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Manuscript
The identity of the dominant microbial symbionts in a forest determines the ability
of trees to access limiting nutrients from atmospheric or soil pools'?, sequester

carbon™ and withstand the impacts of climate change1'6.

Characterizing the global
distribution of symbioses, and identifying the factors that control it, are thus integral to
understanding present and future forest ecosystem functioning. Here we generate the first
spatially explicit global map of forest symbiotic status using a database of over 1.1 million
forest inventory plots with over 28,000 tree species. Our analyses indicate that climatic
variables, and in particular climatically-controlled variation in decomposition rate, are the

primary drivers of the global distribution of major symbioses. We estimate that

ectomycorrhizal (EM) trees, which represent only 2% of all plant species’, constitute
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approximately 60% of tree stems on Earth. EM symbiosis dominates forests where
seasonally cold and dry climates inhibit decomposition, and are the predominant symbiosis
at high latitudes and elevation. In contrast, arbuscular mycorrhizal (AM) trees dominate
aseasonally warm tropical forests and occur with EM trees in temperate biomes where
seasonally warm-and-wet climates enhance decomposition. Continental transitions between
AM and EM dominated forests occur relatively abruptly along climate driven
decomposition gradients, which 1is likely caused by positive plant-microbe
feedbacks. Symbiotic N-fixers, which are insensitive to climatic controls on decomposition
compared with mycorrhizal fungi, are most abundant in arid biomes with alkaline soils
and high maximum temperatures. The climatically driven global symbiosis gradient we
document represents the first spatially-explicit, quantitative understanding of microbial
symbioses at the global scale and demonstrates the critical role of microbial mutualisms in
shaping the distribution of plant species.

Microbial symbionts strongly influence the functioning of forest ecosystems. They
exploit inorganic, organic’ and/or atmospheric forms of nutrients that enable plant growth',
determine how trees respond to elevated CO,°, regulate the respiratory activity of soil
microbes™®, and affect plant species diversity by altering the strength of conspecific negative
density dependence’. Despite growing recognition of the importance of root symbioses for forest

.. 16,10
functioning >

and the potential to integrate symbiotic status into Earth system models that
predict functional changes to the terrestrial biosphere'’, we lack spatially-explicit, quantitative

maps of the different root symbioses at the global scale. Generating these quantitative maps of

tree symbiotic states would link the biogeography of functional traits of belowground microbial
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symbionts with their 3.1 trillion host trees'', spread across Earth’s forests, woodlands, and
savannas.

The dominant guilds of tree root symbionts, arbuscular mycorrhizal (AM) fungi,
ectomycorrhizal (EM) fungi, ericoid mycorrhizal (ErM) fungi, and nitrogen (N)-fixing bacteria
(N-fixer) are all based on the exchange of plant photosynthate for limiting macronutrients. The
AM symbiosis evolved nearly 500 million years ago, with EM, ErM and N-fixer plant taxa
evolving multiple times from an AM basal state. Plants that form the AM symbiosis comprise
nearly 80% of all terrestrial plant species, and principally rely on AM fungi for enhancing
mineral phosphorus (P) uptakelz. In contrast to AM fungi, EM fungi evolved from multiple
lineages of saprotrophic ancestors, and as a result some EM fungi are more capable of mobilizing
organic sources of soil nutrients (particularly nitrogen)®. Association with EM fungi, but not AM
fungi, has been shown to allow trees to accelerate photosynthesis in response to increased
atmospheric CO, when soil nitrogen (N) is limiting® and to inhibit soil respiration by decomposer
microbes™®. Because increased plant photosynthesis and decreased soil respiration both reduce
atmospheric CO, concentrations, the EM symbiosis is associated with buffering the Earth’s
climate against anthropogenic changes.

In contrast to mycorrhizal fungi, which extract nutrients from the soil, symbiotic N-fixers
(Rhizobia and Actinobacteria) convert atmospheric N» to plant-usable forms. Symbiotic N-fixers
are responsible for a large fraction of biological soil-N inputs, which can increase N-availability
in forests where they are locally abundant'’. Both N-fixing bacteria and EM fungi often demand

more plant photosynthate than does the AM symbiosis'>'*"

. Because tree growth and
reproduction are limited by access to inorganic, organic and atmospheric sources of N, the

distribution of root symbioses is likely to reflect both environmental conditions that maximize
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the cost-benefit ratio of symbiotic exchange as well as physiological constraints on different
symbionts.

