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ABSTRACT Insulator segmentation is a critical step for automatic insulator fault diagnosis in high voltage

transmission systems. Existing methods fail to segment insulators when they have a low contrast with

the surroundings. Considering the unique shape and texture characteristics of insulators, a texture-and-

shape based active contour model is proposed for insulator segmentation. The segmentation is achieved by

evolving a curve iteratively by the texture features and shape priors. In the texture-driven curve evolution,

a semi-local region descriptor is used to extract the texture features of insulators and a new convex energy

functional is defined based on the extracted features with the topology-preserving term. The topology-

preserving term keeps the curve’s topology unchanged as the curve topology is determined by the shape

template. In the shape-driven curve evolution, the shape context descriptor is used to align the shape template

with the current curve. The semantic transformation between the shape template and the current curve is

obtained by Procrustes analysis and then adopted to update the current curve to resemble the shape prior.

The proposed method is applied to a set of images, and the experimental results confirm the efficacy and

effectiveness of the proposed method for segmenting insulators in cluttered backgrounds.

INDEX TERMS active contour model, insulator segmentation, level set, shape descriptor

I. INTRODUCTION

I
Nsulators are critical equipment in high-voltage power

transmission systems for electrical insulation and me-

chanical support. The insulator failures in a power system

may lead to significant economic losses and even casualties

[1], [2]. Therefore, monitoring the status of insulators is of

great significance for power system safety. Traditional reg-

ular manual inspection is both time-consuming and power-

consuming [3]–[5]. Insulator segmentation from the scene

images is a prerequisite step for automatic fault diagnosis.

Insulator segmentation techniques can be roughly divid-

ed into two categories: patch-labeling methods and curve-

evolution methods. In the patch-labeling methods, a patch

may be just a pixel or a superpixel or a local region generated

by a threshold, sliding window or clustering method. The

features of these patches are then fed into a classifier to judge

whether these patches belong to insulators [6]–[11]. The k-

means clustering method is adopted to establish connected

regions and then an adaptive neuro-fuzzy inference system

is used to distinguish the insulator area [11]. The local

directional pattern is used to classify the insulator regions

by support vector machines [7]. A multi-scale and multi-

feature descriptor is proposed to generate several spatial

order features for insulator key point matching [8]. A six-

layer convolution neural network is built to distinguish the

insulator regions [9], [12]. A compact end-to-end neural

network is trained by a two-stage training method in the

framework of conditional generative adversarial networks for

insulator segmentation [10], [13], [14]. There are two kinds

of training samples, the roughly labelled position samples

and the finely labelled segmented samples. These methods

all need many labeled training samples to distinguish the in-

sulators. Furthermore, it is hard to precisely extract insulators

when they have low a contrast with the surroundings.

In the curve-evolution approach, often also referred to

active contour models, some energy functional is defined to

evolve a curve for insulator segmentation [11], [15]. The en-

ergy functional makes the curve-evolution methods an open

framework that can incorporate external constraints flexibly

[16], [17]. Gray Level Co-occurrence Matrix is employed
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as the insulator texture descriptor in a global minimization

active contour model [18]. A semi-local region descriptor is

used in an active contour model to overcome the difficulties

caused by the texture inhomogeneity [19]. Reference [20] us-

es the contourlet transformation for insulator texture analysis

and then the fuzzy c-means is applied to cluster the insulator

texture feature points to locate the initial curve. Chan-Vese

model is finally used to detect the insulator boundaries.

However, these methods fail to segment the insulators in

the cluttered background where the insulator boundaries are

difficult to distinguish.

