SGLT) and amino acid (AA) uptake. Na+/H+ exchangers (NHE) are also 

present on both mitochondria and lysosomes, the latter of which achieve Na+ efflux into the 

cytosol via two-pore channels (TPC) and transient receptor potential mucolipin (TRPML) 

channels. 

 

Figure 3. Physiological consequences of Na+ accumulation within tumours. Dashed arrows 

indicate putative mechanisms which remain to be fully characterised. Red arrows indicate 

denote movement/conversion of metabolites. A: Elevated [Na+] is linked to alterations in 

tumour metabolism and pH regulation. Elevations in [Na+]i activate the Na+/K+ ATPase, 

thereby raising ATP demand and driving a high glycolytic rate (34). To maintain a high pHi, 

the resulting H+ is rapidly extruded by NHE, which is driven by the inward Na+ gradient. 

Increased [Na+]i could also facilitate depletion of mitochondrial Ca2+ ([Ca2+]m) via NCLX, 

thereby altering mitochondrial metabolism. Conversely, changes to the Na+ gradient across 

the plasma membrane will likely alter the driving force for transporters importing key 

metabolic substrates such as glutamine (SLC1A5) and glucose (SGLT), thereby influencing 

anabolic and anapleurotic processes. B: Elevated tumour Na+ and membrane potential (Vm). 

Vm is generated by the electrogenic Na+/K+ ATPase; Na+ influx via VGSC/ENaC/ASICs 

results in a depolarised membrane potential (Vm) in cancer cells. A depolarised Vm can lead 

to the activation of proliferative signalling cascades (such as KRas), cytoskeletal 

reorganisation facilitating migration, and accelerates the cell cycle. Conversely, most healthy 

differentiated cells exhibit a more hyperpolarised Vm that tightly controls cell cycle 

progression. C: Cell volume regulation by Na+-linked transport mechanisms. Elevations in 

tumour [Na+] are linked to changes in cell volume regulation. NKCC sequentially facilitates 

the accumulation of intracellular Cl-, H2O uptake (aquaporins, AQP, and osmosis) and cell 

swelling (288). Conversely, K+-Cl– cotransporters (KCC) mediate Cl- efflux, promoting H2O 
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exit from the cell (289). NHE1 activity results in a net osmotic gain due to Na+ influx; the 

osmolar contribution of intracellular H+ ions is compensated due to the dissociation of 

intracellular buffers. The resulting increase in pHi and [HCO3
- ]i  drives Cl- import via anion 

exchangers (AE), leading to H2O uptake and cell swelling (290). NHE1 can also operate to in 

reverse mode to resist compressive forces (118). 

 

Figure 4. Effect of elevated Na+ on cancer progression and the tumour microenvironment. 

Dashed arrows indicate putative mechanisms which remain to be fully characterised. A: 

Elevated tumour Na+ and migration/invasion. VGSCs have been correlated with activation of 

a proinvasive gene transcription network upregulating Wnt, MAPK and Ca2+ signalling (161, 

164). NHE1 localises to the leading edge of invading cells (136); VGSC colocalisation with 

NHE1 within cavaeolae leads to activation of NHE1, acidification of the extracellular 

environment and digestion of the extracellular matrix by cathepsins and matrix 

metalloproteinases (120, 142, 152). Interestingly, the β subunit of VGSCs acts as an 

adhesion molecule that interacts with the extracellular matrix to regulate migration and 

invasion (291). Extracellular acidification can also activate ASIC and ENaC channels (58, 

59), leading to further increases in [Na+]i. Na+-linked Ca2+ influx via reverse-mode NCX 

action has been linked to cancer cell motility via Ca2+ signalling-activated TGF-β signalling 

(151). NKCC regulates cell swelling required for migratory behaviour by facilitating [Cl-]i 

accumulation and H2O uptake via osmosis and aquaporins (288). NKCC also acts as a 

scaffold for cofilin within invadopodia, which facilitates cytoskeletal remodelling (292). B: 

Elevated [Na+]e and cancer cell proliferation. The inward Na+ gradient drives the uptake of 

anabolic substrates such as glucose and glutamine (SGLT and SLC1A5), respectively (44-

46); altered tumour [Na+] might regulate the uptake of these substrates. Via 

glycolysis/pentose phosphate pathway (PPP) and glutaminolysis, glucose and glutamine are 

utilised as substrates for redox homeostasis, biosynthesis, and cell proliferation (i.e. 

reducing equivalents, nucleotides, and fatty acids) (293). SLC1A5 also regulates mTORC1, 

a key regulator of protein translation and cell growth (254). Moreover, salt inducible kinase 3 
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is activated by elevated [Na+]e , promoting G1/S phase transition (129), and [Cl-] 

accumulation due to upregulated NKCC activity can promote cell cycle progression (48, 117, 

130). Elevated [Na+]e leads to DNA breaks with significant implications for oncogenic 

mutations/tumour suppressor silencing (132), and a high osmolality and VGSC activity also 

activates the MAPK signalling cascade, potentially via Rac1 activation (127, 128). C: 

Elevated Na+ and osmolality drives inflammation in the tumour microenvironment. Increased 

[Na+]e and osmolality promote proliferative and antiapoptotic signalling in tumour associated 

macrophages (171) and by increasing the production of proinflammatory cytokines by local 

endothelial cells and Th-17 helper cells (177). Together these factors also promote the 

further recruitment of proinflammatory immune cells (171). These factors lead to extracellular 

matrix breakdown, neovascularisation and tumour remodelling, thereby promoting tumour 

progression and metastasis (129, 179, 187, 294). 
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