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11

We fabricated MgO barrier magnetic tunnel junctions (MTJs) with a Co3Mn alloy bottom and FeCoB12

top electrodes. The (001)-oriented epitaxial films of the metastable bcc Co3Mn disordered alloys obtained13

showed saturation magnetization of approximately 1640 emu/cm3. The transmission electron microscopy14

showed that the MgO barrier was epitaxially grown on the Co3Mn electrode. Tunnel magnetoresistance of15

approximately 150% was observed at room temperature after the annealing of MTJs at 350◦C, indicating16

that bcc Co3Mn alloys have relatively high spin polarization.17

The magnetic tunnel junction (MTJ) is a key device for spintronics,1–3) which has18

been utilized in various magnetic sensors including the read head of a hard disk drive,19

magnetoresistive random access memory, and neuromorphic applications.4–6) One of the20

issues is to enhance the tunnel magnetoresistance (TMR) effect, i.e., junction resistance21

change depending on the parallel and antiparallel states of two magnetizations for the22

junctions. Currently, the MgO barrier and FeCoB alloy electrodes are used as the stan-23

dard MTJ barrier and magnetic materials,7–11) which exhibited the record 604% in the24

TMR ratio at room temperature (RT).12) Such a high TMR ratio is attributed to the25

orbital symmetry filtering by the MgO barrier and the highly spin polarized ∆1 band26

in FeCo alloys.13,14) To search for routes to further enhance the TMR ratio, it is curious27

to investigate various magnetic metals other than FeCo binary systems.28

Here, we report the TMR effect observed in MTJs utilizing different types of dis-29
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Fig. 1. Out-of-plane XRD pattern for Co3Mn film deposited on (001) Cr-buffered MgO substrate.

ordered bcc CoMn alloy. A bulk Co-rich CoMn binary disordered alloy has a hcp or1

fcc phase as thermodynamically stable phase.15–18) The saturation magnetizations and2

Curie temperatures decrease with increasing Mn concentration, and a magnetic long3

range order is lost around the Mn concentration of 30–35%.15–18) In contrast, metastable4

bcc phase of Co-rich CoMn alloys show the relatively high saturation magnetization at5

similar Mn composition,19–21) and a net magnetic moment per atom is in 2.32–2.53 µB6

at Mn concentration of 24%,21) being close to that of a bcc Fe. This bcc phase is ob-7

tained in thin films grown on (001) GaAs and (001) MgO single crystalline substrates by8

molecular beam epitaxy (MBE) technique, as reported by a few groups.19–21) However,9

there are no reports on MTJs comprised of bcc CoMn alloy electrodes to date.10

All samples were deposited on (100) MgO single crystal substrates using a magnetron11

sputtering technique. The base pressure was 2×10−7 Pa. The MTJ staking structure was12

substrate/ Cr(40)/ Co3Mn(10)/ Mg(0.4)/ MgO(2)/ Fe60Co20B20(4.5)/ Ta(3)/ Ru(5)13

(thickness in nm). All layers were deposited at RT. The composition of Co3Mn film14

is Co74Mn26 (at.%) determined using inductively-coupled plasma mass spectrometer.15

We also prepared samples of substrate/ Cr(40)/ Co3Mn(10)/ Mg(0.4)/ MgO(2)/ Ta(2)16

for structural and magnetization measurements. The crystal structures of the samples17

were determined using an x-ray diffractometer (XRD) by Cu Kα radiation. Nanostruc-18

tural analysis of samples was conducted by transmission electron microscopy (TEM).19

Magnetization measurements were performed using a vibrating sample magnetometer.20
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Fig. 2. In-plane magnetization hysteresis loop for the Co3Mn film deposited on (001) Cr buffered

MgO substrate.