In one of the earliest efforts to understand the functional biogeography of plant root
symbioses, Sir David Read'® categorically classified biomes by their perceived dominant
mycorrhizal type and hypothesized that seasonal climates favor hosts associating with EM fungi
due to their ability to compete directly for organic N. In contrast, it has been proposed that
sensitivity to low temperatures has prevented N-fixers from dominating outside the tropics,
despite the potential for N-fixation to alleviate N-limitation in boreal forests''’. However,
global scale tests of these proposed biogeographic patterns and their climate drivers are lacking.
To address this research gap, we compiled the first global ground-sourced survey database to
reveal numerical abundances of each symbiosis across the globe, which is essential for
identifying the potential mechanisms underlying transitions in forest symbiotic state along
climatic gradients'®".

We determined the abundance of tree symbioses using GFBI, an extension from the plot-
based Global Forest Biodiversity (GFB) database, which contains over 1.1 million forest
inventory plots of individual-based measurement records from which we derive abundance
information for entire tree communities (Figure 1). Using published literature on the
evolutionary histories of mycorrhizal and N-fixer symbioses, we assigned plant species from the
GFBi to one of 5 symbiotic guilds: AM, EM, ErM, N-fixer, and non- or weakly-mycorrhizal
(NM). We then used the random forest algorithm with K-fold cross validation to determine the
importance and influence of variables related to climate, soil chemistry, vegetation, and
topography on the relative abundance of each tree-symbiotic guild (Figure 2). Because

decomposition is the dominant process by which soil nutrients become available to plants, we
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calculated annual and quarterly decomposition coefficients according to the Yasso07 model®,
which describes how temperature and precipitation gradients influence mass-loss rates of
different chemical pools of leaf litter (with parameters fit using a previous global study of leaf
decomposition, Figures 3, S5). Finally, we projected our predictive models across the globe over
the extent global biomes that fell within the multivariate distribution of our model training data
(Figures 4, S14-15, see Methods for full description).

Our analysis shows that the three most numerically abundant tree symbiotic guilds each
have reliable environmental signatures, with the four most important predictors accounting for
81, 79, and 52% of the total variability in EM, AM, and N-fixer relative basal area, respectively.
Models for ErM and NM lack strong predictive power given the relative rarity of these symbiotic
states amongst trees, although the raw data do identify some local abundance hotspots for ErtM
(Figure S1). As a result, we focus the remainder of results and discussion on the three major tree
symbiotic states (EM, AM, N-fixer). Despite the fact that data from N. and S. America constitute
65% of the training data (at the 1 by 1 degree grid scale), our models accurately predict the
proportional abundances of the three major symbioses across all major geographic regions
(Figure S10). The high performance of our models, which is robust to both K-fold cross-
validation and rarefying samples so that all continents are represented with equal depth (Figures
S11-12), suggest that regional variations in climate (including indirect effects on decomposition)
and soil pH (for N-fixers) are the primary factors influencing the relative dominance of each
guild at the global scale (geographic origin only explained ~2-5% of the variability in residual
relative abundance) (Table S8, Figure S10).

Whereas a recent global analysis of root traits concluded that plant evolution has favored

reduced dependence on mycorrhizal fungi®', we find that trees associating with the relatively
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more C-demanding and recently-derived EM fungi'*'* represent the dominant tree-symbiosis.
By taking the average proportion of EM trees, weighted by spatially-explicit global predictions
for tree stem density'', we estimate that approximately 60% of trees on earth are EM, despite the
fact that only 2% of plant species associate with EM fungi (vs. 80% associating with AM fungi)’.
Outside of the tropics, the estimate for EM relative abundance increases to approximately 80%
of trees.

Turnover among the major symbiotic guilds results in a tri-modal latitudinal abundance
gradient, with the proportion of EM trees increasing (and AM trees decreasing) with distance
from the equator, while the upper-quantiles of N-fixing trees reach peak abundance in the arid
zone around 30 degrees (Figure 3A, Figure 4). These trends are driven by abrupt transitional
regions along continental climatic gradients (Figure 2), which skew the distribution of symbioses
among biomes (Figure 3A) and drive strong patterns across geographic and topographic features
that influence climate. Moving north or south from the equator, the first transitional zone
separates warm (aseasonal), AM-dominated, tropical broadleaf forests (>75% median basal area,
vs. 8% for EM trees) from the rest of the EM-dominated world forest system (Figure 2AB;
Figure 3A). The transition zone occurs across the globe around 25 degrees N and S latitude, just
beyond the dry tropical broadleaf forests (with 25% EM tree basal area; Figure 3A), where
average monthly temperature variation reaches 3-5°C (temperature seasonality, Figure 2AB).