Since insulators have a unique shape and texture, the shape

constraint may be incorporated into a texture-based active

contour model to capture insulator boundaries. A texture-

and-shape based active contour model is thus proposed in

this paper to segment insulators. A curve is evolved by the

insulator texture features and shape priors alternatively to

segment the insulator. In the texture-driven curve evolution,

a semi-local region descriptor is used to extract the texture

features of insulators in the Beltrami framework to over-

come the difficulties caused by texture inhomogeneity [19],

[21]. Based on the Chan-Vese model, a new convex energy

functional is defined on the extracted texture features with

the topology-preserving term. The length term and the area

term of Chan-Vese model are omitted for the minimization

of the length term and the area term is not necessary to

drive the contour towards the boundary of the insulator and

the information of length and area has already been consid-

ered in the shape-driven evolution. The topology-preserving

term keeps the curve’s topology unchanged since the curve

topology is determined by the shape template [22]. In the

numerical implementation, the addictive operator splitting

scheme is adopted as it has a linear complexity and is easy

to implement. In the shape-driven curve evolution, a shape

is described by the distribution over relative position of the

sampled points on a quantized log-polar coordinate. One-

to-one point correspondences are built between the points

from the shape template and the points from the current

curve by minimizing a total matching cost to align the shape

template with the current curve. The semantic transformation

between the shape template and the current curve is obtained

by Procrustes analysis and then adopted to update the current

curve to resemble the shape prior. The method is applied

to an insulator image dataset and the experimental results

confirm that the proposed method is capable of segmenting

the insulators in the cluttered background where the insulator

boundaries are difficult to distinguish, outperforming other

existing approaches.

The remainder of this paper is organized as follows. The

related work is reviewed in Section II. A texture-and-shape

based active contour model is proposed for insulator segmen-

tation in Section III. A series of experiments are conducted

on real life insulator images and the results are detailed in

Section IV. Finally, Section V concludes the paper.

II. PRELIMINARIES

A. ACTIVE CONTOUR MODELS

Active contour models partition an image into sub-regions

with continuous boundaries. Active contour models are clas-

sified into parametric active contours [23], [24] and geomet-

ric active contours [25]–[27] according to their representation

and implementation. Parametric active contours are repre-

sented explicitly as parameterized curves in a Lagrangian

formulation [28]. Geometric active contours are based on

the level set theory and represented implicitly as the zero

level set of a higher dimensional function [29]. The level

set methods allow cusps, corners and automatic topological

changes and make geometric active contours more flexible

than parametric active contours [30]. Moreover, geometric

active contours do not have to parameterize objects [31]. The

image segmentation problem based on the level set meth-

ods can be formulated and solved by the well-established

mathematical theories [32], [33]. The evolving contour C

is embedded in a higher dimensional Lipschitz continuous

function Φ and defined by C = {(x, y) |Φ (x, y) = 0}.

Evolving the curve C in the normal direction with speed F is

equivalent to solving the following differential equation with

the initial value Φ0 [34]:

∂Φ

∂t
= |∇Φ|F (1)

Let Ω be the image domain, and I : Ω → R be a gray level

image. Mumford-Shah model approximates the image I by

a piecewise smooth function Φ by minimizing the following

energy functional [35]:

EMS (Φ, C) =µLength (C) + λ

∫

Ω

(I (x)− Φ (x))
2
dx

+

∫

Ω\C

|∇Φ (x)|
2
dx (2)

where C is the contour that segments the image into subre-

gions and µ and λ are positive parameters. The length term

is used to ensure regularity [36]. Mumford-Shah model is

difficult to solve due to the nonconvexity of the functional.

Chan-Vese model can be regarded as a reduced form

of Mumford-Shah model by restricting Φ as a piecewise

constant function [15],

Φ (x) =

{

c1 where is x inside C,

c2 where is x outside C,
(3)

The energy functional of Chan-Vese model is defined as

ECV (c1, c2, C) =λ1

∫

inside(C)

(I (x)− c1)
2
dx

+ λ2

∫

outside(C)

(I (x)− c2)
2
dx

+ µLength (C) + νArea (inside (C))
(4)

where λ1, λ1, µ and ν are positive parameters. The area of the

region inside C is added as an regularizing term. The image

is approximated by the piecewise constant function Φ and is

segmented into two subregions.
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B. TEXTURE FEATURES IN THE BELTRAMI

FRAMEWORK

A geometric way to represent images was proposed in the

Beltrami frame where images can be considered as Rie-

mannian manifolds embedded in a higher dimensional s-

pace [37]. For example, a 2-D gray image I : R2 → R

can be considered as a surface
∑

with local coordinates

(x, y) embedded in R3 by a mapping: X : (x, y) →
(X1 = x,X2 = y,X3 = I (x, y)). This manifold-based rep-

resentation of images has two main advantages. First, it

allows the use of efficient differential geometry tools to

perform various image processing tasks such as denoising or

segmentation. Second, this framework works with arbitrary

N dimensional images.

