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Abstract

The importance of amorphous calcium carbonate (ACC) as a potential precursor phase in the 

biomineralization of marine calcifiers is increasingly being reported, particularly as the presence of 

ACC has been observed or inferred in several major groups. Here, we investigate the structure and 

conditions required to precipitate ACC from seawater-based solutions, with emphasis on the co-

influence of the carbonate system (pH, dissolved inorganic carbon (DIC) concentration), seawater 

Mg/Ca ratio and the presence of amino acids. We find that Mg2+ and the presence of aspartic acid, 

glutamic acid, and glycine strongly inhibit ACC precipitation. Moreover, we were unable to 

precipitate ACC from seawater with a carbonate chemistry within the range of that thought to 

characterise the calcification site of certain marine calcifiers (i.e. DIC <6 mM, pH <9.3), although 

substantial modification of the seawater Mg/Ca ratio (Mg/Casw) allowed precipitation at a reduced 

DIC, with the implication that this could be an important component of utilising an ACC pathway. 

Finally, the degree to which Mg/Casw and the addition of amino acids influence the structure of ACC 

and the necessary seawater [CO3
2-] for precipitation is strongly pH dependent. At lower, more 

biologically relevant pH than that typical of much inorganic work, decreasing Mg/Casw can result in 

greater long-range order and less water of crystallisation, but facilitates precipitation at a considerably 

lower [CO3
2-] than at higher pH.

1. Introduction

Amorphous calcium carbonate (ACC) has been shown to play an integral role in the biomineralisation 

process in a wide range of organisms,1–4 including having been identified or inferred in a wide range 

of marine organisms including sponges,5 sea urchin larvae,6 ascidians,7 molluscs,8 coccolithophores,9 

corals,10 and foraminifera.11–13 Improving our knowledge of the role of ACC in biomineralization is 

important because the shells of such organisms represent one of the largest long-term sinks of carbon 

on Earth,14 yet the effect of climate change and ocean acidification on the calcification process is not 

well-constrained,15 in part because some key aspects are poorly understood.
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2

Inorganic ACC precipitation work has demonstrated that Mg2+ and organic molecules such as 

phosphoamino acids play a stabilising role,5,16,17 retarding the transformation of ACC into a crystalline 

carbonate. In addition, ACC may be stabilised in confinement,18 and the crystalline CaCO3 polymorph 

that results from ACC depends on solution chemistry.19,20 Especially relevant to this study is the 

identification of synthesis-dependent structural variations in inorganic ACC,21 which has also been 

observed in biogenic samples. For example, Extended X-Ray Absorption Fine Structure (EXAFS) 

spectra of ACCs of different origin22 demonstrates not just variable Ca-O bond distances but also 

variable coordination numbers around Ca. 

These studies yield insights into the diversity of ACC and controls on nucleation, growth and 

transformation, yet most inorganic precipitation work has utilised fluid chemistries which are very 

different from those inferred to be present at the site of ACC formation in marine calcifiers. For 

example, tropical zooxanthellate corals and hyaline foraminifera calcify from a seawater-like 

solution,11,23–26 albeit modified with respect to pH and DIC23,26–28, whilst an ongoing debate surrounds 

the role of pumping protons, Ca2+, and Mg2+ into and out of the calcifying space.13,29–31 In contrast, 

inorganic ACC is often experimentally precipitated through the decomposition of (NH4)2CO3 in CaCl2 

solutions (Ref. 32 and references therein), or by mixing relatively concentrated equimolar CaCl2 and 

Na2CO3 solutions.20,33,34 Both techniques result in solution carbonate chemistries that are highly 

variable throughout the course of the experiment, and far more saturated with respect to carbonate 

minerals compared to the calcifying space of marine organisms. For example, the calcifying space of 

corals is characterised by a DIC and pH of 2-6 mM and <9.3, respectively,26,28,35,36 a DIC 

concentration around two orders of magnitude lower than the initial solutions of e.g. Ref. 20. 

Furthermore, much previous ACC work was conducted in ionically simple solutions, raising the 

possibility that they might differ structurally and/or compositionally from biogenic ACCs. We stress 

that this is not intended as criticism of the large body of important work that exists, but rather 

highlights the need to build on these studies through the precipitation and study of ACC under 

conditions closer to those found in marine calcifiers.

We present data from a series of ACC precipitation experiments conducted in seawater-based 

solutions. Solution pH, DIC, [Mg2+], and [Ca2+] were varied to identify how these parameters affect 

the fluid saturation state required for ACC precipitation from seawater. We also studied the effect of 

aspartic and glutamic acid because the acidic amino acids are known to form ligands with Mg2+ and 

Ca2+ in solution,37 and therefore may inhibit precipitation, as well as glycine for comparison. X-ray 

diffraction (XRD), Raman spectroscopy, attenuated total reflectance Fourier transform infrared 

spectroscopy (ATR-FTIR), and thermogravimetric analysis with coupled mass spectrometry (TGA-

MS) were used to determine possible structural variations in the ACCs precipitated under different 

conditions.
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2. Experimental

Sixty-six precipitation experiments were conducted spanning seawater Mg/Ca ratios of 0-5 mol mol-1 

(achieved by varying both Mg2+ and Ca2+), DIC concentrations of 3-25 mM, pH 8.9-10.3, as well as a 

range of L-aspartic acid, L-glutamic acid, and glycine (L-Asp, L-Glu, Gly) concentrations, and 

titration rates (see Tab. 1 and the Supplementary Information). We identified the solution saturation 

state required to precipitate ACC under these conditions, hereafter abbreviated to ACCSI (Saturation 

Index):

ACCSI = [Ca2+] ∙ [CO3
2-] (Eq. 1)

Where [Ca2+] and [CO3
2-] refer to the concentrations at the onset of ACC precipitation. ACCSI is 

directly proportional to the CaCO3 saturation state of the solution (Ω), where for example Ωcalcite = 

[Ca2+]∙[CO3
2–]/Ksp(calcite). We use a simpler formulation of the solution saturation state because ACC 

Ksp is not well-known, and likely varies depending on the structure and composition of the ACC 

precipitated.38 A higher ACCSI directly implies a higher [Ca2+] and/or [CO3
2–] required to precipitate 

ACC from seawater.