Moving further N or S, the second transitional climate zone separates regions where
decomposition coefficients during the warmest quarter of the year are less than 2 (see Figure 3B
for the associated temperature and precipitation ranges). In N. America and China, this transition
zone occurs around 50 degrees N, separating the mixed AM / EM temperate forests from their

neighboring EM dominated boreal forests (75 vs 100% EM tree basal area, respectively; Figure
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3A). This transitional decomposition zone bypasses W. Europe, which has temperature
seasonality > 5°C, but lacks sufficiently wet summers to accelerate decomposition coefficients
beyond values associated with mixed AM/EM forests. The latitudinal transitions in symbiotic
state observed among biomes are mirrored by within-biome transitions along elevation gradients.
For example, in tropical Mexico, warm and wet quarter decomposition coefficients < 2 occur
along the slopes of the Sierra Madre, where mixed AM-exclusive and N-fixer woodlands in arid
climates transition to EM dominated tropical coniferous forests (75% basal area, Figure 3A,
Figure 4ABC, Figure S16-18). The southern hemisphere, which lacks the landmass to support
extensive boreal forests, experiences a similar latitudinal transition in decomposition rates along
the ecotone separating its tropical and temperate biomes, around 28 degrees S.

The abrupt transitions that we detected between forest symbiotic states along
environmental gradients suggest that positive feedbacks may exist between climatic and

biological controls of decomposition'®*’

. In contrast to AM fungi, some EM fungi can use
oxidative enzymes to mineralize organic nutrients from leaf litter, converting nutrients to plant-
usable forms™. Relative to AM trees, the leaf litter of EM trees is also chemically more resistant
to decomposition, with higher C:N ratios and higher concentrations of decomposition-inhibiting
secondary compounds'’. Thus, EM leaf litter can exacerbate climatic barriers to decomposition,
promoting conditions where EM fungi have superior nutrient-acquiring abilities to AM-fungi>'.
A recent game theoretical model has shown that positive plant-soil-nutrient feedbacks can lead to
local bistability in mycorrhizal symbiosis*. Such positive-feedbacks are also known to cause
abrupt ecosystem transitions along smooth environmental gradients between woodlands and

grasses: trees suppress fires, which promotes seedling recruitment, while grass fuels fires, which

kill tree seedlings™. The existence of abrupt transitions also suggests that forests in transitional
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regions along decomposition gradients should be susceptible to drastic turnover in symbiotic
state with future environmental changesB.

To illustrate the sensitivity of global patterns of tree symbiosis to climate change, we use
the relationships we developed for current climate to project potential changes in forest
symbiotic status in the future. Relative to our global predictions using the most recent climate
data, model predictions using the projected climates for 2070 suggest the abundance of EM trees
will decline by as much as 10% (using a relative concentration pathway of 8.5 W/m?®; Figure
S24). Due to their position along decomposition gradients relative to the abrupt shift from EM to
AM forests (Figure 2AB), our models predict the largest declines in EM abundance will occur
along the boreal-temperate ecotone, although this model does not estimate the time lags between
climate change and forest community responses. The predicted decline in EM trees corroborates
the results of common garden transfer and simulated warming experiments, which demonstrate
that some important EM hosts will decline at the boreal-temperate ecotone in altered climates™.

The change in dominant nutrient exchange symbioses along climate gradients highlights
the interconnection between atmospheric and soil compartments of the biosphere. The transition
from AM to EM dominance corresponds with a shift from P to N limitation of plant growth with

- - L2526
increasing latitude™

. Including published global projections of total soil N or P, microbial N,
or soil P fractions (labile, occluded, organic, and apatite) did not increase the amount of variation
explained by the model or alter the variables identified as most important, and thus were dropped
from our analysis. However, our finding that climatic controls of decomposition best predict the
dominant mycorrhizal associations mechanistically links symbiont physiology with climatic

controls of soil nutrient release from leaf litter. These findings are consistent with Read’s

hypothesis'® that slow decomposition at high latitudes favors EM fungi due to their increased
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capacity to liberate organic nutrients®. Thus, while more experiments are necessary to understand
the specific mechanism by which nutrient competition favors dominance of AM or EM
symbioseslg, we propose that the latitudinal and elevational transitions from AM to EM
dominated forests be called Read’s Rule.

