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Highlights

• We propose a symmetric relative entropy based deep hash-

ing method.

• Our method can decrease the information loss during hash-

ing embedding.

• Distance similarity and distribution similarity can be si-

multaneously learned.

• We design a mutually optimization strategy for our deep

hashing architecture.

• Extensive experiments show that our method achieves

state-of-the-art performance.
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ABSTRACT

By virtue of their simplicity and efficiency, hashing algorithms have achieved significant success on

large-scale approximate nearest neighbor search. Recently, many deep neural network based hashing

methods have been proposed to improve the search accuracy by simultaneously learning both the fea-

ture representation and the binary hash functions. Most deep hashing methods depend on supervised

semantic label information for preserving the distance or similarity between local structures, which

unfortunately ignores the global distribution of the learned hash codes. We propose a novel deep su-

pervised hashing method that aims to minimize the information loss generated during the embedding

process. Specifically, the information loss is measured by the Jensen-Shannon divergence to ensure

that compact hash codes have a similar distribution with those from the original images. Experimen-

tal results show that our method outperforms current state-of-the-art approaches on two benchmark

datasets.

c© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

With the explosive growth in the number of high volume

and high dimensional multimedia data sources, the potential

for including images and videos in efficient large-scale visual

retrieval has received increased interest. A general solution to

image retrieval is approximate nearest neighbor (ANN) search,

and which has been demonstrated to retrieve target images ef-

fectively and efficiently. Due to the rapid query speeds and low

memory costs achievable, hashing has become one of the most

widely used techniques among existing ANN methods. The

key idea of hashing is to embed high-dimensional data into a

set of compact binary codes while preserving the similarity of

the original data in the Hamming space of the codes.

Existing hashing algorithms can be divided into a) data-

independent and b) data-dependent groups. Data-independent

methods usually use random projections as the hash func-

tions to maximize the probability of “collision” between sim-

ilar items. A representative data-independent method is local-

∗∗Corresponding author

e-mail: luanxiushu@xwhosp.org (Xiushu Luan)
2The first two authors contribute equally to this work.

ity sensitive hashing (LSH) (Gionis et al., 1999), which directly

uses a random linear projection to learn hash codes. Although it

benefits from the theoretical bounds on the approximation qual-

ity, it has been proved that the LSH method suffers in terms of

poor accuracy of image retrieval.

Compared with data-independent methods, data-dependent

methods on the other hand attempt to learn hash functions from

training data and can achieve better performance using shorter

hash codes. According to whether image labels are used or

not, they can be further categorized into supervised and unsu-

pervised methods. Unsupervised hashing methods learn hash

functions by exploring the inherent structure of training data.

Typical learning goals include reconstruction error minimiza-

tion (Gong et al., 2013; Jegou et al., 2011) and preserving graph

structure (Liu et al., 2011; Weiss et al., 2009). With the devel-

opment and widespread adoption of deep learning techniques,

neural networks have been used to learn the data distribution

and often achieve better retrieval performance. Deep Hashing

(DH) (Erin Liong et al., 2015) and several related extensions of

the idea (Lin et al., 2016; Hu et al., 2017; Huang et al., 2017;

Shen et al., 2018) utilize the network as the nonlinear hash func-

tion and design mapping criteria to obtain an improved hashing

mapping. Most unsupervised hashing methods attempt to make
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the learned hash code independent and balanced. They also at-

tempt to construct pseudo labels using distance metrics to learn

the hash function. However, all of these methods face the se-

mantic gap dilemma. In other words, similar low-level features

may have very different high-level semantic descriptions, so the

results of retrieval cannot match the performance of visual per-

ception for human observers.

Many supervised hashing methods were proposed (Liu et al.,

2012; Zhang et al., 2014; Lin et al., 2014; Bai et al., 2014; Xiao

et al., 2009; Yang et al., 2016; Bai et al., 2018; Su et al., 2019;

Luo et al., 2018; Tang et al., 2015; Tang and Li, 2018; Li and

Tang, 2015) to mitigate the semantic gap using the image la-

bels. Recently, research on deep supervised hashing methods

has shown that feature extraction and hash coding can be con-

ducted more effectively by end-to-end learning of deep neu-

ral networks. These algorithms show the state-of-the-art re-

sults on many benchmarks (Li et al., 2018; Song et al., 2017;