Reference [21] proposes a semi-local descriptor for image

textures. The textures are represented by the intensity patch

around the current pixel. The representation of textures in the

Beltrami framework is given as follows:

X : (x, y) → (X1 = x,X2 = y,X3 = Px,y (I)) (5)

where Px,y is the square patch of size τ × τ around the pixel

(x, y). The corresponding metric tensor gxy of (6) is defined

as:

gxy =

(

1 + (∂xPx,y)
2

∂xPx,y∂yPx,y

∂xPx,y∂yPx,y

1 + (∂yPx,y)
2

)

(6)

Finally, the intrinsic texture descriptor is defined as follows:

F = e−
det(gxy)

σ2 (7)

where σ denotes a scaling parameter. The Gaussian kernel is

adopted as a low-pass filter to control the degree of details.

The semi-local operator can be extended to vector-valued

images directly. Let I = (I1, I2, · · · , Ik) be a vector-valued

image, where k denotes the number of channels. Then, the

semi-local textures in the Beltrami framework are defined as:

X : (x, y) →(X1 = x,X2 = y,X3 = Px,y (I1) ,

· · · , X2+k = Px,y (Ik)) (8)

The corresponding metric tensor gxy of (6) is given as:

gxy

=

(

1 +
∑k

j=1
(∂xPx,y) (Ij)

2

∑k
j=1

∂xPx,y (Ij) ∂yPx,y (Ij)

∑k
j=1

∂xPx,y (Ij) ∂yPx,y (Ij)

1 +
∑k

j=1
(∂yPx,y) (Ij)

2

)

III. THE PROPOSED ALGORITHM

A texture-and-shape based active contour model for insulator

segmentation is proposed in this paper. A curve is evolved by

the insulator shape priors and texture features alternatively

until the process converges or a fixed number of iterations is

reached. The proposed method is detailed in the Algorithm 1.

Algorithm 1 The Proposed Model

Input: Image I to be segmented and insulator shape prior

S;

Output: Final segmentation Φ∗

1: manually or automatically initialize the level set function

Φ0;

2: extract the texture feature map F (I)
3: while contour evolution is not converged or the fixed

iterative time is not reached do

4: minimize the combined energy functional (9) to con-

struct the intermediate level set function Φn+ 1

2 ;

5: align the insulator shape prior S with the current

contour Cn+ 1

2 , namely, the zero level set of Φn+ 1

2 ;

6: calculate the semantic shape transformation T and

construct a new curve Cn and a new level set function

Φn+1;

7: end while

A. TEXTURE-DRIVEN CURVE EVOLUTION

The texture-driven curve evolution is realized by minimizing

the energy functional defined on the texture features with the

topology-preserving term. The energy functional is defined

as follows:

E (c1, c2, C) =λ[

∫

inside(C)

(F (x)− c1)
2
dx

+

∫

outside(C)

(F (x)− c2)
2
dx]

+ ET (9)

where F (•) represents the texture feature extraction opera-

tion and ET denotes the topology-preserving term; c1 and c2
are the averages of F (x) inside the contour and outside the

contour, respectively; λ is the weighting parameter, λ ≥ 0.

The length term and the area term of the Chan-Vese model

are omitted for two reasons. One is the information of length

and area has already been considered in the shape-driven

evolution. The other reason is that minimizing the length

term and the area term does not necessarily drive the contour

towards the boundary of the object. Although the ability

of handling topological change is an advantage of the level

set techniques, it is not necessary for insulator segmentation

since the curve topology is determined by the shape priors.

For the level set formulation of our model, the contour C

is represented by the zero level set of the Lipschitz funtion Φ
and the variable C is replaced by Φ. The topology-preserving

term was proposed based on a geometrical observation [22].