While our analyses focus on prediction at large spatial scales appropriate to the available
data, our findings with respect to Read’s Rule also provide insight into how soil factors structure
the fine-scale distributions of tree symbioses within our grid cells. For example, while at a coarse
scale we find that EM trees are relatively rare in many wet tropical forests, individual tropical
sites in our raw data span the full range from 0 — 100 % EM basal area. In much of the wet
tropics, these EM dominated sites exist as outliers within a matrix of predominantly AM trees. In
an apparent exception that proves Read’s Rule, in aseasonal warm neotropical climates, which
accelerate leaf-decomposition and promote regional AM dominance (Figure 3), EM dominated
tree stands can develop in sites where poor soils and recalcitrant litter slow decomposition and N

. .. 1827
mineralization

. Landscape-scale variation in the relative abundance of symbiotic states also
changes along climate gradients, with variability highest in xeric and temperate biomes (Figure
S3-4), suggesting that the potential of local nutrient variability to favor particular symbioses is
contingent on climate.

Whereas EM trees are associated with ecosystems where plant growth is thought to be
primarily N-limited, N-fixer trees are not. Our results highlight the global extent of the “N-
cycling paradox,” wherein some metrics suggest that N-limitation is greater in the temperate
zone™*®, yet N-fixing trees are relatively more common in the tropics'>*® (Figure 3A). We find

that N-fixers, which we estimate represent 7% of all trees, dominate forests with annual max

temperatures >35°C and alkaline soils (particularly in North America and Africa, Figure 2C).
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They have the highest relative abundance in xeric shrublands (24%), tropical savannas (21%),
and dry broadleaf forest biomes (20%), but are nearly absent from boreal forests (<1%) (Figure
3A, Figure 4). The decline in N-fixer tree abundance we observed with increasing latitude is also
associated with a previously documented latitudinal shift in the identity of N-fixing microbes,
from facultative N-fixing rhizobial bacteria in tropical forests to obligate N-fixing actinorhizal
bacteria in temperate forests®. Our data are not capable of fully disentangling the several
hypotheses that have been proposed to reconcile the N-cycling paradox'’. However, our results
are consistent with the model prediction'” and regional empirical evidence'**° that N-fixing
trees are particularly important in arid biomes. Based primarily on the observed positive,
nonlinear association of N-fixer relative abundance with the mean temperature of the hottest
month (Figure 2C), our models predict a two-fold increase in N-fixer relative abundance when
transitioning from humid to dry tropical forest biomes (Figure 3A).

Although soil microbes are a dominant component of forests, both in terms of diversity

.. 56,10
and ecosystem functioning™”

, identifying global-scale microbial biogeographic patterns
remains an ongoing research priority. Our analyses confirm that Read’s Rule, which is one of the
first proposed biogeographic rules specific to microbial symbioses, successfully describes global
transitions between mycorrhizal guilds. More generally, climate driven turnover among the
major plant-microbe symbioses represents a fundamental biological pattern in the Earth system,
as forests transition from low-latitude arbuscular mycorrhizal, to N-fixer, to high-latitude
ectomycorrhizal ecosystems. The predictions of our model (which we make available as a global
raster layer) can now be used to represent these critical ecosystem variations in global

biogeochemical models used to predict climate-biogeochemical feedbacks within and between

trees, soils, and the atmosphere. Additionally, the layer containing the proportion of N-fixing
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trees can be used to map potential symbiotic N-fixation, which links together atmospheric pools

of C and N. Future work can extend our findings to incorporate multiple plant growth forms and

non-forested biomes, where similar patterns likely exist, to generate a complete global

perspective. Our predictive maps leverage the most comprehensive global forest dataset to

generate the first quantitative global map of forest tree symbioses, demonstrating how nutritional

mutualisms are coupled with the global distribution of plant communities.
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Figure 1. The global distribution of GFBIi training data. The global map has n=2,768 grid
cells at a 1 x 1 degree latitude/longitude resolution. Cells are colored in the red, green and
blue spectrum according to the % of total tree basal area occupied by N-fixer, AM, and
EM tree symbiotic guilds, as indicated by the ternary plot. Grey cells show the global

distribution of forests where we make model projections.