The microfabrication of the MTJs were performed using a standard ultraviolet photo-1

lithography and Ar ion milling. The thirty six junctions with rectangular shapes were2

obtained on the substrate with the junction areas of 60×15, 40×10, 20×5, 40×2, 15×3,3

and 20×2 µm2. The MTJs were annealed with a vacuum furnace at the temperature4

range 250–400◦C. Magnetoresistance (MR) for the MTJs was measured by a four-probe5

method using a prober system with a maximum applied field of approximately 1 kOe.6

All the measurements were performed at RT.7

Out-of-plane XRD pattern of the Co3Mn film is shown in Fig. 1. The 002 peaks from8

the Cr buffer layer and bcc Co3Mn were observed, but no other peaks, in particular9

those from fcc Co-Mn, were detected. The out-of-plane lattice parameter for the Co3Mn10

film was evaluated as approximately 0.286 nm, which is close to the lattice constant11

for the bcc Co3Mn of 0.285 nm.19) Thus, it is considered that the (001)-oriented bcc12

Co3Mn films were obtained on (001) Cr-buffered MgO substrates.13

The in-plane magnetization curve is shown in Fig. 2. The saturation magnetization14

Ms is approximately 1640 emu/cm3. This value is comparable to that of Co or Fe15

and is also similar to the magnetic moment value evaluated by x-ray magnetic circular16

dichroism for bcc Co76Mn24 alloy films,21) rather than that of fcc CoMn alloys with the17

similar Mn concentration.16)18

The MR curves measured at RT for the 40×2 µm2. MTJ annealed at 350◦C is shown19

in Fig. 3(a). The resistance changes depending on the magnetization configuration are20
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Fig. 3. (a) The typical MR curve for MTJs with Co3Mn film as the bottom electrode. (b) The

TMR ratio as a function of the annealing temperature of the MTJ with Co3Mn film as the bottom

electrode.

observed. Note that the MTJ is a pseudo-spin valve type, which means that both1

magnetic layers were unpinned by the exchange bias12) and the antiparallel state would2

not be well defined in this study. Figure 3(b) shows the TMR ratio for this junction3

as a function of the annealing temperature of the MTJ. The maximum TMR ratio was4

observed as 155% at the annealing temperature of 350◦C in Fig. 3(b) and was 158%5

for the different MTJ on the same substrate. This value is smaller than the TMR ratio6

of ∼200% observed at RT in Fe/MgO/Fe fully-epitaxial MTJs fabricated by the MBE7
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technique.22)1

Figure 4 shows the cross sectional TEM image for the MTJ sample annealed at2

350◦C. The MgO barrier is epitaxially grown on the bcc (001) Co3Mn electrode. More-3

over, the coherency of the lattices of Co3Mn, MgO, and almost crystallized FeCoB at4

the bottom and top interfaces are visible. These observations mean that the coherent5

tunneling is expected if the bcc Co3Mn has the ∆1 band at the Fermi level.6

To gain insight into the spin polarization of the bcc Co3Mn studied here, Julliere’s7

model was used for approximate estimation, which can be expressed as1)8

TMR ratio (%) =
2P1P2

1− P1P2

× 100, (1)

where P1 and P2 are the tunneling spin polarization for each magnetic electrode. Since9

this relation is hold only for an incoherent tunneling, the evaluate spin polarization10

should be regarded as an effective value in case of the coherent tunneling. To account11

for the TMR ratio observed in this study using this relation, the tunneling spin polar-12

ization for bcc Co3Mn with MgO barrier should be at least 0.44 at RT if the tunneling13

spin polarization of FeCoB is 1 . This is relatively higher than the spin polarization14

of 0.33 evaluated at low temperature in Co73Mn27 alloy, which had a low saturation15

magnetization and was unlikely bcc phase.23) A more detailed discussion is beyond the16

scope of this brief report and will be provided elsewhere.17

In summary, we fabricated Co3Mn/MgO/FeCoB MTJs using the sputtering tech-18

nique. The (001)-oriented metastable bcc Co3Mn epitaxial films obtained exhibited19

saturation magnetization of approximately 1640 emu/cm3. The cross-sectional TEM20

showed that the MgO barrier was epitaxially grown on the Co3Mn electrode. We ob-21

served the TMR ratio of 158% at RT for MTJs annealed at 350◦C, indicating that22

metastable bcc Co3Mn alloys have relatively high spin polarization.23
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