Consider two points x and y on the zero level line of Φ, and

they are close enough to each other. ∇Φ (x) and ∇Φ (y)
denote the unit outward normal vectors to the contour at

x and y. When the contour is about to merge or split,

〈∇Φ (x) ,∇Φ (y)〉 ≃ −1. The topology-constraint term is

VOLUME 4, 2016 3
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defined as follows:

ET (Φ) =−

∫∫

Ω×Ω

[e−
‖x−y‖2

2

d2 〈∇Φ (x) ,∇Φ (y)〉

•Wl (Φ (x))Wl (Φ (y))]dxdy (10)

where l denotes a level parameter, {x ∈ Ω |−l ≤ Φ (x) ≤ l};

Wl (Φ (x)) = H (Φ (x) + l)H (l − Φ (x)) confines the

points in a narrow band around the zero level line; H (•)
represents the Heaviside function, defined as

H (z) =

{

1 if z ≥ 0,
0 if z < 0,

(11)

〈∇Φ (x) ,∇Φ (y)〉 is weighted by the nearness of x and y,

e−
‖x−y‖2

2

d2 . Therefore, the energy functional can be reformu-

lated as follows:

E (c1, c2,Φ) =λ{

∫

Ω

[(F (x)− c1)
2
H (Φ (x))

+ (F (x)− c2)
2
H (−Φ (x))]dx}

−

∫∫

Ω×Ω

[e−
‖x−y‖2

2

d2 〈∇Φ (x) ,∇Φ (y)〉

•Wl (Φ (x))Wl (Φ (y))]dxdy (12)

The minimization of (12) can be realized by solving by the

following gradient flow equation

∂Φ

∂t
= −

∂E

∂Φ
(13)

The corresponding evolution equation could be deduced as

∂Φ

∂t
=λδ (Φ)

[

(F (x)− c2)
2
− (F (x)− c1)

2
]

+
4

d2
Wl (Φ (x))

∫

Ω

e−
‖x−y‖2

2

d2 (x− y)

• ∇Φ (y)Wl (Φ (y)) dy (14)

In the numerical implementation, the addictive operator

splitting scheme is adopted for it has linear complexity

and is easy to implement [38], [39]. The addictive operator

splitting scheme decomposes the 2-D problems into two 1-D

subproblems . The discretization of (14) is

Φn+ 1

2 =
1

2

∑

w∈{x,y}

Bw (Φ (x)
n
)
−1

{Φ (x)
n
+ 4

τ

d2
Wl (Φ (x))

•

∫

Ω

e−
‖x−y‖2

2

d2 (x− y)∇Φ (y)Wl (Φ (y)) dy

+ τλ[(F (x)− c1)
2
− (F (x)− c2)

2
]} (15)

where τ represents the timestep; Bw (Φ (x)
n
) = Id −

2τAw (Φ (x)
n
), w ∈ {x, y}. The entries of Aw (Φ (x)

n
) is

defined by

aijw =















|∇Φn
i |

2

(|∇Φn
i |+|∇Φn

j |)
if j ∈ Nw (i)

− |∇Φn
i |

∑

m∈Nw(i)

2

(|∇Φn
i |+|∇Φn

m|)
if j = i

0 otherwise
(16)

(a) Shape 1 (b) Shape 2

FIGURE 1. Insulator shape (a) Shape 1 (b) Shape 2

where w represents the directions, w ∈ {x, y} and Nw (i)
represents the neighboring pixels of i in direction w.

Bw (Φ (x)
n
) is tridiagnonal, strictly diagonally dominant

that can be solved efficiently by the Thomas algorithm.

The smooth version of Heaviside function is used in the

discretization stage, which is defined by

Hε (z) =
1

2

(

1 +
2

π
arctan

( z

π

)

)

(17)

B. SHAPE-DRIVEN CURVE EVOLUTION

Shape is an important factor to control the motion of the

curve in insulator segmentation since insulators have the

unique shape, as shown in Figure 1. The shape-driven curve

evolution is realized by building a semantic transformation to

make the evolving curve resemble the shape prior.

The shape context descriptor is used to align the shape

template with the current curve and to calculate the semantic

transformation [40], [41]. It is assumed that the shape of

an object is essentially represented by a finite set of points

sampled from the contour of the objects. These points do not

need to correspond to key-points such as the maxima of a

curvature. The shape context descriptor is generated by the

distribution over relative positions of these sampled points.

Given n points sampled from the shape contour, the shape

context of a point pi is defined by a histogram hi:

hi (k) = # {q 6= pi : (q − pi) ∈ bin (k)} (18)

hi counts the number of the sampled neighbor points of pi
on a quantized log-polar coordinate that make the descriptor

more sensitive to the nearby sampled points than to the points

farther away.