Figure 2. A small number of environmental variables predict the majority of global
turnover in forest symbiotic status. Panels show the partial feature contrbutions of
different environmental variables on forest symbiotic state. Each row plots the shape of the
contribution of the four most important predictors of the proportion of tree basal area
belonging to the (a) ectomycorrhizal (EM), (b) arbuscular mycorrhizal (AM), and (c) N-
fixer symbiotic guilds (n=2,768). Variables are listed in declining importance from left to
right, as determined by inc node purity, with points colored with a red-green-blue gradient
according to their position on the x-axis of the most important variable (left-most panels
for each guild), allowing cross visualization between predictors. Each panel lists two
measures of variable importance, inc node purity (used for sorting) and %IncMSE (see
Supplemental Information for description). The abundance of each symbiont type
transitions sharply along climatic gradients, suggesting that sites near the threshold are

particularly vulnerable to switching their dominant symbiont guild with climate changes.

Figure 3. The distribution of forest symbiotic status across biomes is related to climatic

controls over decomposition. (a) Biome level summaries of the median +/- 1 quartile of the

predicted % tree basal area per biome for ectomycorrhizal (EM), arbuscular mycorrhizal
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(AM), and N-fixer symbiotic guilds (n=100 random samples per biome). (b) The
dependency of decomposition coefficients (k, solid and dotted lines) on temperature and
precipitation during the warmest quarter with respect to predicted dominance of
mycorrhizal symbiosis. The transition from AM forests to EM forests between k=1 and 2 is
abrupt, which is consistent with positive feedback between climatic and biological controls

of decomposition.

Figure 4. Global maps of predicted forest tree symbiotic state. Maps (left) and latitudinal
gradients (right, with solid line indicating the median and colored ribbon spanning the
range from the 5% and 95% quantiles) of the % of tree basal area for (a) ectomycorrhizal
(EM), (b) arbuscular mycorrhizal (AM), and (c) N-fixer symbiotic guilds. All projections
are displayed a 0.5 by 0.5 degree lat/long scale with n=28,454.
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Methods

We quantified the relative abundance of tree symbiotic guilds across >1.1 million forest
census plots combined in the GFBi database, an extension from the plot-based Global Forest
Biodiversity (GF B*!) database. The GFBi database consists of individual-based data that we
compiled from all the regional and national GFBIi forest inventory data sets. The standardized
GFBi data frame, i.e. tree list, comprises tree ID, a unique number assigned to each individual
tree; plot ID, a unique string assigned to each plot; plot coordinates, in decimal degrees of

WGS84 datum; tree size, in diameter-at-breast-height; trees-per-hectare expansion factor; year of
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measurement; data set name, a unique number assigned to each forest inventory data set; and
binomial scientific tree species names.

We error checked all species names from different forest inventory data sets in three
steps. First, we extracted scientific names from original data sets, keeping only the names of
genus and species (authority names are removed). Next, we compiled all the species names into
five general species lists, one for each continent. Finally, we verified individual species names
against 23 online taxonomic databases using the ‘taxize’ package of R programming 1anguage32.
We assigned each morphospecies a unique name comprising the genus, the string “spp”,
followed by the data set name and a unique number for that species. For example, “Picea
sppCNil” and “Picea sppCNi2” represent two different species under the genus “Picea”,
observed in the first Chinese data set (CNi).

We derived plot-level abundance information in terms of species abundance matrices.
Each species abundance matrix consisted of the number of individuals by species (column
vectors) within individual sample plots (row vectors). In addition, key plot-level information was
also added to the matrices, including plot ID, data set name, plot coordinates, the year of
measurement, and basal area, i.e. the total cross-sectional areas (m”) of living trees per one
hectare of ground area.

Tree genera were assigned to a plant family using a plant taxonomy lookup table

generated by Will Cornwell (hosted on Github https://github.com/traitecoevo/taxonlookup),

which uses the accepted taxonomy from “The Plant List.” The majority (96.5%) of genera from
the GFBIi species were successfully matched to family; for those that could not be assigned, we
manually checked the GFBi genus and species against synonyms from The Plant List. Of the

remaining 1,038 mismatches, an additional 440 were assigned to family either by updating older
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genera and species names with their more recent synonyms or else by correcting obvious
misspellings. The remaining 598 entries that could not be matched to family were excluded from
analysis.