Wang et al., 2019; Yan et al., 2019). Most existing deep hash-

ing methods utilize semantic labels to learn discriminative bi-

nary codes. Class-label based methods, such as DLBC (Lin

et al., 2015) and DHCQ (Tang et al., 2018), expect to generate

compact binary codes applicable to classification. Others pay

attention to better modeling the distance between the original

samples. Absolute distance is used in pairwise hashing meth-

ods, such as DQN (Cao et al., 2016), DHN (Zhu et al., 2016),

DSH (Liu et al., 2016), DPSH (Li et al., 2015), DSDH (Li et al.,

2017), which tries to make the Hamming distance between sim-

ilar images as small as possible and vice versa. Triplet meth-

ods, such as NINH (Lai et al., 2015), DSRH (Zhao et al., 2015),

DRSCH (Zhang et al., 2015), DTSH (Wang et al., 2016), con-

sider the relative distance between images, and aim to keep the

Hamming distance between dissimilar images larger than those

from similar images.

Although deep learning based methods have achieved signif-

icant success on the problem of image retrieval, they mainly fo-

cus on preserving the pairwise distance relationships between

images and hence ignore the global data distribution which is

important for feature represention and hash coding. In our pre-

vious work (Zhang et al., 2018), we have presented a deep

supervised hashing method that utilizes the Kullback-Leibler

(KL) divergence to constrain the hashing codes to have a sim-

ilar distribution with the original data. However, when retriev-

ing images online using the hash codes, one may also want

to minimize the information loss between the hash codes and

the original images. Hence, in this paper, we propose an ex-

tended method to address this issue. It leverages a symmetric

relative entropy, the Jensen-Shannon (JS) divergence, which is

both symmetric and has a finite value, to minimize the distri-

bution distance between the sources of the original image data

and the hash codes. Furthermore, we analyze these two differ-

ent relative entropies and demonstrate experimentally that the

symmetric relative entropy based hashing method gives the best

performance.

In brief, our contributions can be summarized as follows:

1. We propose a symmetric relative entropy based deep hash-

ing method that reduces the information loss during hash-

ing embedding by preserving similarity between the dis-

tribution of the original samples and the generated hash

codes.

2. Both the distance-based similarity and the distribution-

based similarity can be simultaneously learned and mu-

tually optimized in our deep hashing architecture.

3. Extensive experiments on two image benchmarks show

that our method can achieve comparable performance to

state-of-the-art methods for image retrieval.

2. Related work

2.1. Hashing

A comprehensive survey on learning to hash has been given

by (Wang et al., 2018). The relevant methods can be divided

into a) unsupervised and b) supervised categories. Unsuper-

vised hashing methods learn hash functions by exploring the

intrinsic structure of unlabeled training data. Weiss et al. de-

veloped Spectral Hashing (SH) (Weiss et al., 2009) to formu-

late hash coding as a graph partition problem. The method

generates binary codes by calculating the eigenvectors of the

graph Laplacian. Liu et al. presented the Anchor Graph Hash-

ing (AGH) (Liu et al., 2011) method to automatically capture

the neighborhood structure inherent in a given massively large

dataset. This work was extended to develop the Discrete Graph

Hashing (DGH) (Liu et al., 2014) method by introducing a

tractable alternating optimization method for preserving simi-

larity in the discrete Hamming space of the hash codes. Apart

from exploring the data structure based on a graph represen-

tation, reconstruction error minimization is another useful cri-

terion to guide the learning of hash codes. The goal of Iter-

ative Quantization (ITQ) (Gong et al., 2013) is to reduce the

quantization loss from a real-valued feature vector to the ver-

tices of a binary cube by finding a rotation of zero-centered

data. The Binary Reconstructive Embedding (BRE) (Kulis and

Darrell, 2009) method tries to learn hash functions by mini-

mizing the reconstruction error directly using the coordinate-

descent strategy. In a manner different from BRE that measures

data similarity by Euclidean distance, the Angular Reconstruc-

tive Embedding (ARE) (Hu et al., 2018) method uses cosine

similarity. Collective Reconstructive Embedding (CRE) (Hu

et al., 2019), on the other hand, uses both cosine-based and

Euclidean-based similarity simultaneously to address the cross-

model hashing problem. In 2015, Liong et al. proposed Deep

Hashing (DH) (Erin Liong et al., 2015) that first utilizes a multi-

layer neural network as the hash function to preserve nonlinear

neighborhood relationships. Due to the absence of label infor-

mation, the performance of unsupervised hashing approaches is

usually surpassed by supervised hashing.