As the shape context descriptor is represented by the

distribution histograms, χ2 test is used to measure the cost

of matching two points. Given two points pi and qj , the

matching cost is defined as the following:

Cij ≡ C (pi, qj) =
1

2

K
∑

k=1

[hi (k)− hj (k)]

hi (k)− hj (k)
(19)

Consider two sets of points sampled from the shape template

and the current contour, respectively. To align the shape
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template with the current curve, one-to-one point correspon-

dences are computed by minimizing the total matching cost

[42],

H (π) =
∑

i

C
(

pi, qπ(i)
)

(20)

where pi represents a point on the current contour; qπ(i)
denotes a point on the shape template; π represents a per-

mutation operator.

Procrustes analysis is adopted to estimate the transforma-

tion TXt,Yt,s,θ from the current curve Cn+ 1

2 to the shape

template S [43]. For a single point (x, y),

TXt,Yt,s,θ

(

x

y

)

=

(

s cos θ s sin θ
−s sin θ s cos θ

)(

x

y

)

+

(

Xt

Yt

)

,

where s is a scaling parameter, θ the rotation angle, (Xt, Yt)
the translation parameter. Given N correspondences of

points, the transform parameters are obtained by minimizing

the following equation (21):

J (T ) =

N
∑

i=1

|xi − TXt,Yt,s,θ (x
′
i)|

2
(21)

,where xi and x′
i denote the points of the shape tem-

plate S and the corresponding points of the current con-

tour Cn+ 1

2 , respectively. The new curve Cn is represented

by
{

T−1
Xt,Yt,s,θ (x1) , · · · , T

−1
Xt,Yt,s,θ (xN )

}

and used to

construct a level set function Φn .

IV. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed method, a

series of experiments have been conducted on an insulator

image dataset. The insulator image dataset consists of 100

arial images. Four methods are used to segment insulators,

i.e. Chan-Vese model (CV) [15], Texture-based Chan-Vese

model (T-CV) [19], Shape-based Chan-Vese model (S-CV)

[17], Texture-and-shape-based Chan-Vese model (TS-CV).

The segmentation error rate (ER) are adopted to evaluate

these segmentation methods. ER is defined as the ratio of

misclassified image pixels over the total image pixels. The

test platform of the algorithm used Windows 7 Ultimate,

the configuration of test PC is 1.87 GHz frequency with 6

GB memory, and the algorithms are performed in MATLAB

R2015a.

In the experiments, three types of contours are used to

initialize the level set function, i.e. a rectangular, a small

circle and a big circle. In the numerical implementation, the

weighting parameter λ is set to 1; the topology-preserving

term parameters d and l are set to 4 and 1, respectively,

according to [44]; the timestep τ is empirically chosen in the

range of [0.1,1] in step of 0.1 and is set to 0.1.

The insulator image 1 and its texture image are shown

in Figure 2. Figure 1a is used as the insulator shape prior.

Figure 2 shows the process of the proposed method. The

insulator segmentation is achieved by texture-driven curve

evolution and shape-driven curve evolution alternatively. A

rectangle is used to initialize the level set function. The

second column shows the intermediate curves Cn+ 1

2 by

minimizing the equation (9). The curves are aligned with

the insulator template by finding point correspondences, as

shown in the third column. Then the curves are updated by

the semantic transform from the intermediate curves to the

shape template. The forth column shows the contours Cn

after the shape-driven curve evolution. The process reveals

the areas of texture similarity could be segmented by the

texture-driven curve evolution and the shape prior could help

to segment the insulators from the similar texture regions.

(a) original image (b) texture image

FIGURE 2. Insulator image 1 (a) original image (b) texture image.

The segmentation results of image 1 are shown in Figure 4.

Figure 4a shows the initial contours. Figure 4b illustrates the

segmentation results of CV. The insulator is segmented but

the grass is also segmented as part of the insulator. Figure 4c

shows the segmentation results of T-CV and most of the grass

is eliminated. Figure 4d and Figure 4e show the segmentation

results of S-CV and TS-CV, respectively and insulators are

accurately segmented from the original image 1 by S-CV

and TS-CV. The segmentation results show that the texture

features and the shape prior can improve the segmentation

results and the initial contours have no influence on the final

results. Comparing Figure 4c to Figure 4d, we can conclude

that the shape is a very effective characteristic for insulator

segmentation.