2.1 ACC precipitation

All precipitation experiments were conducted in artificial seawater (ASW) made using the protocol 

given in Ref. 39, modified to include the most widely studied trace elements in biogenic carbonates at 

a concentration approximately equivalent to open-ocean seawater (see the Supplementary 

Information). The majority of experiments were conducted in seawater with the natural Mg/Ca ratio 

of 5.2 mol mol-1 (53.0/10.3 mM/mM) whilst a subset of 20 investigated the effect of independently 

varying both [Mg2+] and/or [Ca2+]. The salinity of most experiments was 35 PSU, except where the 

[Mg2+] or [Ca2+] was modified. Seawater with a [Mg2+] lower than natural was produced by adding 

lower amounts of MgCl2, such that in these experiments, salinity was proportional to [Mg2+] (33 PSU 

in MgCl2-free ASW). Seawater with a [Ca2+] higher than natural (>10.3 mM) was produced by 

spiking with CaCl2, such that salinity scaled linearly from 35 to 37 PSU in those with the highest 

[Ca2+] (50 mM).

To precipitate ACC, the carbonate chemistry of the seawater-based solutions was adjusted, by trial 

and error, to a state just below that required for ACC precipitation, i.e. ACC precipitation never 

occurred spontaneously but was initiated by subsequent dosing of small volumes of CaCl2 and 

Na2CO3. The seawater pH and [Ca2+] were monitored using pH and Ca ion selective electrodes (ISE), 

calibrated using NIST-traceable buffer solutions and artificial seawater solutions respectively, the 

latter with a range of seawaters with [Ca2+] spanning 0-16 mM (determined by ICP-OES). Prior to 

ACC precipitation, the seawater carbonate chemistry was adjusted to the desired value by adding 1 M 

Na2CO3 (to increase DIC) and 0.1 M NaOH or HCl to adjust pH (Fig. 1A). The initial seawater DIC 

was calculated as the measured DIC of the stock seawater plus the amount of Na2CO3 added. Once the 
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desired solution chemistry was obtained, the seawater was stirred slowly for 60 s to allow the 

carbonate system to equilibrate. The Ca ISE was monitored to confirm that no precipitation occurred 

while the solution chemistry was being manipulated (Fig. 1B). ACC precipitation was then initiated 

by slow, controlled, simultaneous titration of 0.45 M CaCl2 and Na2CO3 solutions into the seawater. 

All precipitations were conducted in acid-cleaned (1 M HCl) High-Density Polyethylene (HDPE) 

beakers at 22.5±1.5°C using a Metrohm 902 Titrando titrator. The Ca2+ ISE has a minor sensitivity to 

pH (a 1 unit pH change results in an approximate seawater [Ca2+] bias of 15%) which was corrected 

for using the pH electrode.

The solution chemistry ([Ca2+], pH and [DIC]) conditions at the onset of ACC precipitation were 

identified by comparing the observed evolution of [Ca2+] using the calibrated Ca ISE to that predicted 

if all titrated CaCl2 remained in solution (Fig. 1B). The seawater [Ca2+] at ACCSI (the conditions at 

which precipitation began) is defined here as the point at which more than 20% of the titrated CaCl2 

was utilised in precipitation. Whilst this method slightly overestimates the solution saturation state 

with respect to carbonate precipitates (compare arrows 2 and 3 in Fig. 1C), this compromise was 

ultimately preferred over the uncertainty associated with precisely defining the point at which the Ca2+ 

titration curve deviated from expected, as the Ca ISE has a precision of ~3% in high-ionic strength 

solutions such as seawater.  The seawater [CO3
2-] required to calculate ACCSI was calculated from 

DIC and pH using co2sys,40 based on the titration of exactly equal volumes of Na2CO3 and CaCl2 up 

until the point that precipitation began, i.e. ΔDIC = ΔCa. In these relatively short experiments 

(precipitation typically took place over <5 minutes, total experiment duration including seawater 

carbonate chemistry adjustment was <20 minutes), the seawater carbonate chemistry was assumed to 

be unaffected by CO2 diffusion from the atmosphere.

The majority of experiments were conducted in 100-200 ml seawater, with a subset (20 precipitations) 

conducted in 250 ml. In these larger volume experiments seawater samples for DIC and elemental 

chemistry were taken, albeit only after sufficient precipitation had taken place for characterisation 

(30-60 s after ACCSI, the point at which precipitation began), see the Supplementary Information for 

further details. The seawater-precipitate mixtures were immediately vacuum separated using 0.2 µm 

nylon membrane filters, and the DIC of the filtrate was immediately determined. Samples for 

elemental analysis were placed into acid-cleaned (1 M HCl) polypropylene centrifuge tubes and 

immediately acidified to 5% HNO3. The precipitates were thoroughly rinsed with trace element grade 

ethanol and air-dried. We observe good agreement between the measured Mg/Ca and DIC estimates 

based on the technique outlined in the preceding paragraph (typically better than 7% in both cases, see 

the Supplementary Information)
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5

Based on the technique described above, we calculate the solution carbonate chemistry (pH, DIC, 

[CO3
2–]), [Ca2+] and Mg/Ca ratio at the onset of precipitation, use these data to compute ACCSI, and 

subsequently examine how this is impacted by the experimental variables described above 

(summarised in Tab. 1). The seawater Mg/Ca ratio at the onset of precipitation was calculated as 

[Mg2+
initial]/([Ca2+

initial] + Ca2+
titrated), i.e. assuming the titrant solutions did not contain a significant Mg 

contaminant, and that only a minor amount of Mg2+ was removed through ACC precipitation. We 

estimate that precipitation of 20 mg ACC (typical of the 250 ml experiments) with a Mg concentration 

of 10 mole %41 reduced the solution [Mg2+] by 0.04 mM, or 0.4%, which we consider to be 

unimportant in the context of the large range investigated here (0-53 mM). Similarly, the relatively 

small titration volumes necessary to precipitate ACC using this method (~1-4 ml in 100-250 ml 

seawater) meant that there was no substantial change in ionic strength over the course of the 

experiments.

2.2 Analytical chemistry

The uncertainty in the measurement of pH was calculated as 0.020 across the pH range 4-10, based on 

the maximum observed difference between fresh and one-week-old pH buffers (the buffers used to 

perform the calibration were replaced approximately once per week).

