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Abstract 

1. Variation in temperature at a fine spatial scale creates critically important microclimates 

for many organisms. Quantifying thermal heterogeneity at this scale is challenging and, 

until recently, has been largely restricted to the use of dataloggers to record air 

temperature. Thermography is becoming an increasingly viable alternative. A single 

photo from a thermal imaging camera contains thousands of spatially explicit surface 

temperature measurements, making thermal cameras ideal for rapidly assessing 

temperature variation at fine scale. 

2. Here, we present an R package – ThermStats – for processing thermal images and other 
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gridded temperature data. The package addresses current constraints on applying 

thermography in ecology, by speeding up and simplifying the extraction of data from 

thermal images, and by facilitating the calculation of different metrics of thermal 

heterogeneity. The metrics capture both the frequency distribution and spatial patterns of 

temperature, and the package functions are designed to accommodate different sampling 

strategies and data in either matrix or raster format. 

3. We demonstrate how ThermStats can be used to capture temperature variation at fine 

spatial scales in structurally complex habitat, such as tropical rainforest. Using thermal 

images collected in the field (~0.5 cm2 resolution), we found that thermal hetereogeneity 

varied little between primary and logged forest, but did vary with time of day. 

Comparing temperature extremes in a microclimate layer estimated from LIght 

Detection And Ranging (LIDAR) data (2,500 m2 resolution), we found that both hot and 

cold extremes were hotter inside oil palm plantations than in the neighbouring forest. 

4. Our package simplifies the processing of thermal data, and our metrics capture key 

spatiotemporal temperature trends that underpin physiological, behavioural and 

demographic responses to environmental change. As such, ThermStats can advance a 

wide range of studies requiring fine-scale surface temperature data for microclimate 

investigations. 

 

Introduction 

Temperature variation over spatial scales of mm to m has a central role in the ecology of 

many species. For small organisms, this is the scale at which nearly all thermal experiences 

will occur (Potter, Arthur Woods, & Pincebourde, 2013). Mobile species utilise fine-scale 
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thermal heterogeneity on a daily basis to avoid or exploit extremes of heat. Over longer time 

periods, climate at this scale (‘microclimate’) can also maximise fitness and thus influence 

the fine-scale distribution of less mobile species (Maclean, Suggitt, Wilson, Duffy, & Bennie, 

2017). Species can persist within ‘microrefugia’ where climatic conditions are otherwise 

unsuitable, potentially maintaining higher overall biodiversity in thermally heterogenous 

habitats (Hannah et al., 2014). The same mechanisms underlying fine-scale thermoregulation 

and thermal microrefugia could temper species’ exposure to global climate change 

(Scheffers, Evans, Williams, & Edwards, 2014; Suggitt et al., 2018), especially in structurally 

complex habitats such as tropical rainforests (Scheffers et al., 2017). To understand and 

predict species’ responses to temperature change we must therefore be able to efficiently 

capture thermal heterogeneity at fine spatial scales, but there are challenges associated with 

acquiring and analysing temperature data at this resolution. 

 

While dataloggers remain instrumental in the field of thermal ecology (Bramer et al., 2018), 

technological advances in recent years have made thermal cameras an increasingly affordable 

and practical addition (Faye, Rebaudo, Yánez-Cajo, Cauvy-Fraunié, & Dangles, 2016; 

Scheffers et al., 2017). With one click a single thermal image provides thousands of spatially 

explicit surface temperature measurements at the mm-cm scale. To make the most of the 

wealth of data provided by thermal imagery, ecologists need some understanding of infrared 

technology and its limitations, as well as simple tools that enable a clear and reproducible 

workflow from potentially thousands of raw images through to simple summary statistics 

relevant to the biological questions of interest. 
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Extracting data from thermal images is rarely straightforward. Raw data can be difficult to 

access, the processing steps unclear, and parameters such as emissivity can strongly influence 

the accuracy of measurements, but may not be well understood by the novice user (Bramer et 

al., 2018). The extraction of data from FLIR thermal cameras specifically (one of the most 

commonly used brands) can be achieved using the freely available FLIR Tools software 

(https://www.flir.com/products/flir-tools; cf. Scheffers et al., 2017), but cannot be done in 

batch and the automatic conversion of raw values to temperature lacks transparency. The 

process was simplified by the development of the Thermimage package (Tattersall, 2017) in R 

(R Core Team, 2018). However, Thermimage still does not directly facilitate batch processing, 

nor does it calculate (or suggest) what metrics best capture spatiotemporal temperature 

variation. We present the package ThermStats to extend the functionality of Thermimage to 

meet the needs of ecologists: allowing hundreds of images to be processed with ease, and 

summarising data in terms of variables that matter to individual organisms. 