The insulator image 2 and its texture feature are shown

in Figure 5. Figure 1b is used as the shape prior. The seg-

mentation results are shown in Figure 6. Figure 6a shows the

initial contours and Figure 6 b∼e shows the segmentation

results of CV, T-CV, S-CV and TS-CV, respectively. For

the insulator image 2, the segmentation results of CV also

contains many background objects. The segmentation results

of T-CV contains less background but still unsatisfactory. S-

CV and TS-CV both achieve satisfactory results.

(a) original image (b) texture image

FIGURE 5. Insulator image 2 (a) original image (b) texture image.

Figure 7 shows the insulator image 3 and its texture fea-

ture. The background of the insulator image 3 is more com-

plex and the insulator has low contrast with the surroundings.

VOLUME 4, 2016 5
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Texture-driven

 curve evolution

Shape-driven 

curve evolution

1

2
n

C
+

n
CPoint correspondences

FIGURE 3. The process of the proposed method.

(a)initial contour (b)CV (c)T-CV (d)S-CV (e)TS-CV

FIGURE 4. Insulator segmentation results for image 1 (a)initial contour (b)CV (c)T-CV (d)S-CV (e)TS-CV.

Figure 1b is used as the shape prior and the segmentation

results are shown in Figure 7. Figure 8a shows the initial

contours and Figure 8 b∼e illustrate the segmentation results

of CV, T-CV, S-CV and TS-CV, respectively. Figure 8b, 8c

and 8d reveal that CV, T-CV and S-CV fail to drive the

contour to approximate the boundaries of the insulator. The

proposed method is capable of distinguishing the insulator

boundaries as shown in Figure 8e. The segmentation results

also show that the initial contours have no influence on the

final segmentation result.

The computational time and ER of these four methods

(a) original image (b) texture image

FIGURE 7. Insulator image 1 (a) original image (b) texture image.
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(a)initial contour (b)CV (c)T-CV (d)S-CV (e)TS-CV

FIGURE 6. Insulator segmentation results for image 2 (a)initial contour (b)CV (c)T-CV (d)S-CV (e)TS-CV.

(a)initial contour (b)CV (c)T-CV (d)S-CV (e)TS-CV

FIGURE 8. Insulator segmentation results for image 3 (a)initial contour (b)CV (c)T-CV (d)S-CV (e)TS-CV.

TABLE 1. Comparison of the computational time

Method CV T-CV S-CV TS-CV

Time(s) 1.15 2.01 10.14 10.99

ER(%) 33.21 20.79 8.45 4.39

are listed in Table 1. Although TS-CV achieves the best

segmentation results, it is the most time-consuming method.

Compared the computational time of CV with T-CV and S-

CV, we can conclude that the shape-driven curve evolution

approach however would take much more time.

V. CONCLUSION

In the paper, a texture-and-shape based active contour model

is proposed for segmenting insulators in the cluttered back-

ground. Shape constraint is incorporated into a texture-based

active contour model to capture the insulator boundaries. The

experiments on the insulator image dataset confirm that the

proposed method can segment the insulators in the cluttered

background where the boundaries of insulators are difficult to

be distinguished and it outperforms other related methods. As

the shape-driven curve evolution process is time-consuming,

future work will focus on speeding up the shape-driven curve

evolution process and extending the proposed method for

real-time detection applications.

REFERENCES

[1] X. Miao, X. Liu, J. Chen, S. Zhuang, J. Fan, and H. Jiang, “Insulator

detection in aerial images for transmission line inspection using single shot

multibox detector,” IEEE Access, 2019.

VOLUME 4, 2016 7



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[2] X. Tao, D. Zhang, Z. Wang, X. Liu, H. Zhang, and D. Xu, “Detection

of power line insulator defects using aerial images analyzed with con-

volutional neural networks,” IEEE Transactions on Systems, Man, and

Cybernetics: Systems, 2018.

[3] W. Chang, G. Yang, Z. Wu, and Z. Liang, “Learning insulators segmen-

tation from synthetic samples,” in 2018 International Joint Conference on

Neural Networks (IJCNN). IEEE, 2018, pp. 1–7.