We used a taxonomically-informed approach to assign symbiotic states to plant species
from the GFBi. Plant species were assigned to one of 5 symbiotic guilds — ectomycorrhizal
(EM), arbuscular mycorrhizal (AM), ericoid mycorrhizal (ErM), weakly AM or non-mycorrhizal
(AMNM), or N-fixer (Table S1). Although we did not model the relative abundance of ErM
trees, due to their rarity, we have included a map of their relative abundance from our grid
(Figure S1). We also include as a supplementary file the full species list, which includes columns
used to assign species to guild. In addition, we include here a list of families and genera assigned
to all guilds except AM (Tables S2-5) with notes for cases of species from individual genera that
were either assigned to two guilds simultaneously (e.g., A/nus is an N-fixer and EM) or where
species from individual genera were split between two different guilds (e.g., some Pisonia sp. are
weakly AM and some are EM). An AM summary table is excluded for length considerations—
the same information is available in the Supplementary File “SymbioticGuildAssignment.csv”.

The taxonomy of species in our inventory was compared with recently published
literature on the evolutionary history of mycorrhizal symbiosis’**~* and N-fixation®>®. Most
species symbiotic status could be reliably assigned at the genus (e.g. Dicymbe) or family level
(e.g. Pinaceae). For the few groups where status was unreliable or variable within a genus (e.g.
Pisonia) we conducted additional literature searches.

We assigned species to the EM category in three stages. First, at the family level (e.g.,
Pinaceae); next, as the genus level (e.g., Dicymbe); and finally, using literature searches for

unclear genera. For example, for the genus Pisonia, some species are AM and others are EM. We

26



843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

used a published list from Hayward & Hynson (2014)* to sort species into the appropriate guild.
For the genus Acacia, we followed Brundrett (2017) in assuming that only endemic Australian
species associate with EM, while all others are AM (we sorted Acacia species according to

provenance using http://worldwidewattle.com/).

The AMNM category lumped together all genera of terrestrial, non-epiphytic plants that
either lack arbuscular mycorrhizal fungi (AMF), or have low or inconsistent records of AMF
colonization of roots. For example, although there are some published records of AMF
colonization in the roots of Proteaceae, these records are inconsistent, and colonization is
generally low. Further, as Proteaceae are associated with a non-mycorrhizal root morphology
(the “cluster” or “proteoid root system”) that allows them to access otherwise unavailable forms
of soil nutrients*, we placed the entire family within AMNM. The family Urticaceae, which we
also characterized as AMNM, was somewhat problematic — early-successional species from
tropical forests, such as those in the genus Cecropia, have records of both low and absent AMF
colonization*'. Our approach was to use the most broadly inclusive AMNM categorization.

N-fixer status was assigned at the genus level, using previously compiled databases of
global symbiotic N»-fixation’>*®. Given that symbiotic N,-fixation with rhizobial or Frankia
bacteria has only evolved in four orders (Rosales, Cucurbitales, Fabales and Fagales)®, all
species outside of this nitrogen-fixing clade were assigned non-fixing status. Some species could
not be assigned a N-fixer status because they were typed to a higher taxonomic level (e.g.
family) that is ambiguous from a N-fixer status perspective. We recorded when our assignment
of N-fixer status was based on phylogenetic criteria but where symbiotic N-fixation is
evolutionarily labile. Since these cases are more likely to be misassigned we excluded them from

the N-fixation category. The N-fixer group contains species that are colonized by AMF (e.g.,
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most genera from Leguminosae) and others that are colonized by ectomycorrhizal fungi (e.g.,
Alnus sp.).

Most plant species form AM symbiosis, which is the basal symbiotic state to the later
derived EM and N-fixing symbioses. Further, many EM and N-fixing plants maintain the ability
to form AM symbiosis. Thus, a tree species is most likely AM if it does not form associations
with another symbiotic guild (or forgoes root symbiosis entirely), as evidenced by their inclusion

in exhaustive databases of plant symbiotic state’~>>**

. In keeping with other large-scale studies
in the field (e.g. **), we assigned tree species from the GFBi database to an AM-exclusive state if
they belonged to taxa that were not matched to EM, ErM, non-or-weakly mycorrhizal or N-fixer
symbioses. Thus, the AM and N-fixer groups in our dataset are non-overlapping despite the fact
that most N-fixers also associate with AM fungi.