 

The most appropriate metrics to quantify thermal heterogeneity will depend on the taxonomic 

group and research questions of interest. Temperature varies across time and space in many 

ways that can easily be captured by thermal images; it is important to exploit the information 

provided without becoming overwhelmed. Both Shi, Wen, Paull, & Guo (2016) and Faye et 

al. (2016) provide a useful summary of some important metrics, and Faye et al. (2016) 

introduce a spatial component by borrowing metrics from landscape ecology, such as Shape 

Index and Cohesion Index (McGarigal, Cushman, & Ene, 2012). Extending this approach 

reveals other relevant techniques, such as hot spot analysis (Getis & Ord, 1996) and 

connectivity (McGuire, Lawler, McRae, & Theobald, 2016). Together this suite of metrics 

provide a powerful way for ecologists to characterise temperature variation. 
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ThermStats integrates ideas, techniques and metrics from previous work into one simple 

framework for quantifying thermal hetereogeneity. ThermStats alleviates two key constraints 

on the application of thermography in ecology: 

1. Automates and speeds up the extraction and conversion of raw data from (FLIR) thermal 

images. 

2. Provides a variety of tools to calculate metrics of thermal heterogeneity using any 

gridded temperature data. 

We illustrate the utility of our package using temperature data for the island of Borneo, 

including thermal images collected in the field using a FLIR thermal camera, and a coarser 

resolution microclimate layer estimated using LIDAR data (Jucker et al., 2018). 

 

Functionality 

Step 1: Thermal image collection 

Surface temperature measurements at high spatial resolution can easily be collected in the 

field using a handheld thermal camera. We used a FLIR model E40 camera, which costs 

~US$4,000, weighs 825 g, and takes 19,200 measurements (160 x 120 pixels) in a single 

photo (FLIR, 2016; Scheffers et al., 2017). Various other models exist, including the smaller 

and more affordable FLIR ONE smartphone attachment at ~US$300, 34.5 g and a resolution 

of 80 x 60 pixels. While FLIR cameras appear to be the most widely used it should be noted 

that other brands are available, such as Optris and testo. Currently ThermStats cannot directly 

extract data from other camera models, but readers are welcome to request enhancements via 

GitHub (https://github.com/rasenior/ThermStats/issues). 
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As with any field study, the sampling design should aim to achieve sufficient coverage over 

the study area and over time, such that the images are representative samples of the 

treatments of interest. For example, a single image of the ground from 1 m away 

encompasses an area of 0.9 x 1.1 m (1 pixel ≅ 0.5 cm2) using a FLIR E40 camera (FLIR, 

2016), and so it may be necessary to take multiple photos in different cardinal directions and 

at different times of day to effectively represent the temperature of a study plot (Scheffers et 

al., 2017; Senior, Hill, Benedick, & Edwards, 2018). 

 

Before any data are collected, we recommend users familiarise themselves with the 

technology (for a thorough review, see Tattersall, 2016). There are various sources of the 

infrared radiation detected by a thermal camera, but we want to focus only on the radiation 

emitted by the object or scene of interest, which is a function of its temperature. The amount 

of radiation emitted by a particular object, for a given temperature, depends on its emissivity. 

A perfect blackbody has an emissivity of 1, while surfaces that an ecologist is likely to 

photograph typically have an emissivity from 0.92 (for dry, bare soil; FLIR, 2016) to 0.99 

(for green broadleaf forest; Snyder, Wan, Zhang, & Feng, 1998). Additionally, the 

temperature and relative humidity of the atmosphere and the distance between the object and 

the camera will affect (1) the amount of emitted radiation that is absorbed by the atmosphere 

and (2) the amount of background radiation, with some of this also being reflected by the 

object (reflected apparent temperature). 

 

To accurately quantify surface temperature, environmental parameters (emissivity, reflected 

apparent temperature, atmospheric temperature, atmospheric relative humidity and object 

distance) can be set in the camera or defined during data processing (see ‘Step 3: Conversion 
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of raw data’). In the latter approach the user can measure atmospheric temperature and 

relative humidity concurrently with thermal image collection, and set these parameters during 

image processing. Object distance should be minimised and kept constant where possible. 