Seawater DIC was analysed using a LI-7000 CO2 differential, non-dispersive, infrared gas analyser 

(Apollo SciTech; AS-C3). The instrument was calibrated at intervals using a seawater standard 

(Dickson batch 141, DIC 2033.3±0.3 mol kg-1), and the accuracy and linearity of the analyser at the 

relatively high DIC concentrations of this study was confirmed by analysis of a range of Na2CO3 

solutions spanning 1.5-16 mM. The precision of individual samples assessed through multiple (6-10) 

injections was routinely better than 0.2%. However, because the DIC analyser was not always 

calibrated before each set of experiments, and significant variations in the DIC calibration were 

observed, we report a DIC uncertainty of ±7% based on the maximum difference between calibrations 

performed on different days.

Mg/Casw was determined using the Varian Vista Pro ICP-OES (axial) at the Edinburgh Earth 

Observatory. The samples were diluted 1:50 with 3% HNO3 to reduce the plasma loading associated 

with high-ionic strength solutions. Yttrium was used as the internal standard. Calibration was 

performed using a six-point calibration line (blank plus five standards), spanning the range of sample 

Mg and Ca concentrations. Accuracy and precision (2RSD) of measured Mg/Casw were 1.8% and 

2.2% respectively based on repeat analyses of natural seawater.

2.3 Precipitate characterisation
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6

Raman, ATR-FTIR, XRD, and TGA-MS analysis were performed on a subset of the precipitates 

covering the range of experimental conditions. Raman spectroscopy measurements were performed 

using a Horiba Jobin Yvon LabRam HR800 with a 50× long-working-distance objective, an excitation 

wavelength of 514 nm, and beam diameter of 1 µm. The system was calibrated prior to each set of 

measurements using an Ag standard. Measurements were performed at 1.8 cm-1 resolution with the 

reported spectra representing the average of 20×5s scans. Initial measurements were performed at a 

low laser intensity to ensure that local heating on the sample did not alter the ACC. The laser intensity 

was then systematically increased to maximise signal/noise whilst ensuring no thermally induced 

transformation took place (i.e. no change in the spectra when normalised to the most intense peak). 

Subsequent full width at half maximum peak height (FWHM) analysis is dependent on spectral 

resolution,42,43 such that the relatively wide peak widths we report for crystalline CaCO3 should be 

viewed in the context of the spectral resolution used here. In contrast, the disordered nature of ACC 

means that the peaks of interest are weakly dependent on spectral resolution (>20 wavenumbers wide) 

and easily distinguishable from crystalline materials (~4 times wider). ATR-FTIR spectra were 

collected using a Bruker Platinum ATR infrared spectrometer fitted with a TGS detector; 

measurements were performed at 1.4 cm-1 resolution with 32 scans. A baseline measurement was 

performed before every sample. TGA-MS profiles were determined using a Netzsch STA 449 F1 

Jupiter coupled with a QMS 403 Aëolos R quadrupole mass spectrometer. Around 10 mg of sample 

was heated at a rate of 10°C min-1 from 40°C to 800°C, in an Ar atmosphere with a flow rate of 350 

ml min-1. As well as TGA profiles, the ion current of m/z 18, 28 and 44 was monitored to enable the 

identification of the decomposition products. In order to calculate the formula water of crystallisation, 

the relationship between n∙H2O and the integrated area of the m/z 18 ion peak was calibrated based on 

the thermal decomposition of CaC2O4∙H2O (see the Supplementary Information).

3. Results and discussion

The solution chemistry conditions at ACCSI (the onset of precipitation) is shown in pH-DIC space in 

Fig. 2. The majority of experiments fall within ±2 mM of the 10 mM [CO3
2–] line (dashed contours 

overlain on Fig. 2), equivalent to a [Ca2+]/[CO3
2–] ratio of ~1-1.2, with the exception of those in which 

the Mg/Ca ratio was modified. Given that the experimental seawaters did not have initial equimolar 

concentrations of [Ca2+] and [CO3
2–], this is not an artefact of the experimental design. Therefore, we 

find that in seawater with a Mg/Ca ratio close to natural (5 mol mol-1), ACC precipitation occurs when 

the DIC concentration reaches a value necessary to achieve approximately equimolar seawater [CO3
2-] 

and [Ca2+].

3.1 Vibrational spectroscopy and thermal decomposition

Raman, FTIR, XRD and TGA-MS analyses (Fig. 3,4,5,6), confirm that our experiments yielded ACC 

in all but two cases. Experiments conducted in seawater with an initial Mg/Ca ratio <1 mol mol-1 
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7

resulted in rapid calcite precipitation without an observed ACC precursor (e.g. Fig. 3F,5), while those 

conducted at the highest pH (10.3 on the NBS scale) resulted in amorphous brucite-CaCO3 mixtures 

(Fig. 4H).

In the variable pH/DIC experiments, there is no resolvable control of solution carbonate chemistry on 

any aspect of the Raman and FTIR spectra when precipitation takes place from normal seawater 

(Mg/Ca = 53/10.3 mM/mM) at pH ~10. Whilst DIC and pH were varied across a wide range, most 

ACCs were precipitated at a [CO3
2–] of 10±2 mM and a Mg/Casw ratio of ~5 mol mol-1 (Fig. 2). This 

may explain why there is little evidence for a carbonate chemistry control on ACC structure, as the 

seawater [Ca2+]/[CO3
2–] ratio was close to one in most cases. Similarly, in the variable amino acid 

concentration experiments, we find no resolvable structural effect on ACC as evidenced by the FTIR 

or Raman spectra (Fig. 3 and 4), in agreement with a previous study.44 These molecules have a 

differential affinity to form ligands with Ca2+ and Mg2+ in solution, such that amino acid concentration 

affects the free Mg/Ca ratio. 37 Therefore, it is somewhat surprising that the concentration of Asp and 

Glu do not resolvably impact ACC structure, as both influence Mg incorporation into ACC, and we 

identify Mg/Casw as a driver of ACC structure (Fig. 7).