The proportions of tree basal area and tree individuals were aggregated to a 1’ by 1°
degree grid by taking the weighted average of the plot-level proportions (Table S6). This resulted
in a total of 2,768 grid cells, each with a score for the proportional abundance of EM, AM, N-
fixer, ErM, and AMNM trees. We calculated two measures of relative abundance for each
symbiotic guild: proportion of tree stems and proportion of tree basal area. Because the
measurements are highly correlated with one another (Figure S2) we chose to model only
proportion of total tree basal area, which should scale more approximately to proportion of tree
biomass as it accounts for differences in size among individual stems. Additionally, we
quantified variability among plots within each grid cell by calculating the weighted standard
deviation across the grid (Supplemental Information, Figure S3-4).

To identify the key factors structuring symbiotic distributions we assembled 70 global

predictor layers: 19 climatic (annual, monthly, and quarterly temperature and precipitation
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variables), 14 soil chemical (total soil N density, microbial N, C:N ratios and soil P fractions,
pH, cation exchange capacity), 5 soil physical (soil texture and bulk density), 26 vegetative
indices (leaf area index, total stem density, enhanced vegetation index means and variances), and
5 topographic variables (elevation, hillshade) (Table S7). Because decomposition is the dominant
process by which soil nutrients become available to plants, we generated 5 additional layers that
estimate the climatic control of decomposition. We parameterized decomposition coefficients
according to the Yasso07 model** using the following equation:

k= Exp(0.0957T; - 0.00014 T (1-Exp[ -1.21 P}]), (1)
where P; and T; are precipitation and mean temperature, either quarterly or annually, and the
constants 0.0095 (=4,) -0.00014 (=f,) , and -1.21 (=y) are parameters fit using a previous global
study of leaf litter mass-loss™. Although local decomposition rates can vary significantly based
on litter quality or microbial community composition*’, climate is the primary control at the
global scale”. Decomposition coefficients describe how fast different chemical pools of leaf
litter lose mass over time relative to a parameter, a, that accounts for leaf-chemistry.
Decomposition coefficients (k) with values of 0.5 and 2 indicate a halving and doubling of
decomposition rates relative to a, respectively (Supplemental Information, Figure S5).

We implemented the random forest algorithm using the “randomForest” packaged in R.
Random forest models average over multiple regression trees, each of which uses a random
subset of all the model variables to predict a response. We first determined the influence and
relationship of all 75 predictor layers on forest symbiotic state and then optimized our models
using a stepwise reduction in variables, from least- to most-important. Variable importance was
measured in two ways: Inc Node Purity and %IncMSE (with values reported in each panel of

Figure 2). The inc node purity of variable x considers the decrease in the residual sum of squares
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that results from splitting regression trees using variable x. %IncMSE (mean square error)
quantifies the increase in model error as a result of randomly shuffling the order of values in the
vector X. We chose to rank variables according to inc node purity because we found that higher
inc node purities were associated with larger effect sizes, whereas larger %IncMSE were
associated with more linear responses of smaller effect. Whereas our inspection of partial feature
contributions is derived from univariate random forest models, we additionally ran multivariate
random forests the predict the proportional abundance of EM, AM, and N-fixer trees for each
pixel. The multivariate models were run using 50-regression trees each, with the unique set of the
best 4 predictor variables for each symbiotic guild in the univariate models (Table S7, Figure 2).
Despite strong negative correlations between the proportions of EM and AM basal area (Figure
S22), the results from multivariate and univariate random forests are strongly correlated with one
another (Figure S23).

Using model selection based on eliminating variables with low Inc Node Purity, we
removed most soil nutrient, vegetative, and topographic variables from our models (Figure S6-
7). Our final models include the remaining 34 predictor layers with climate, decomposition, and
certain soil physical and chemical information (Figure S8). To determine the parsimony of our
models, we compared the coefficient of determination in models run with a stepwise reduction in
the number of variables (starting with those with the lowest Inc Node Purity). Based on
performance of the ratio of coefficient of determination in models with 4 vs 34 variables, we
determined that the 4 most important variables accounted for >85% of the explained variability
(Figure S9). We also compared model performance visually with plots of actual vs predicted
proportions of each tree symbiotic guild among continents and geographic subregions (Figure

S10). We used the “forestFloor” packaged in R to plot the partial variable response of tree
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symbiotic guilds to each predictor variable (Figure 2ABC, see Figure S19-21 for partial plots of
the partial feature contributions of all 34 variables).