Emissivity can either be estimated from the literature (cf. Scheffers et al., 2017) or sampled in 

the field (FLIR, 2016). Temperature measurements will be more accurate if there is less 

variation in surface emissivity within each image. That said, common components of the 

ground surface, such as leaves and soil, have very similar, high emissivity (> 0.9; Snyder et 

al., 1998) and thus the impact of emissivity variation on temperature measurements is 

relatively low. Likewise, reflected apparent temperature can be sampled in the field (FLIR, 

2016), but for high emissivities and short object distances, relatively little radiation is 

reflected and thus apparent temperature can be assumed to equal the atmospheric temperature 

(Tattersall, 2017). It is recommended that thermal cameras are regularly calibrated (FLIR 

Systems suggest doing so once per year). 

 

Step 2: Data extraction 

A single thermal photo from a FLIR model E40 camera comprises 160 x 120 pixels, each of 

which is a unique measurement of received infrared radiation encoded as raw 16-bit values. 

Images are extracted in batch by the function batch_extract, which requires only the path to 

a directory of FLIR images and the external software ExifTool. Instructions for installing 

ExifTool can be found here: https://sno.phy.queensu.ca/~phil/exiftool/install.html. Windows 

users may find it easier to download ExifTool to a custom location, specified in the argument 

exiftoolpath of batch_extract. 
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All of the code and examples that follow were run on a 64-bit Windows 10 machine with an 

Intel Core i7-4600U @ 2.10GHz processor and 8GB RAM. The function batch_extract took 

12 minutes to process 290 images on this machine, and 8 minutes on another machine (64-bit 

Windows 10 machine with an Intel Core i7-7820X CPU @ 3.60GHz processor and 32GB 

RAM). Manual extraction using FLIR Tools, for comparison, took 62 minutes. 

 

Step 3: Conversion of raw data 

The raw values embedded in a FLIR thermal image can be converted to temperature in °C 

using equations from infrared thermography (FLIR, 2016; Tattersall, 2017) in the function 

batch_convert. Temperature conversion will be more accurate when the user defines the 

environmental parameters, described in Step 1. Notably, default emissivity is 1, but should 

usually take a value between 0.95 and 0.97 (Tattersall, 2017), while relative humidity is 

highly dependent on habitat and weather conditions. Conversion of raw data also requires 

various calibration constants that are specific to each camera; these are retrieved 

automatically in batch_extract and passed directly to batch_convert. 

 

Step 4: Calculate metrics of thermal hetereogeneity 

Pixel-level statistics 

The most relevant metrics to quantify thermal heterogeneity depend on the particular research 

questions. The function get_stats takes a single thermal dataset, in the form of a matrix or 

raster (Hijmans, 2018), and calculates user-defined summary statistics across all pixels. 

Standard summary statistics could include measures such as mean and standard deviation, but 

may also include metrics such as thermal richness (the number of unique temperature values) 
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and thermal diversity indices (cf. Faye et al., 2016). Several helper functions are available to 

implement less standard summary statistics. Based on discussions in Faye et al. (2016) and 

Shi et al. (2016), we recommend some statistics for use by ecologists in Table 1. 

 

For organisms seeking cooler microclimates under climate warming, the extent to which 

pixels in an image are connected to cooler pixels could be a proxy for the efficiency of 

thermoregulatory movements. From a given starting pixel, the greater maximum temperature 

difference that can be achieved by traversing from hotter to cooler pixels, the more effective 

local movement is likely to be as a mechanism to avoid excessively high temperatures. This 

concept of thermal connectivity is based on the landscape-level climate connectivity measure 

of McGuire et al. (2016), and can be calculated using the function connectivity. In absolute 

terms this metric is more suitable for coarser spatial scales that encompass the species’ range, 

but could also be useful in relative terms to compare thermal connectivity between sites. 

 

Patch-level statistics 

The function get_stats identifies hot and cold spots in thermal images using a standalone 

function get_patches. Hot and cold spots are based on the G* variant of the Getis-Ord local 

statistic (Getis & Ord, 1996), calculated using the spdep package (Bivand & Piras, 2015). The 

statistic is calculated for individual pixels by comparing the local weighted average of the 

pixel and its neighbours to the global average. High positive values exceeding the Z-value 

threshold (defined according to the sample size; Getis & Ord, 1996) are classified as hot 

spots, and low negative values as cold spots. Several spatial statistics are then calculated to 

characterise the hot and cold spots (Table 2; cf. Faye et al., 2016). There is an option to return 

patch outlines as a SpatialPolygonsDataFrame, which can be plotted on the temperature data 
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using plot_patches alongside an (optional) histogram of the temperature distribution (Figure 

2). 