The Raman spectra of ACC (Fig. 3) are dominated by a broad ν1 peak (CO3 symmetric stretch) at 

1080 cm-1 (the precise location of this peak varies as a function of mole % Mg42), and a smaller broad 

ν4 peak (CO3 in-plane bend) at 710 cm-1. In ACC precipitated from seawater with the natural [Mg2+] 

and [Ca2+], the lattice mode vibrations of the crystalline CaCO3 polymorphs, if present, are obscured 

due to the presence of a broad band below 300 cm-1. This feature occurs in both biogenic ACC2 and 

inorganic hydrated crystalline and amorphous CaCO3 (Ref. 45), but not in the crystalline anhydrous 

polymorphs (e.g. Fig. 3F), indicating that it relates to the presence of water. In contrast, ACC 

precipitated from seawater with Mg2+ reduced from 53 to 10 mM (Fig. 3E) is characterised by spectra 

with narrower ν1 and ν4 peaks, as well as distinguishable lattice mode vibrations at 155 cm-1 and 285 

cm-1, indicative of the crystal structure of calcite. These precipitates either differ structurally from 

their counterparts formed at higher Mg/Casw or represent physical mixtures of calcite and ACC. 

Interestingly, the Raman spectra of the precipitates presented here show many of the different features 

reported for both stable and transient biogenic ACCs.2 Given that the differences in the Raman spectra 

between our experiments are principally driven by the seawater Mg/Ca ratio, this raises the possibility 

that variation in the structure of biogenic ACCs also arise from the Mg/Ca ratio at the site of 

calcification, further discussed below.

The full width at half maximum (FWHM) of the symmetric C-O stretch (ν1) peak at ~1080 cm-1 of all 

ACCs is positively correlated with Mg/Casw and greatly exceed that of calcite and aragonite (22-34 

cm-1 compared to 5.5-10.8 cm-1 respectively, Fig. 7). Note that this comparison should be viewed in 

the context of the spectral resolution of our Raman data (~1.8 cm-1), such that the FWHM of the ACC 
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8

samples may differ even more from calcite and aragonite than is apparent. The Root Mean Square 

Error (RMSE) of the ν1 FWHM based on the data in Fig. 7 is 1.1 cm-1, such that these ACCs are 

significantly different from the crystalline samples (as previously described4), and the relationship 

between Mg/Casw and FWHM of the ACCs is highly significant (R2 = 0.92; p <<0.01). The relatively 

wide ACC ν1 peak occurs because materials lacking long-range order are typically characterised by 

broader peaks, in the case of ACC due to the disordered coordination environment around the Ca 

atoms compared to calcite.46 In addition, both the relatively large ν1 peak width in ACC and the 

increase in ν1 FWHM with Mg/Casw arise because ACC typically contains >10 mole % Mg.42 Because 

Mg-O has a longer metal-O bond distance than Ca-O, (increasing) Mg incorporation results in greater 

bulk heterogeneity in metal-O vibrations, and a wider ν1 peak. In this respect, our data are in good 

agreement with those of Ref. 42 who found the ν1 FWHM is linearly dependent on the mole % Mg of 

ACC. Whilst we cannot directly compare our results to that study as we do not report precipitate 

Mg/Ca data, it has been shown that ACC Mg/Ca is proportional to Mg/Casw,41 such that our data are 

consistent with this finding.

Both one and two peak fits of the ν1 band of amorphous precipitates formed under different Mg/Casw 

are shown in Fig. 7A. The position of the peaks in the two-peak fit were fixed at 1080 cm-1 and 1090 

cm-1 (CaCO3 and MgCO3 respectively47), whilst the peak widths were fixed at 20 cm-1, the intercept of 

our Mg/Casw-FWHM regression (Fig. 7A), inferred to represent Mg-free ACC. A single peak fit is 

likely more appropriate if the ν1 band is symmetrical and therefore explicable by solid solution of 

amorphous (Ca,Mg)(CO3)2, whereas a two peak fit may be more appropriate if the ν1 band is 

asymmetrical, which would imply a heterogenous material. The residuals of the one and two-peak fit 

are similar for ACCs precipitated from different Mg/Casw ratios achieved by varying Ca2+ at constant 

Mg2+ (Fig. 7B-C). Therefore, the ν1 band of these ACCs is (i) not resolvably asymmetric (cf. Ref. 42), 

and (ii) well-described by two closely-spaced peaks representing amorphous CaCO3 and MgCO3 

endmembers; a solid-solution model of Mg incorporation into ACC is compatible with these data. In 

contrast, ACC precipitated from seawater with a Mg2+ concentration reduced from 53 to 10 mM 

(Mg/Casw = ~1; Fig. 7D) is characterised by an asymmetrical ν1 band, which cannot be modelled by 

any combination of the two-peak fit. Rather, the best-fit two-peak model arises through the 

combination of a relative wide peak (20 cm-1) centred on 1080 cm-1 and a much narrower (8 cm-1) 

peak centred on 1086 cm-1 (this fit was determined by fixing the position and FWHM of the wider 

peak for the same reasons as above and solving for all other parameters, i.e. treating the second 

component as a complete unknown). The narrow peak indicates the presence of a more ordered phase, 

whilst the position of this peak is consistent with that of low-Mg calcite.47 Thus, precipitation at a 

[Mg2+] greatly lower than normal seawater may result in ACC-calcite mixtures despite the overall 

highly saturated conditions investigated (Tab. 1). The implication of this is that within the DIC and 

pH range investigated here (as close as possible to that thought to characterise certain marine 

Page 8 of 42

ACS Paragon Plus Environment

Crystal Growth & Design

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



9

calcifiers) it appears that there is a limit to which the [Mg2+] can be reduced before the resulting 

precipitate is not entirely ACC.

The most prominent feature of the FTIR spectra is the split ν3 band at ~1400 and 1474 cm-1 

(antisymmetric CO3 stretch; Fig. 4), indicating that there is more than one local symmetry around the 

CO3 ion in ACC,2 and therefore that ACCs do have a short-range order. The broad band derived from 

the hydrogen-bonded O-H stretch between 3000-3800 cm-1 indicates the presence of a significant 

amount of water of crystallisation, confirmed by TGA-MS (Fig. 6A). The thermal decomposition 

profiles of ACC precipitated from normal seawater (Mg/Ca = 53/10.3 mM/mM) show a mass loss 

associated with the m/z 18 ion beam of 17-19%, equivalent to a formula mass of CaCO3 ∙ 

0.85±0.05H2O. As in the case of the Raman and FTIR spectra, we find no systematic relationship 

between water content and seawater carbonate chemistry or amino acid concentration.