Supervised hashing methods learn hash functions using both

label information and a representation of the data. Two Step

Hashing (TSH) (Lin et al., 2013) was developed to decompose

the hashing learning problem into hash bit learning and hash

function learning based on the learned bits, which is much eas-

ier to solve. Shen et al. introduced Supervised Discrete Hash-

ing (SDH) (Shen et al., 2015) to optimize the discrete optimiza-

tion problem directly with cyclic coordinate descent in conjunc-

tion with classification. With the aid of convolutional neural
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networks and supervised information, deep supervised hashing

achieves a great breakthrough in image retrieval. CNNH (Xia

et al., 2014) is the first deep hashing algorithm which needs two

stages to learn the high-level representation and binary codes.

A drawback of this method is that the hash codes cannot be up-

dated with the learned new image representation. To address

this problem, Lai et al. propounded NINH (Lai et al., 2015)

to simultaneously learn the feature representation and the hash-

ing codes in a joint optimizing process. Then Zhao et al. de-

scribed DRSH (Zhao et al., 2015) to use triplet ranking loss as

multi-level similarity information to guide the learning of bi-

nary codes. As a representation of methods based on pairwise

similarity, DPSH (Li et al., 2015) was developed to maximize

the probability of similarity labels in the Hamming space using

a Bayesian framework. Moreover, Deep Asymmetric Pairwise

hashing (DAPH) (Shen et al., 2017a,b) provided the asymmet-

ric hash forms to pairwise similarity loss for preserving more

similarity information. DSH (Liu et al., 2016) designed a regu-

larizer to encourage the binary-like outputs of neural networks

to decrease the quantization loss. Later, DSDH (Li et al., 2017)

was proposed by applying classification information as well as

pairwise similarity to directly optimize this discrete problem.

In prior work, we introduced an entropy-based deep hashing

method (Zhang et al., 2018) by minimizing the information loss

during the hashing process. Unlike the MFH method (Song

et al., 2013) which attempts to reduce the quantization loss by

minimizing the empirical error of the outputs of hash functions

with respect to the learned hash codes, our method aims at pre-

serving the original data distribution in the generated space of

hash codes.

2.2. Information divergence

Information divergence is a measure of dissimilarity between

probability distributions. One commonly used example is the

KL divergence:

KL(p‖q) =

N
∑

i=1

p(xi) log
p(xi)

q(xi)

where p and q are two probability distributions. This is a non-

negative function, which is equal to zero when p(x) = q(x).

Obviously, KL divergence quantifies the information loss from

one distribution to another.

The JS divergence is another commonly used measure for the

distance between distributions. It is defined as:

JS (p‖q) =
1

2
KL(p‖m) +

1

2
KL(q‖m)

where m(x) =
p(x)+q(x)

2
. This divergence can be interpreted as

the average distance between each probability distribution and

the average distribution, or equivalently as the diversity of two

distributions with equal priors.

Compared with the KL divergence, the JS divergence has

some advantages. Firstly, it is symmetric, i.e., JS divergence

quantifies information loss from p to q as well as from q to p.

Secondly, JS divergence has a definite upper bound. Hence, JS

divergence is a better metric to measure the information loss

during the hashing process.

3. Proposed Method

Suppose we have N training points X = {xi}
N
i=1
∈ Rd×N where

each sample is represented as a d-dimensional feature vector xi.

Besides the feature vectors, some pairs of points xi and x j are

labeled with si j to indicate the pairwise similarity, where si j = 1

if xi and x j are similar and si j = 0 if xi and x j are dissimilar.

These similarity labels can be either provided manually or ac-

quired from typical semantic labels.

The goal of hashing is to learn a collection of K-bit binary

codes B ∈ {−1, 1}K×N , where the i-th column bi ∈ {−1, 1}K de-

notes the binary codes for the i-th sample xi. The binary codes

are generated by the hash function h(·), which can be rewritten

as [h1(·), . . . , hc(·)]. For each image sample xi, its hash codes

can be represented as bi = h(xi) = [h1(·), . . . , hc(·)]. Generally

speaking, hash coding aims to learn a hash function to project

image samples to a set of binary codes.