 

Table 1: Suggested summary statistics that can be applied by get_stats. 

Summary 

statistic 

Description 

Average 

temperature 

Provides context for all other statistics, and could be used as a measure of the 
macroclimate for small, surface-dwelling organisms. The median is more robust 
than the mean to spurious extreme values that can sometimes arise in thermal 
images. 

Temperature 

extremes 

While more rarely encountered, extreme values can be more significant to 
organisms, for example by exceeding upper thermal limits or by providing cool 
refugia from average conditions. The difference between extremes provides a 
measure of thermal diversity/stability (Shi et al., 2016), while the difference 
between extremes and average temperature provides a measure of the potential for 
thermal buffering. Again, we suggest the 5th and 95th percentiles are more robust to 
spurious extreme values than the minimum and maximum (respectively). 

Temperature 

variability 

Over space and time, the standard deviation or coefficient of variation of 
temperature represents another measure of thermal stability (Shi et al., 2016), 
which may be particularly significant for organisms requiring constant 
temperatures, e.g. juveniles with a lower capacity for thermoregulatory behaviours. 
In contrast, for other mobile organisms – particularly ectotherms – high thermal 
diversity is likely to maximise opportunities for thermoregulation. 

Thermal 

diversity 

indices 

Capture both the richness and evenness of different temperatures. Similar to 
temperature variability, the biological relevance of this measure is through its 
influence on the necessity and potential for thermoregulation. As discussed by 
Faye et al. (2016), Shannon’s thermal diversity index quantifies how reliably one 
can predict the temperature of a pixel sampled at random from the temperature 
data. Simpson’s thermal diversity index is similar; it captures the likelihood of two 
pixels being the same temperature (or temperature class) when sampled at random. 

Thermal 

connectivity 

Calculated for each pixel as the potential for temperature change, which is the 
maximum temperature difference that can be achieved by traversing a gradient of 
hotter to cooler pixels. Adapted from McGuire et al. (2016). 
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Table 2: Patch statistics calculated for hot and cold spots by the function get_stats. 

Patch statistic Description Biological relevance 

Area 

(absolute) 

Total number of pixels Larger or more numerous microclimates 
increase opportunities for 
thermoregulation. 

Area 

(proportion) 

Proportion of all pixels which are 
inside hot/cold spots 

Where a greater proportion of pixels fall 
inside microclimates there is likely to be 
higher thermal diversity. 

Abundance Number of distinct hot/cold spots More numerous microclimates increase 
opportunities for thermoregulation. 

Density Number of hot/cold spots per unit area Larger microclimates increase 
opportunities for thermoregulation. 

Shape Index Irregularity in shape of hot/cold spots, 
with 1 being perfectly regular (i.e. a 
square; McGarigal et al., 2012) 

More irregular microclimates could be 
less thermally stable but easier to locate, 
because of the greater proportion of edge. 

Aggregation 

Index 

Degree of clustering in space of 
hot/cold spots, with zero representing 
no clustering (He, DeZonia, & 
Mladenoff, 2000) 

Dispersed, non-clustered microclimates 
are easier for animals to locate (Sears et 
al., 2016). 

Patch 

Cohesion 

Index 

Physical connectedness of hot/cold 
spots (Schumaker, 1996) 

More connected microclimates may 
facilitate more efficient travel. 

 

Multiple images 

We assume that for most users the spatial unit of replication will comprise multiple thermal 

images. In this case, the user can specify a grouping variable in stats_by_group. Matrices 

from each group will be bound together and get_stats applied over the combined matrix. 

Processing times increase with more or larger images, although this can be managed by 

disabling the calculation of hot and cold spots or of thermal connectivity (patches = FALSE 

and connectivity = FALSE), since these are the most computationally intensive statistics. We 

assume that images are not adjacent in space, and therefore pad matrices with NA values 

before binding. Table S2 gives an example of the output from stats_by_group. Users can also 

average across repeated samples of the same area using average_by_group, the output of 

which can be passed directly to stats_by_group. Raster stacks are generally quicker to 

process, and can be created from a list of matrices using stack_imgs. 
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Example applications 

Thermal heteorogeneity over time in logged and unlogged forests 

We demonstrate a typical workflow using fine-scale temperature data collected in the field 

with a FLIR thermal camera. To investigate how thermal heterogeneity varies over time and 

with selective logging, we sampled surface temperature in a large area of contiguous forest in 