ACC precipitated from seawater with a [Mg2+] reduced to 10 mM has a narrower ν2 peak at 864 cm-1 

and a greatly reduced O-H band between 3000-3800 cm-1 (Fig. 4F). This further indicates that the 

Mg2+ concentration or ratio of Mg/Ca imparts the greatest effect on the structure of ACC and water of 

crystallisation (and/or results in ACC-crystalline mixtures at low [Mg2+] as discussed above; Fig. 7D). 

Moreover, although varying pH and DIC result in no resolvable structural differences in ACC 

precipitated from normal seawater, we find that this is not the case as Mg/Casw is reduced. At pH 10.1 

and a seawater Mg/Ca ratio of 1 mol mol-1, achieved by raising [Ca2+] from 10 to 50 mM, the 

resulting ACC has an FTIR spectra equivalent to those of precipitates from seawater with the natural 

Mg/Ca ratio (compare panels A and D in Fig. 4). However, when ACC is precipitated from seawater 

with 50 mM Ca2+ but a pH slightly reduced to 9.7, the resulting spectra are characterised by a 

narrower ν2 peak at 864 cm-1 (FWHM reduced from 15.5 to 7.2 cm-1, see Fig. 4D,E), as well as a 

narrower Raman ν1 peak. The asymmetry of the ν3 band, lack of a resolvable ν1 peak in the FTIR 

spectra, and the presence of a significant amount of water of crystallisation indicate a dominantly 

amorphous precipitate. However, the bulk material has a greater degree of short-range order compared 

to ACC precipitated from normal seawater. Previous work has shown that the presence of ‘additives’ 

like Mg2+ impact the short-range structure of ACC21,48; our results demonstrate that the extent to 

which the seawater Mg/Ca ratio drives structural differences is dependent on the carbonate chemistry. 

Specifically, the seawater Mg/Ca ratio exerts a larger influence on the structure of these materials at 

lower (more biologically relevant) pH. Given that Mg/Casw is the only investigated method by which 

the solution [Ca2+]/[CO3
2-] ratio at the onset of precipitation can be greatly reduced below unity (Fig. 

2), it may be that the mechanistic basis for the Mg/Casw-dependent structural variation in ACC is 

rooted in precipitation from solutions with a relatively low [CO3
2–]. Of relevance here is the previous 

use of nuclear magnetic resonance (NMR) spectroscopy to identify structural differences in the 

position of mobile water in biological ACC compared to synthetic ACC produced at high pH.49 We 
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10

find that the seawater Mg/Ca ratio is the only parameter we varied that resulted in a substantial 

variation in the precipitate water of crystallisation (Fig. 4). Together, these observations again point to 

Mg/Casw as a key factor that could result in structural differences in both the precipitates discussed 

here as well as biogenic ACCs.

3.2 Solution chemistry control on ACC precipitation from seawater

The impacts of the investigated variables on ACCSI (Eq. 1) are summarised in Fig. 8 and 9. Because 

some factors unavoidably covaried in our experiments (especially solution [Ca2+] with other 

variables), the experiments were grouped into five broad sets on which to perform least-squares 

multiple linear regression analyses (Tab. 2). The aim of this exercise was to identify which factors 

(the carbonate system, solution [Mg2+] and/or [Ca2+], and amino acid concentration) exert the largest 

control on ACCSI where these vary together, and to explore how much of the variance in the data can 

be explained by these variables alone. A linear model of the following form was chosen for 

simplicity:

ACCSI = 𝑥1 +𝑥2Mg/Casw +𝑥3pH +𝑥4DIC +𝑥5[AA] (Eq. 2)

However, we note that there is no theoretical basis for this, and more complex models could result in 

better fits to the data if ACCSI is nonlinearly sensitive to some factors. pH and DIC were used to 

account for the carbonate system because these were the variables that were measured, but ACCSI 

may be mechanistically more appropriately related to (e.g.) pH and [CO3
2-] (albeit there is no 

significant difference in the model fits if [CO3
2-] rather than DIC is chosen).

All multiple linear regression models are highly significant (Tab. 2, p<<0.01), except for the glutamic 

acid experiment which contained far fewer precipitations. This exercise demonstrates that solution 

pH, DIC, [Mg2+], [Ca2+], and amino acid concentration can explain nearly all the variance in the data 

(model R2 range between 0.79-0.98, RMSE 5.2-9.3). Grouping all data together results in a model in 

which all independent variables except for amino acid concentration are significant predictors of 

ACCSI, with ACCSI being most sensitive to pH (m = ~50 per unit), followed by Mg/Casw (m = ~-30 

per mol/mol).

The relationship between DIC and ACCSI is not significant when DIC alone is considered (Fig. 8A), 

yet the multiple linear regression models demonstrate that in the amino acid-free experiments DIC is a 

significant predictor of ACCSI both at normal and low seawater Mg concentrations, and when the 

entire dataset is combined (Tab. 2). This relationship is significant irrespective of whether our best 

estimate of ACCSI is used, or if the uncertainty in ACCSI (mostly derived from the DIC calibration) is 

fully propagated through to the model by Monte Carlo simulation (1000 simulations per model, see 

the SI for details), because almost all of the uncertainty in ACCSI is derived from the DIC uncertainty 

(the uncertainties are almost perfectly correlated). As a result, the uncertainty in absolute DIC has a 
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11

very minor effect on the multiple linear regression models, and we are therefore able to identify the 

carbonate system as a significant factor influencing ACC precipitation from seawater. Specifically, 

increasing DIC and/or pH increases ACCSI. All else being equal this would imply a higher [CO3
2-] 

necessary for ACC precipitation, which indicates that some factor slightly inhibits precipitation under 

these overall more saturated conditions. Potentially relevant considerations are pH or concentration-

dependent ion-pairing, or the size of hydration spheres.

Titration rate was not found to impart a systematic control on ACCSI (Fig. 8D), and this factor was not 

investigated further. Importantly, however, this result does indicate that varying titration rate by more

than an order of magnitude does not greatly affect the identification of ACCSI using this experimental

design.