3.1. Preserving Similarity

We commence by posing the problem of preserving pairwise

similarity in a Bayesian framework. The goal is to locate the

hash codes B that satisfy the constraints provided by the simi-

larity labels S as closely as possible in the Hamming space.

Since there is a linear relationship between the Hamming dis-

tance and the corresponding inner product for each pair of bi-

nary codes bi and b j, i.e., distH(bi,b j) =
1
2
(K−〈bi,b j〉), we can

use the inner product to quantify pairwise similarity rather than

Hamming distance. Given the binary codes B = {bi}
n
i=1 for all

the points, we can define the likelihood of the pairwise labels

S = {si j} as:

p(si j | B) =

{

σ(Ωi j) si j = 1

1 − σ(Ωi j) si j = 0
(1)

where σ(Ωi j) =
1

1+e
−Ωi j

, and Ωi j =
1
2
bT

i
b j.

As a result, the larger the inner product 〈bi,b j〉, the smaller

the corresponding distH(bi,b j), and the larger p(1 | bi,b j). This

means that bi and b j should be classified as similar, and vice

versa.

By taking the negative log-likelihood of the observed set of

pairwise labels in S , we obtain the following optimization prob-

lem:

min
B

J1 = − log p(S | B) = −
∑

si j∈S

(si jΩi j − log(1 + eΩi j )) (2)

This equation requires the Hamming distance of two similar

points to be as small as possible, and simultaneously requires

the Hamming distance between two dissimilar points to be as

large as possible. This is exactly the goal of supervised hashing

with pairwise similarity.

Although pairwise similarity supervision is a good way to

preserve the distance similarity between the original images,

the available label information is not fully exploited. Since the

labels convey more information than similarity alone, as men-

tioned in (Lin et al., 2015), it is a reasonable assumption that

good binary codes should contain enough semantic information

to preserve the semantic similarity between images. In other



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

5

...... ...

k bits

...... ...

k bits

Hamming space

Fig. 1. The architecture of our proposed method.

words, the learned binary codes should be ideal for image clas-

sification.

Considering the binary code learning problem in the linear

classification framework, the multi-class classification problem

can be stated as follows:

y =WT b = [wT
1 b, · · · ,wT

Cb]T (3)

where wk ∈ R
L, k = 1, · · · ,C is the classification vector for

class k and y ∈ R
L is the label vector, of which the maximum

item indicates the assigned class of x. Thus, we can obtain the

following optimization problem:

min
B,W

J2 =

n
∑

i=1

L(yi,W
T bi) + λ‖W‖

2 (4)

where λ is the regularization parameter, yi ∈ R
C is the ground

truth label of xi, where yki = 1 if xi belongs to class k and yki = 0

if not. ‖ · ‖ is the ℓ2 norm for vectors and the Frobenius norm

for matrices. L(·) is the loss function for classification. The

problem can be rewritten as:

min
B,W

J2 =

n
∑

i=1

‖yi −WT bi‖
2
+ λ‖W‖2 (5)

3.2. Preserving Distributions

Preserving distance and semantic similarity is an important

way to generate meaningful hash codes. However, existing

methods only take into account the relationship of one data

point or data point-pairs. Since a good embedding needs to

maintain not only the local structure but also global distribu-

tion of the data, we have utilized KL divergence as a means to

constrain the distribution variation in our previous work (Zhang

et al., 2018). However, as mentioned in Section 2.2, the JS di-

vergence would be a better measure due to its symmetry and

upper bound. Firstly, the symmetric property means not only

that similar images should have similar binary codes, but also

that similar binary codes should correspond to similar images.

Secondly, the JS divergence has an upper bound which helps

optimization process to converge. In fact, it is more stable, and

robust to noise and the length of hash codes.

First, we define the similarity of xi to x j as the conditional

probability p j|i in the original feature space where we use Eu-

clidean distance to represent similarities between data points.