Malaysian Borneo in the years 2014 and 2015, using a FLIR Systems model E40 thermal 

camera. In both years, photos were taken at points spaced every 125 m along existing 

transects, with six transects in undisturbed primary forest (Danum Valley Conservation Area; 

4°57045.2“N, 117°48010.4”E), and six transects in adjacent forest that had been 

commercially selectively logged twice between 1987 and 2007 (Ulu Segama-Malua Forest 

Reserve, 4°57042.8“N, 117°56051.7”E). Points were sampled repeatedly from the coolest to 

the hottest part of the day (05:00-14:30 h). In each sampling event, thermal images were 

taken in four orthogonal directions, with the camera held at breast height and pointing 45° 

downwards (relative to the ground). In total we collected 2,972 photos across 144 points. For 

full details see Scheffers et al. (2017) and Senior et al. (2018). 

Data were extracted using batch_extract and converted using batch_convert (see 

Supplementary Text S1 for a full worked example in the package vignette). We focused on 

the following summary statistics from Table 1: median temperature; Shannon Diversity 

Index; upper temperature range (95th percentile - median); and lower temperature range 

(median - 5th percentile). For hot and cold spots separately, we calculated the following 

spatial statistics (Table 2): average area per patch (total area divided by number of patches, to 

correct for points with missing photos); average number of patches per unit area (density); 

Shape Index; and Aggregation Index. We used stats_by_group to calculate each metric 

across all four photos taken each time a point was sampled (one photo in each direction). 
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To model the various thermal heterogeneity metrics against time of day and forest type 

(categorical: primary or logged) we fit Generalized Additive Mixed Effects Models 

(GAMMs), using the gamm4 package (Wood & Scheipl, 2017) in R. All measures of thermal 

heterogeneity were comparable between primary and unlogged forest (P > 0.05; Figure 3), 

but varied from the coolest time of day (~06:00 hr) to the hottest (~12:30 hr). Of particular 

note is the peak in thermal diversity (Shannon Diversity Index) at noon, and the different 

temporal patterns of hot spots (median temperature: 27°C) compared to cold spots (median 

temperature: 25°C). Our results suggest that logged forests provided comparable 

opportunities for thermoregulation as nearby primary forest, and that at noon, cold spots 

provided the greatest amount of temperature buffering. 

 

Averaging over repeated images 

Averaging across repeated images of the same area could help to reduce unwanted variation, 

such as that introduced by the camera or photographer. In this example, thermal images were 

collected at nine points (‘spatial replicate’) spaced along existing transects in undisturbed 

primary forest (Danum Valley Conservation Area; 4°57045.2“N, 117°48010.4”E). Each point 

was visited at two different times (‘temporal replicate’) on the same day. On each visit to a 

point, between three and five photographs were taken sequentially (‘camera replicate’) 

between thee and five times, with the photographer moving away each time and resetting 

their position (‘photographer replicate’). To smooth variation largely introduced by the 

camera and photographer, we averaged within temporal replicates using the function 

average_by_group. The function plot_stack is ideal for visualising these data (Figure 4), as 

well as functions in the package rasterVis (Perpiñán & Hijmans, 2018). 
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Using other gridded temperature data 

Analytical functions in ThermStats are designed for any gridded temperature data. We 

illustrate this using a mean annual temperature layer (50 x 50 m resolution) estimated from 

canopy structure and topographic variables measured using LIDAR (Jucker et al., 2018). The 

layer encompasses forest and oil palm plantation within the Stability of Altered Forest 

Ecosystems (SAFE) project (Ewers et al., 2011). We created a raster stack with one layer for 

cells inside the plantation boundary and one for cells outside, and used stats_by_group to 

identify hot and cold spots within each layer. The patch characteristics calculated by 

stats_by_group include upper and lower quantiles and the median, which together 

characterise the temperature distribution and can be used to construct boxplots (Figure 5). We 

demonstrate that both hot and cold spots were hotter inside the oil palm plantation than the 

neighbouring forest. 

 

Concluding remarks 

Our R package presents users with a simple protocol for utilising thermography within 

ecology. The extraction of data from FLIR thermal cameras is made faster and easier, and for 

any gridded temperature data the package facilitates the calculation of different, biologically-

relevant metrics of thermal heterogeneity (Faye et al., 2016; Shi et al., 2016; Senior et al., 

2018). 