High concentrations of the acidic amino acids substantially inhibit ACC precipitation (Fig. 8E,F), so it 

is surprising that the ACCSI slope associated with this factor in the multiple linear regression models 

is relatively minor (m = 0.1-0.6 per mM; Tab. 2). The reason for this may be that the inhibitory effect 

of amino acids in seawater is principally overcome through the addition of Ca2+ in our experiments 

(Fig. 1C), so that ACCSI is ultimately best correlated with the seawater Mg/Ca ratio. To test this, the 

linear regression models were run both with and without amino acid concentration as an independent 

variable (Tab. 2). In the amino-acid free models Mg/Casw becomes a significant predictor of ACCSI, 

which is to be expected in the case of collinearity in the independent variables, adding support to the 

above hypothesis. That is, the non-significance of Mg/Casw as a predictor of ACCSI in the amino acid 

experiments when both [AA] and Mg/Casw are used in the regression model results from the tight 

correlation between [AA] and Mg/Casw at the onset of precipitation, as the inhibitory effects of the 

amino acids is overcome through the additional titration of Ca2+.

The role of Mg2+ in both inhibiting ACC precipitation and stabilising against transformation to a 

crystalline CaCO3 is well-known.2,50,51 It is therefore unsurprising that we find it also plays a similarly 

important role in ACC precipitation from seawater. Reducing seawater [Mg2+] from 53 to 10 mM 

enables precipitation at a moderately lower ACCSI, and therefore a lower DIC, given the initial 

seawater [Ca2+] was not varied in these experiments (Fig. 8B). By conducting a set of experiments at 

different pH and DIC with [Mg2+] reduced to 10 mM, we show that it is possible to precipitate ACC at 

a DIC below 10 mM (Fig. 8B,C), i.e. approaching those conditions thought to characterise marine 

calcifiers, discussed in more detail below. However, the resulting lower Mg2+ concentration of the 

seawater, and therefore the ACC precipitates,41 has been shown to reduce the time required for this 

ACC to transform into calcite or monohydrocalcite,51 with the implication that although the DIC 

required to precipitate ACC is greatly reduced, the resulting ACC is likely less stable. Indeed, large 
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structural differences between ACC from normal and low-Mg seawater were observed as discussed in 

Sec. 3.1.

In contrast to the effect of reducing [Mg2+], decreasing Mg/Casw by elevating seawater [Ca2+] at pH 10 

results in a higher ACCSI (Fig. 8B). This is borne out by the experimental data overall, which broadly 

fall on a Mg/Casw-ACCSI array characterised by a negative slope (Fig. 9A, Tab. 2), which means that 

increasing Ca2+ does not result in a proportionally equivalent CO3
2- decrease to maintain a constant 

solution [Ca2+]∙[CO3
2-] (the definition of ACCSI). Nonetheless, although a higher [Ca2+] results in a 

higher ACCSI, precipitation is possible at a lower DIC and [CO3
2-] compared to normal seawater (Fig. 

8B), as in the case when Mg/Casw is reduced by lowering [Mg2+]. Moreover, performing a similar 

experiment at a lower pH of 9.5 highlights the importance of considering seawater elemental and 

carbonate chemistry in tandem. In contrast to the experiments at pH 10, increasing [Ca2+] at pH 9.5 

yields precipitation at an approximately constant ACCSI (Fig. 8B) and even lower DIC. The 

implication of this is that seawater chemistry exerts a bigger influence on the dynamics of ACC 

precipitation at lower pH, in addition to the wider structural variation in ACC precipitated at lower pH 

discussed above (Fig. 4).

In summary, we find that reducing Mg/Casw, either by raising Ca2+ or lowering Mg2+ is the principal 

means by which ACC precipitation may be formed from seawater with a relatively low DIC. We 

stress that additional considerations like the carbonate system,52,53 and moreover the possible presence 

of a variety of organic molecules,7,17,54 and/or confinement18 may provide additional mechanisms by 

which ACC can be synthesised and stabilised, potentially independently of solution major ion 

chemistry. However, our results demonstrate that the concentration of both Mg2+ and Ca2+ are 

important in determining the precipitation and structure of ACC, and that precipitation and structure 

are more sensitive to solution ion chemistry at lower pH. Lastly, we find that the presence of Mg in 

seawater is critical to ACC precipitation. None of our experiments in Mg-free ASW yielded ACC, 

instead resulting in rapidly-precipitated calcite (Figs. 3F,5). 

ACC precipitation at different amino acid concentrations demonstrates that the presence of all three 

amino acids increase ACCSI. As is the case for crystalline CaCO3,55 the effect of the acidic amino 

acids is distinct from glycine. Specifically, we find that [Gly] exerts a relatively minor, approximately 

linear, control on ACCSI, whilst the effect of increasing [Asp] or [Glu] is both more pronounced and 

nonlinear (Fig. 8E). Relatively low concentrations of both these acidic amino acids result in an 

increase in ACCSI from ~150 to 200, i.e. greater than the change affected by the entire studied range 

of pH and DIC. Above an amino acid concentration of 20 mM there is little further effect, indicating 

that the inhibition of ACC precipitation by Asp and Glu becomes saturated above this point. As in the 
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case of Mg2+, our results show that the amino acids, as well as playing a stabilising role,47 also serve 

to inhibit ACC precipitation.

Varying the seawater carbonate system in the presence of 50 mM Asp and three different [Gly] (Fig. 

8F) again highlights the importance of considering all aspects of solution chemistry when studying 

ACC precipitation. For example, at the lower range of [Gly] studied here (2 mM), ACCSI falls on the 

amino acid-free variable pH/DIC array (Fig. 8F). However, at an [Asp] or [Gly] of 50 mM, the data 

fall above the array, as the presence of high concentrations of amino acids inhibits ACC precipitation, 

but crucially, the degree to which this is the case strongly depends on the seawater carbonate 

chemistry. At the lower pH range investigated here (~9), the inhibitory effect on ACC precipitation is 

large (ACCSI is much higher compared to the amino acid free experiments), but at pH 10, this 

inhibitory effect is counteracted by the basic solution conditions such that the presence of high 

concentrations of both Gly and Asp do not result in a greatly increased ACCSI compared to the amino 

acid-free experiments. The divergent response of ACC precipitation to the presence of amino acids at 

different seawater pH echoes the pH-dependent structural variations in ACC discussed with respect to 

the FTIR spectra above (Fig. 4), highlighting the importance of considering solution carbonate 

chemistry in concert with the Mg/Ca ratio and presence of additives.