This means that xi would select x j as its neighbor if neighbors

are selected in proportion to their probability density function

under the Gaussian distribution centered at xi. For nearby data

points, p j|i is relatively high, whereas for widely separated data

points, p j|i will be almost infinitesimal. This similarity mea-

sure matches the essence of retrieval. Therefore, the conditional

probability can be formulated as:

p j|i =
exp(−‖xi − x j‖

2/2σ2
i
)

∑

k,i exp(−‖xi − xk‖
2/2σ2

i
)

(6)

Furthermore, the joint probability can be derived as pi j =
pi| j+p j|i

2n
.

Similarly, we can obtain the conditional probability in the

low-dimensional Hamming space. Following t-SNE (Maaten

and Hinton, 2008), in order to alleviate the crowding problem

we use a probability distribution that has much heavier tails

than a Gaussian to convert distances into probabilities. Specif-

ically, we employ the Student t-distribution with one degree of

freedom (which is the same as the Cauchy distribution) as the

heavy-tailed distribution. The joint probability qi j is defined as:

qi j =
(1 + ‖bi − b j‖

2)
−1

∑

k,l (1 + ‖bk − bl‖
2)
−1

(7)

If the binary points bi and b j correctly model the similarity

between the high-dimensional data points xi and x j, the joint

probabilities pi j and qi j will be equal. Therefore, our goal is

to find a low-dimensional binary representation that minimizes

the distance between pi j and qi j. The JS divergence provides

a good choice for meeting this goal. It can be represented as

follows:

J3 =

∑

JS (Pi‖Qi) =
∑

i

∑

j

(
1

2
pi j log

pi j

mi j

+
1

2
qi j log

qi j

mi j

) (8)

where mi j =
pi j+qi j

2
.

Combining equations (2), (5) and (8), we have the following

formulation:

J = J1 + αJ2 + βJ3 (9)



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

6

3.3. Optimization

In order to have a fair comparison with previous deep hashing

methods, we also choose the CNN-F network to learn the fea-

ture representations and hash functions. Using pairwise-label

supervision, our model consists of two separate CNNs which

share the same weights. Each CNN includes 5 convolutional

layers and 2 fully connected layers. The pipeline is shown in

Fig. 1.

The minimization of the obtained loss function in Section 2.3

is a discrete optimization problem, which is hard to optimize di-

rectly. We solve this problem by introducing an auxiliary vari-

able, namely the output of the last fully connected layer, ui and

make bi = sgn(ui), which can be represented as:

ui =MTφ(xi; θ) + v (10)

where θ denotes all the parameters of the previous layers in

the CNN, φ(xi; θ) denotes the output of the penultimate fully

connected layer, M represents the weight matrix, and v is the

bias term. Then we can reformulate the optimization problem

as the following equivalent one:

min J′ = −
∑

si j∈S

(si jΨi j − log(1 + eΨi j )) + α

n
∑

i=1

‖yi −WT ui‖
2

+ λ‖W‖2 + β
∑

i

∑

j

(
1

2
pi j log

pi j

mi j

+
1

2
qi j log

qi j

mi j

)

+ η

n
∑

i=1

‖bi − ui‖
2
2

(11)

where Ψi j =
1
2
ui

T u j, and qi j =
(1+‖ui−u j‖

2)
−1

∑

k,l (1+‖uk−ul‖
2)
−1 .

In our method, an alternating strategy is used to learn these

parameters. Specifically, we optimize one parameter with the

other parameters fixed (or clamped). Firstly, bi can be directly

optimized by

bi = sgn(ui) = sgn(MTφ(xi; θ) + v) (12)

Then the remaining parameters can be optimized using the

back-propagation (BP) algorithm.

4. Experiments

4.1. Datasets and Setting

To make a fair comparison, we conducted experiments on

two widely used benchmark datasets: CIFAR-10 (Krizhevsky

and Hinton, 2009) and NUS-WIDE (Chua et al., 2009).

• CIFAR-10 dataset contains 60,000 color images of size

32*32 which are categorized into 10 classes with 6,000

images for each class. Each image is only associated with

one class.

• NUS-WIDE contains nearly 270,000 color images col-

lected from the web. It is a multi-label dataset in which

each image is annotated with one or multiple class labels

corresponding to 81 semantic concepts. Following (Xia

et al., 2014; Zhang et al., 2015; Li et al., 2015, 2017), we

used a subset of 195,834 images that belong to the 21 most

frequent classes, and each class consists of at least 5000

images.