 

It is important to consider the strengths and weaknesses of thermography when deciding on 

the most appropriate methodology to answer research questions of interest. Thermal cameras 

cannot directly measure sub-surface temperatures and are not as well suited for capturing 
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temporal variation compared with dataloggers (Senior et al., 2018). Although affordable 

smartphone attachments are now available, thermal cameras may still be more expensive than 

dataloggers (depending on the quantity of dataloggers required), and can be sensitive to 

extreme weather conditions common to regions such as the tropics and Arctic (FLIR, 2016). 

Bramer et al. (2018) is an excellent resource for ecologists seeking best practice for using 

dataloggers; we intend that our study and the references herein offer a similar resource for 

ecologists using thermography. As infrared technology develops, we anticipate that other 

applications and brands of thermal camera will be relevant to ecologists, and we therefore 

invite readers to suggest package enhancements via GitHub 

(https://github.com/rasenior/ThermStats/issues). 

 

Fine-scale temperature variation across space and time has a huge influence on species’ 

ecology, which will become increasingly pertinent as average temperatures rise under global 

climate warming. We showcase how our R package and framework can be used to quantify 

thermal heterogeneity using data at a fine spatial scale, collected using a FLIR thermal 

camera or modelled using remotely sensed data. By simplifying and streamlining the 

processing of increasingly available thermal imagery, our approach enables researchers to 

more readily address important issues in ecology and conservation. 

 

Code availability 

The development version of ThermStats can be downloaded from GitHub: 

https://github.com/rasenior/ThermStats. Bug reports and suggested enhancements can be 

submitted to: https://github.com/rasenior/ThermStats/issues. 
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This manuscript used ThermStats version 0.9.6, which is deposited on Zenodo 

(https://doi.org/10.5281/zenodo.3264016; Senior, 2019). The manuscript itself can be 

reproduced by downloading the scripts and data from GitHub 

(https://github.com/rasenior/ThermStats_ms), and rendering using either the knit button in 

RStudio or the code rmarkdown::render("SeniorRA_thermstats_ms.Rmd", output_format = 

"bookdown::word_document2"). 
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Overview of the main ThermStats functions and a typical workflow. Dashed lines indicate 

optional steps. 

Note that the precise functions used in Step 4 will depend on the study design. 
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Examples of temperature frequency distribution (left column) and spatial distribution (right 

column) for temperature data from a thermal image (top row) and from WorldClim2 (bottom 

row; Fick & Hijmans 2017). Pixels are shaded from cold (black) to hot (beige). Clusters of 

extreme values were identified by calculating the G* variant of the Getis-Ord local statistic 
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for each pixel (Getis & Ord, 1996), with high positive values assigned to hot spots (outlined 

and hatched in pink) and low negative values to cold spots (outlined and hatched in blue). 
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Trends in various measures of thermal heterogeneity over the day (06:00-14:30 hrs) for fine-

scale temperature data collected using a thermal camera in primary (blue) and logged forests 

(orange). From left to right and top to bottom, the metrics are: median temperature (a); 

thermal Shannon Diversity Index (SHDI) (b); 95th percentile minus median temperature (c); 

5th percentile minus median temperature (d); the average area (cm2) per hot spot (e); the 

average area (cm2) per cold spot (f); the number of hot spots per unit area (g); the number of 

cold spots per unit area (h); the Shape Index (SI) of hot spots (i); the Shape Index (SI) of cold 

spots (j); the Aggregation Index (AI) of hot spots (k); and the Aggregation Index (AI) of cold 
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spots (l). Solid lines are model-predicted values with 95% confidence intervals. 

Semitransparent background points represent the raw data. Statistically significant differences 

are indicated by asterisks: 0.01 < P < 0.05 (*); 0.001 < P < 0.01 (**) and P < 0.0001 (***). 
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Violin plots of temperature distribution across the raster of each distinct replicate in time. 

Each datapoint represents one pixel of the raster, with 100 pixels sampled at random. Each 

raster is the average of multiple thermal images collected at the same time and location, 

averaged within temporal replicates using the  function average_by_group. 

  



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

 

Panel (a) shows the study area in the Stability of Altered Forest Ecosystems (SAFE) project, 

overlaid with the boundary of oil palm plantations (Ewers et al., 2011; Kahle & Wickham, 

2013). Variation in modelled mean annual temperature is shown in panel (b) (Jucker et al., 

2018). Panel (c) shows the temperature distribution of hot spots (orange) and cold spots 

(green), inside and outside plantations. 