3.3 Relevance to marine calcifiers

We were unable to precipitate ACC within the pH and DIC range thought to characterise tropical 

zooxanthellate corals26,35,36 in seawater with a Mg/Ca ratio close to natural (53/10.3 mM; Fig. 2), and 

the addition of amino acids serves to inhibit ACC precipitation (Fig. 8E). However, raising the 

seawater [Ca2+] or lowering [Mg2+] can reduce the DIC and [CO3
2-] necessary to precipitate ACC (Fig. 

8). As such, we consider whether ACC can be produced within the DIC and pH range of marine 

calcifiers through a modification of the Mg/Ca ratio of the calcifying space. Fig. 10 summarises the 

effects of these processes in a quantitative manner, displaying the [CO3
2–] necessary for ACC to 

precipitate from seawater as a function of both seawater [Mg2+] and [Ca2+]. This exercise highlights 

two important aspects of our dataset. Firstly, raising the initial seawater [Ca2+] from 10. 3 to 15-50 

mM results in a greatly reduced [CO3
2–] required for ACC precipitation, whilst the degree to which 

this is the case is sensitive to seawater pH. At a lower, more biologically-relevant pH of 9.5, ACC 

precipitation occurs at a [CO3
2–] ~2.5 mM lower compared to pH 10 (possibly because it differs 

structurally), such that  the necessary [CO3
2–] to form ACC can be reduced to well within the range of 

that reconstructed for marine calcifiers. Secondly, whilst lowering the seawater [Mg2+] can also result 

in a reduction in the [CO3
2–] required to precipitate ACC, the extent to which this is the case is even 

more strongly dependent on the solution carbonate chemistry, and reducing [Mg2+] is a less efficient 

mechanism by which the necessary [CO3
2-] for ACC precipitation can be reduced (Fig. 10). Moreover, 

there is a limit to the extent to which the [CO3
2–] required to induce ACC precipitation can be reduced 
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by lowering [Mg2+]. The experiments in seawater with 10 mM Mg2+ and DIC at the lower end of the 

range investigated likely represent ACC-calcite mixtures (Fig. 7D), and further decreasing the initial 

seawater Mg/Ca ratio resulted in calcite precipitation.

In summary, these results indicate that manipulation of the calcification site Mg/Ca ratio may enable 

ACC to be precipitated at a relatively low DIC. However, applying this finding to the tropical 

zooxanthellate corals results in a discrepancy. Although the presence of an ACC precursor phase has 

been reported for these organisms,10,56 several studies using independent techniques have shown that 

the [Ca2+] at the calcification site of corals is unlikely to be elevated above ~15 mM.26,43,57 ACC 

precipitation at this [Ca2+] required a [CO3
2-] of >8 mM in our experiments (Fig. 10), far exceeding 

that thought to occur at the biomineralization site of these corals.26,28,43,57,58 We also note that the 

experimental transformation of inorganic ACC to aragonite is a long process, taking ~10 days in 

seawater with the normal Mg/Ca ratio and proceeding through an intermediate monohydrocalcite 

phase.19 Lastly, it may be difficult to reconcile observed skeletal trace element distribution 

coefficients with a greatly elevated [Ca2+].24 It is beyond the scope of this study to address this issue 

directly, except to highlight that reconciliation of our precipitation data with that from corals either 

requires the role of ACC in corals to be reconsidered, or for a mechanism to be found by which the 

DIC necessary to precipitate ACC can be reduced without greatly modifying the seawater Mg/Ca 

ratio. Irrespective, one specific area in which our results can directly inform the ongoing debate 

regarding ACC as a possible precursor to coral aragonite (cf. refs. 59,60) concerns the interpretation 

of Raman spectra. A distinguishing feature of ACC is the greatly increased υ1 FWHM relative to 

crystalline CaCO3 and lack of visible lattice mode vibrations (Fig. 7). Pertinently, we show that 

material precipitated under certain conditions has spectral features of both ACC and calcite (Fig. 3E), 

and likely represents ACC-calcite mixtures (Fig. 7D). Care should be taken in the identification of 

biological ACC based on Raman spectra that contain lattice mode vibrations. Whilst lattice mode 

vibrations do not necessarily rule out the presence of an amorphous phase, the presence or position of 

lattice mode vibrations alone are not indicative of ACC.

In contrast to marine calcifiers that build an aragonitic skeleton, our data are not necessarily difficult 

to reconcile with biomineralization in organisms that produce a low-Mg calcite shell such as the 

planktonic foraminifera. These organisms have also been suggested to calcify through an ACC 

precursor,11,12 but crucially there is consensus that the Mg/Ca ratio at the site of calcification must be 

greatly reduced below that of seawater in order to promote the formation of low-Mg calcite.13,30,61 

However, at present little is known about the calcification site DIC in foraminifera. A more detailed 

comparison to our inorganic ACC precipitation data will require better constraint of this aspect of 

foraminifera calcification.

4. Conclusion
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The control that pH and DIC, the concentration of [Mg2+] and [Ca2+], and the presence of different 

concentrations of Asp, Glu and Gly exert on the saturation state required to precipitate ACC from 

seawater (ACCSI) was investigated. In normal seawater (Mg/Ca = 5), the solution pH and DIC exert at 

most a minor control on ACCSI and no resolvable structural control as evidenced by FTIR, Raman, 

XRD, and TGA-MS. The presence of high concentrations (>2 mM) of amino acids inhibit ACC 

precipitation, but also do not alter the spectroscopic features or water of crystallisation of the 

precipitate. In contrast, lowering the seawater Mg/Ca ratio, either by reducing [Mg2+] or increasing 

[Ca2+], may greatly reduce the DIC and [CO3
2–] necessary to precipitate, yet can result in a greater 

degree of short and long-range order, as evidenced by the appearance of lattice-mode vibrations, a 

narrower ν3 Raman peak, and a greatly reduced water of crystallisation.

In addition, we investigate the combined effect of varying the seawater carbonate chemistry and 

[Mg2+], [Ca2+] or amino acid concentration on the structure of ACC and ACCSI. Whilst we find no 

substantial direct impact of pH or DIC on ACC structure precipitated from unmodified seawater (see 

above), these experiments highlight the differing impact of the seawater Mg/Ca ratio and 

concentration of amino acids at lower pH. In general, modifying Mg/Casw exerts a much greater 

control on both the structure of ACC and ACCSI at pH 9-9.6 compared to pH 10, the latter typical of 

much inorganic ACC work, highlighting the need to consider the solution carbonate chemistry in 

tandem with other variables.