Like most previous work, the standard mean average preci-

sion (MAP) was used as the main metric to evaluate the per-

formance of the proposed method together with the comparison

baselines. For the two benchmark datasets, the similar pairs

were constructed according to the image labels, i.e., two im-

ages were considered similar only if they shared at least one

common semantic label.

We compare our method with several state-of-the-art hash-

ing approaches. They can be roughly divided into traditional

hashing and deep hashing. The traditional approaches can be

further categorized into unsupervised and supervised methods.

The unsupervised methods include SH (Weiss et al., 2009) and

ITQ (Gong et al., 2013). Supervised methods include KSH (Liu

et al., 2012), FastH (Lin et al., 2014), LFH (Zhang et al., 2014),

and SDH (Shen et al., 2015). Both hand-crafted features and

features extracted using a CNN-F network were used as the in-

put for these traditional hashing methods. In a manner similar

to previous work, we used a 512-dimensional GIST descriptor

to represent each image of the CIFAR-10 dataset, and an 1134-

dimensional feature vector for the NUS-WIDE dataset, which

is the concatenation of a 64-D color histogram, a 144-D color

correlogram, a 73-D edge direction histogram, a 128-D wavelet

texture, a 225-D block-wise color moments and a 500-D BoW

representation based on SIFT descriptors.

The compared deep hashing methods are CNNH (Xia et al.,

2014), NINH (Lai et al., 2015), DSRH (Zhao et al., 2015),

DSCH (Zhang et al., 2015), DRSCH (Zhang et al., 2015), DQN

(Cao et al., 2016), DHN (Zhu et al., 2016), DPSH (Li et al.,

2015), DTSH (Wang et al., 2016), and DSDH (Li et al., 2017).

Although DPSH, DTSH, and DSDH are based on the CNN-F

network and DQN, DHN, and DSRH are based on AlexNet, it is

still comparable since both CNN-F and AlexNet consist of five

convolutional layers and two fully connected layers. Here, most

of the results were directly retrieved from the original papers.

We compare our method to baselines under the following two

experimental settings. For the first setting, we randomly se-

lected 100 images per class (1,000 images in total) as the test

query set and 500 images per class (5,000 images in total) as

the training set in CIFAR-10. For the NUS-WIDE, we ran-

domly sampled 100 images per class (2,100 images in total)

as the test query set and 500 images per class (10,500 images

in total) as the training set. As for the second experimental

setting, in CIFAR-10, 1,000 images per class were selected as

the test query set, and the remaining 50,000 images were used

as the training set. In NUS-WIDE, 100 images per class were

randomly sampled as the test query images, and the remain-

ing 193,734 images were used as the training set. Since NUS-

WIDE contains a large number of images, we only considered

the top 5,000 returned neighbors under the first setting and the

top 50,000 under the second experimental setting when com-

puting MAP for NUS-WIDE.
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Table 1. Mean Average Precision(MAP) under the first experimental setting. The best performance is shown in boldface.

Method
CIFAR-10 NUS-WIDE

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

SH 0.127 0.128 0.126 0.129 0.454 0.406 0.405 0.400

ITQ 0.162 0.169 0.172 0.175 0.452 0.468 0.472 0.477

LFH 0.176 0.231 0.211 0.253 0.571 0.568 0.568 0.585

KSH 0.303 0.337 0.346 0.356 0.556 0.572 0.581 0.588

SDH 0.285 0.329 0.341 0.356 0.568 0.600 0.608 0.637

FastH 0.305 0.349 0.369 0.384 0.621 0.650 0.665 0.687

CNNH 0.439 0.511 0.509 0.522 0.611 0.618 0.625 0.608

NINH 0.552 0.566 0.558 0.581 0.674 0.697 0.713 0.715

DHN 0.555 0.594 0.603 0.621 0.708 0.735 0.748 0.758

DQN 0.554 0.558 0.564 0.580 0.768 0.776 0.783 0.792

DPSH 0.713 0.727 0.744 0.757 0.752 0.790 0.794 0.812

DTSH 0.710 0.750 0.765 0.774 0.773 0.808 0.812 0.824

DSDH 0.740 0.786 0.801 0.820 0.776 0.808 0.820 0.829

DISH 0.738 0.792 0.822 0.841 0.781 0.823 0.837 0.840

Ours 0.771 0.817 0.839 0.858 0.801 0.833 0.849 0.861

Table 2. Mean Average Precision(MAP) under the second experimental setting. The best performance is shown in boldface.