[4] H. Lu, Y. Li, S. Mu, D. Wang, H. Kim, and S. Serikawa, “Motor anomaly

detection for unmanned aerial vehicles using reinforcement learning,”

IEEE internet of things journal, vol. 5, no. 4, pp. 2315–2322, 2018.

[5] S. Serikawa and H. Lu, “Underwater image dehazing using joint trilateral

filter,” Computers & Electrical Engineering, vol. 40, no. 1, pp. 41–50,

2014.

[6] Z. Zhao, X. Fan, G. Xu, L. Zhang, Y. Qi, and K. Zhang, “Aggregating deep

convolutional feature maps for insulator detection in infrared images,”

IEEE Access, vol. 5, pp. 21 831–21 839, 2017.

[7] T. Jabid and M. Z. Uddin, “Rotation invariant power line insulator de-

tection using local directional pattern and support vector machine,” in

2016 International Conference on Innovations in Science, Engineering and

Technology (ICISET). IEEE, 2016, pp. 1–4.

[8] S. Liao and J. An, “A robust insulator detection algorithm based on

local features and spatial orders for aerial images,” IEEE Geoscience and

Remote Sensing Letters, vol. 12, no. 5, pp. 963–967, 2015.

[9] Y. Liu, J. Yong, L. Liu, J. Zhao, and Z. Li, “The method of insulator

recognition based on deep learning,” in 2016 4th International Conference

on Applied Robotics for the Power Industry (CARPI). IEEE, 2016, pp.

1–5.

[10] W. Chang, G. Yang, J. Yu, and Z. Liang, “Real-time segmentation of

various insulators using generative adversarial networks,” IET Computer

Vision, vol. 12, no. 5, pp. 596–602, 2018.

[11] M. J. B. Reddy, B. K. Chandra, and D. Mohanta, “A DOST based approach

for the condition monitoring of 11 kV distribution line insulators,” IEEE

Transactions on Dielectrics and Electrical Insulation, vol. 18, no. 2, pp.

588–595, 2011.

[12] H. Lu, Y. Li, M. Chen, H. Kim, and S. Serikawa, “Brain intelligence: go

beyond artificial intelligence,” Mobile Networks and Applications, vol. 23,

no. 2, pp. 368–375, 2018.

[13] H. Lu, D. Wang, Y. Li, J. Li, X. Li, H. Kim, S. Serikawa, and I. Humar,

“Conet: A cognitive ocean network,” arXiv preprint arXiv:1901.06253,

2019.

[14] H. Lu, Y. Li, T. Uemura, H. Kim, and S. Serikawa, “Low illumination

underwater light field images reconstruction using deep convolutional

neural networks,” Future Generation Computer Systems, vol. 82, pp. 142–

148, 2018.

[15] T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Trans-

actions on image processing, vol. 10, no. 2, pp. 266–277, 2001.

[16] X. Shan, X. Gong, and A. K. Nandi, “Active contour model based on local

intensity fitting energy for image segmentation and bias estimation,” IEEE

Access, vol. 6, pp. 49 817–49 827, 2018.

[17] B. Wang, X. Yuan, X. Gao, X. Li, and D. Tao, “A hybrid level set with

semantic shape constraint for object segmentation,” IEEE transactions on

cybernetics, no. 99, pp. 1–2, 2018.

[18] Q. Wu, J. An, and B. Lin, “A texture segmentation algorithm based on

PCA and global minimization active contour model for aerial insulator

images,” IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing, vol. 5, no. 5, pp. 1509–1518, 2012.

[19] Q. Wu and J. An, “An active contour model based on texture distribution

for extracting inhomogeneous insulators from aerial images,” IEEE Trans-

actions on Geoscience and Remote Sensing, vol. 52, no. 6, pp. 3613–3626,

2014.

[20] G. Zhang, Z. Liu, and Y. Han, “Automatic recognition for catenary

insulators of high-speed railway based on contourlet transform and Chan–

Vese model,” Optik, vol. 127, no. 1, pp. 215–221, 2016.

[21] N. Houhou, J.-P. Thiran, and X. Bresson, “Fast texture segmentation

based on semi-local region descriptor and active contour,” Numerical

Mathematics: Theory, Methods and Applications., vol. 2, no. ARTICLE,

2009.