In order to test the sensitivity of model performance and predictions, we performed cross
validation in R using the “rfUtilities” package™*. K-fold cross validation tests the sensitivity of
model predictions to losing random subsets from the training data. For EM, AM, and N-fixer
models we ran 99 iterations that withheld 10% of the model training data. We assessed the drop
in model performance in the 99 iterations by manually calculating the coefficient of
determination, which uses the following formula: 1 —X (actual % basal area — predicted % basal
area)” / ¥ (actual % basal area — mean actual % basal area)’. For all symbiotic guilds,
withholding 10% of the training data resulted in a mean loss in variance explained of less than
1% (Figure S11). This shows that our training data has sufficient redundancy to ensure that our
model conclusions are robust. Similarly, to determine whether our random forest models would
make similar predictions if data were equally distributed among continents, we rarefied our
aggregated grid of symbiotic states and predictor layers to an even depth. Specifically, we sub-
sampled all continents — N. America (including Central America and the Caribbean), S. America,
Europe, Asia, and Oceania — to match the number of grid-pixels from Africa (n=50). This is a
much more aggressive reduction of training data than is typically used in K-fold cross
validations, as it involves dropping ~90% of training data rather than retaining the same amount.
We performed 99 iterations of rarefaction each for the three symbiotic guilds. On average,
models run with the rarefied data explained about 10% less variance over the full training data
(the entire predictor / response grid) than did models run with all of the training data (Figure

S12-13).
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To avoid projecting our random forest models outside the ranges of their training data
(e.g., grid cells with higher mean annual temperatures than the maximum used to fit the models),
we subset a global grid of predictor layers depending on whether (1) the grid cell fell within the
top 60% of land surface with respect to tree stem density'' and either (2) fell within the
univariate distribution of all the predictor layers from our training data and/or (3) fell within an
8-dimensional hypervolume defined by the unique set of the 4-best predictors of the relative
abundance of each guild (Figure S14). We then projected our models across only those grid cells
that met these criteria, which constitutes 46% of the global land surface and 88% of global tree
stems (Figure 1; Figure S15). Model projections were made at two resolutions: both 1 by 1
degree and 0.5 by 0.5 degree resolution (Figure 4). While model validation indicates that our
projections are robust, additional ground truthing of predictions to identify any discrepancies
would be incredibly valuable. If such discrepancies exist they can help fine tune climate-
symbiosis models, or identify areas where climate might favour invasion by symbioses that have
not yet evolved or dispersed to a particular biogeographic region.

We used the following equation to estimate the % of global tree stems that belong to
each tree symbiotic guild: %; (predicted proportion of trees of guild g in pixel i) x (total number
of tree stems in pixel i) / X; (total number of tree stems in pixel i). The proportion of tree stems
and the proportion of tree basal area in each guild are highly correlated throughout the training
data (Figure S4). The figures cited in the main text for each guild were calculated using model
projections across all pixels, even those that did not meet the criteria for model projection
because they fell outside the multivariate distribution of the predictor layers or had insufficient
stem density. However, our estimates for the global % of trees occupied by each tree symbiotic

guild change by <1% when using only those pixels that met our criteria for model projection.
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In the main manuscript we state that sharp transitions between dominant symbiotic states
with climate variables could lead to declines in EM trees, particularly in southern boreal forests.
To determine this, we projected our random forest models for each symbiotic guild using climate
change projections over our 19 bioclimatic variables (Table S7), including the decomposition
coefficients that use temperature and precipitation values. Specifically, we considered the 2070
scenario with a relative concentration pathway (RCP) of 8.5 (W/m?), which predicts an increase
of greenhouse gas emissions throughout the 21% century®. We plot difference in the proportion
of forest basal area between the projections for 2070 and those using current climate data (Table
S7, Figure S24). We qualify this prediction with the note that vegetative changes to forests are
constrained by rates of mortality, recruitment, and growth.

After training and cross-validating our models with GFBi data exclusively, we
additionally tested whether our models accurately predicted the symbiotic state of Eurasian
forests previously published by Schepaschenko et al. (2017)*. We assigned symbiotic status to
all trees in Schepaschenko et al. (2017) and aggregated plot level data to a 1 by 1 degree grid
using the same methods as with the GFBi dataset (Figure S25). We found that, on average, our
models predicted the symbiotic state in the regional dataset within 13.6% of the value of this
other dataset (Figure S26). For projected maps in Figure 4abc, we included the Schepaschenko et

al. (2017) data with the GFBI training data to increase geographic coverage throughout Eurasia.
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