Method
CIFAR-10 NUS-WIDE

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

DSRH 0.608 0.611 0.617 0.618 0.609 0.618 0.621 0.631

DSCH 0.609 0.613 0.617 0.620 0.592 0.597 0.611 0.609

DRSCH 0.615 0.622 0.629 0.631 0.618 0.622 0.623 0.628

DPSH 0.763 0.781 0.795 0.807 0.715 0.722 0.736 0.741

DTSH 0.915 0.923 0.925 0.926 0.756 0.776 0.785 0.799

DSDH 0.935 0.940 0.939 0.939 0.815 0.814 0.820 0.821

DIDH 0.941 0.945 0.948 0.952 0.843 0.849 0.857 0.862

Ours 0.953 0.959 0.961 0.970 0.851 0.859 0.864 0.871

4.2. Results and Analysis

The MAP results of all methods on CIFAR-10 and NUS-

WIDE for the first experimental setting are listed in Table 1.

The table shows that the proposed method substantially outper-

forms all the methods compared. Specifically, we can see that

there is a large margin between deep hashing and traditional

hashing methods on CIFAR-10. Compared to the representative

traditional methods, the MAP results delivered by our method

are more than twice those from SDH, FastH, and ITQ. For the

deep hashing methods, our proposed method considers both su-

pervised information and distribution similarity, so it improves

the performance of DSDH by on average 3.5% for different bit

lengths. These results verify that our similarity and distribution

preserving method is both effective and efficient in obtaining

good binary codes. As for NUS-WIDE, it is also shown that our

method outperforms the other methods compared by about 3%.

Compared to our previous work DISH, the proposed method

gives both better results and a more stable improvement on the

two benchmarks. On the CIFAR-10 dataset, DISH with KL di-

vergence performs poorly with short code length. For example,

for 12 bits it does not outperform DSDH, while with the JS di-

vergence the new method achieves stable and robust retrieval

performance.

An important practical concern is the quality of retrieval re-
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Fig. 2. Precision curve w.r.t top N @64 bits.

sults for the top N returned images. Hence improving the pre-

cision with respect to the top returned samples is an imperative.

Fig. 2 shows the precision curve for the different number of

top returned images with 64-bit hash codes. The experiment

is conducted on CIFAR-10. These methods have overall sta-

ble performance when the number of returned images varies,

and the precision gently converges when more than 800 images

have been returned. In general, our method outperforms the

alternative methods compared.
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Fig. 3. Mean Average Precision(MAP) under the second experimental set-

ting.

We also compare the different hashing methods under the

second experimental setting. This involves a larger sample

of training images. While the deep architecture requires large

amounts of data for training, our method is based on preserv-

ing distributions, and distribution modeling in turn depends to a

large extent on the amount of data available. As a result, more

training images are conducive to the performance of these al-

gorithms. Table 2 lists the MAP results for the different ap-

proaches compared. From the table almost all the deep hashing

methods perform much better than when trained in the first ex-

perimental setting. This means that they are more suitable for

large-scale datasets. With sufficient training data and adequate

guidance by the selected loss function, our method is not only

superior in performance to each of the alternative methods but

also achieves a greater improvement in performance over that

achieved with the first experimental setting.

To further verify the effectiveness of our proposed method,

we compare it with some traditional hashing methods that use

deep features extracted by CNN-F pre-trained on ImageNet.

The results are reported in Fig. 3. We can see that all of the

traditional hashing methods have a significant performance im-

provement when CNN features are used. In particular, the per-

formance of FastH with CNN features on CIFAR-10 is nearly

twice than that obtained with hand-crafted features. However,

there is still a large gap between our method and the traditional

approaches in terms of retrieval performance.

Conclusion

In this paper, we have proposed a novel deep hashing method.

In addition to the commonly used pairwise label information

and classification information, we have introduced the JS diver-

gence to constrain the information loss during the hashing em-

bedding process. This means we can preserve both the local and

global structure of the data. Extensive experiments show that

our method can achieve comparable performance to the state-

of-the-art methods in image retrieval applications. In our future

work, we will extend the probabilistic framework using addi-

tional elements from information theory. For example, using

divergences to measure pairwise similarity would be an inter-

esting direction.
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