[22] C. Le Guyader and L. A. Vese, “Self-repelling snakes for topology-

preserving segmentation models,” IEEE Transactions on Image Process-

ing, vol. 17, no. 5, pp. 767–779, 2008.

[23] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,”

International journal of computer vision, vol. 1, no. 4, pp. 321–331, 1988.

[24] L. D. Cohen, “On active contour models and balloons,” CVGIP: Image

understanding, vol. 53, no. 2, pp. 211–218, 1991.

[25] V. Caselles, F. Catté, T. Coll, and F. Dibos, “A geometric model for active

contours in image processing,” Numerische mathematik, vol. 66, no. 1, pp.

1–31, 1993.

[26] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” in

Proceedings of IEEE international conference on computer vision. IEEE,

1995, pp. 694–699.

[27] A. Yezzi, S. Kichenassamy, A. Kumar, P. Olver, and A. Tannenbaum,

“A geometric snake model for segmentation of medical imagery,” IEEE

Transactions on medical imaging, vol. 16, no. 2, pp. 199–209, 1997.

[28] D. Terzopoulos and K. Fleischer, “Deformable models,” The visual com-

puter, vol. 4, no. 6, pp. 306–331, 1988.

[29] S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces.

Springer Science & Business Media, 2006, vol. 153.

[30] C. Xu, A. Yezzi, and J. L. Prince, “On the relationship between parametric

and geometric active contours,” in Conference Record of the Thirty-

Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.

00CH37154), vol. 1. IEEE, 2000, pp. 483–489.

[31] C. Li, R. Huang, Z. Ding, J. C. Gatenby, D. N. Metaxas, and J. C. Gore,

“A level set method for image segmentation in the presence of intensity

inhomogeneities with application to mri,” IEEE transactions on image

processing, vol. 20, no. 7, pp. 2007–2016, 2011.

[32] R. MALLADI, “Shape modeling with front propagation: A level set

approach,” IEEE Trans. PAMI, vol. 17, no. 2, pp. 158–175, 1995.

[33] G. Aubert and P. Kornprobst, Mathematical problems in image processing:

partial differential equations and the calculus of variations. Springer

Science & Business Media, 2006, vol. 147.

[34] S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent

speed: algorithms based on hamilton-jacobi formulations,” Journal of

computational physics, vol. 79, no. 1, pp. 12–49, 1988.

[35] D. Mumford and J. Shah, “Optimal approximations by piecewise smooth

functions and associated variational problems,” Communications on pure

and applied mathematics, vol. 42, no. 5, pp. 577–685, 1989.

[36] P. Getreuer, “Chan-vese segmentation,” Image Processing On Line, vol. 2,

pp. 214–224, 2012.

[37] N. Sochen, R. Kimmel, and R. Malladi, “A general framework for low level

vision,” IEEE transactions on image processing, vol. 7, no. 3, pp. 310–318,

1998.

[38] J. Weickert, B. Romeny, M. A. Viergever et al., “Efficient and reliable

schemes for nonlinear diffusion filtering,” IEEE transactions on image

processing, vol. 7, no. 3, pp. 398–410, 1998.

[39] J. Weickert and G. Kühne, “Fast methods for implicit active contour

models,” in Geometric level set methods in imaging, vision, and graphics.

Springer, 2003, pp. 43–57.

[40] T. H. N. Le and M. Savvides, “A novel shape constrained feature-based

active contour model for lips/mouth segmentation in the wild,” Pattern

Recognition, vol. 54, pp. 23–33, 2016.

[41] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recog-

nition using shape contexts,” IEEE Transactions on Pattern Analysis &

Machine Intelligence, no. 4, pp. 509–522, 2002.

[42] R. Jonker and A. Volgenant, “A shortest augmenting path algorithm for

dense and sparse linear assignment problems,” Computing, vol. 38, no. 4,

pp. 325–340, 1987.

[43] D. G. Kendall, “A survey of the statistical theory of shape,” Statistical

Science, pp. 87–99, 1989.

[44] H. Schaeffer, N. Duggan, C. l. Guyader, and L. Vese, “Topology preserving

active contours,” Communications in Mathematical Sciences, vol. 12,

no. 7, pp. 1329–1342, 2014.

8 VOLUME 4, 2016