Finally, we find that the DIC required to precipitate ACC from normal seawater greatly exceeds that 

thought to characterise the calcifying space of certain marine organisms that may utilise this pathway. 

The only variable investigated here which resulted in a large, systematic decrease in the DIC required 

to precipitate ACC is the seawater Mg/Ca ratio, raising the possibility that modifying the seawater 

Mg/Ca ratio through Mg removal or Ca addition is an important component of utilising an ACC 

pathway.

Supporting Information. Further methodological details, additional TGA-MS results, and an in-

depth assessment of the multiple linear regression models relating ACCSI to the experimental 

variables. Supplementary Tab. 1 presents full seawater chemistry details for all precipitates.
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Figure 1: An example titration curve to induce ACC precipitation from seawater. (A) pH evolution 

over the course of the titration, note break in y-axis scale. In this case, (i) artificial seawater is (ii) 

spiked with 1 M Na2CO3 to achieve the desired DIC for the experiment. (iii) The pH is then adjusted 

using HCl or NaOH, and the solution is equilibrated for 60 s. (iv) ACC precipitation is induced by 

simultaneous titration of 0.45 M Na2CO3 and CaCl2. A pH increase occurs as ACC precipitation is not 

immediate. (B) Seawater [Ca2+] measured in real-time using a calibrated ISE. Dashed and solid blue 

lines show the measurement both uncorrected and corrected for pH change, as pH exerts a minor 

control on the measured electrode voltage. The dashed black line shows the predicted evolution of 

seawater Ca2+ if no precipitation takes place. The divergence of the Ca electrode measurement from 

this line therefore indicates the onset of precipitation. (C) The fraction Ca titrated that went into 

solution, based on the divergence of the curves shown in panel B. Vertical arrows (1) show the onset 

of titration, (2) the divergence of the measured solution Ca2+ from predicted, indicating the initiation 

of precipitation, and (3) the point at which more than 20% of the titrated Ca was utilised in ACC 

precipitation. (D) The temporal evolution of the product of [Ca2+] and [CO3
2-], the latter calculated 

from DIC and pH using co2sys.36 In the text and subsequent figures the seawater saturation state 

required to precipitate ACC (abbreviated ‘ACCSI’) is calculated as being the [Ca2+]∙[CO3
2-] product at 

the location of arrow 3.
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Figure 2: The pH and DIC range over which ACC was precipitated from seawater in this study. DIC 

and pH broadly co-varied in our experiments as it was not possible to precipitate ACC from (e.g.) 

low-pH, low-DIC seawater without modifying the seawater Mg/Ca ratio. The approximate upper 

range of estimates of carbonate chemistry at the site of biomineralisation in tropical zooxanthellate 

corals and foraminifera is shown for comparison (transparent blue box, note that the calcification site 

DIC estimates relate only to corals).27,28,36 Contours show lines of equal [CO3
2–] in mM. In most cases 

ACC was precipitated from solutions with a [CO3
2–] of 10±2 mM, approximately equivalent to a 

seawater Ca2+/CO3
2- ratio of 1. Amino acid concentration is shown as a function of opacity, lighter 

symbols indicate lower concentrations. Bold symbols indicate experiments for which solution 

chemistry was directly measured, others are calculated following the method outlined in Fig. 1.
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Figure 3. Representative Raman spectra of the inorganic precipitates. No processing was applied 

except for a linear baseline correction. Mg/Ca labels give the concentration of both elements in mM. 

All spectra show the characteristic features of ACC, except for F (calcite), and G, precipitated under 

extreme basic conditions (pH 10.3). At low Mg/Casw ratios the lattice mode vibrations of calcite 

become visible (D, E).
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Figure 4: Representative baseline-corrected ATR-FTIR spectra of the precipitates. Mg/Ca labels give 

the concentration of both elements in mM. Spectra A-F are of ACCs, which have a characteristic split 

ν3 vibration at 1410 and 1474 cm-1, G is calcite, and H, precipitated under extreme basic conditions, is 

an ACC-amorphous brucite mixture. Amorphous hydrated brucite is shown for comparison in I, 

prepared by pipetting 1 M MgCl2 into deionised water at pH 11, achieved through NaOH addition. 

Note the structural differences between D, E and F, precipitated under the same seawater Mg/Ca ratio, 

but at different pH and absolute [Mg2+] and [Ca2+]. The peak at 1648 cm-1 is an OH vibration,16 and 

does not indicate a brucite component in the ACC samples.
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Figure 5: Representative XRD spectra of selected precipitates. A characteristic spectrum from the 

variable pH/DIC experiment is shown at the bottom of the figure. The broadly featureless spectrum 

confirms the amorphous or nanocrystalline nature of these samples. The only deviations from this 

spectrum were those of precipitates formed at high pH, which contain small, unidentifiable peaks, and 

at low seawater [Mg2+] (<10 mM), which are partly or entirely calcite. 
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Figure 6: TGA-MS profiles of three endmember precipitates. Products of decomposition are shown in 

blue (H2O, m/z = 18) and yellow (CO2, m/z = 44). (A) ACC precipitated in seawater at pH 8.95 with 

al Mg/Ca ratio close to natural (~5 mol mol-1), showing the characteristic three-stage decomposition 

of these inorganic ACCs. (B) Calcite precipitation from seawater, achieved by reducing the seawater 

[Mg2+] by a factor of 10 compared to natural (5 mM). (C) Amorphous material precipitated at the 

basic extreme of the pH range investigated (10.3 on the NBS scale). The FTIR spectra of this material 

indicates that it is an amorphous CaCO3-brucite mixture.
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Figure 7: (A) Solution chemistry control on the Raman ν1 (CO3 symmetric stretch) FWHM at ~1080 

cm-1 of ACCs precipitated from seawater, compared to calcite precipitated under similar carbonate 

chemistry conditions (see the Supplementary Information), inorganic aragonite,43 and a natural coral 

aragonite (Porites spp.). The latter is plotted assuming that corals precipitate aragonite from seawater 

with an unmodified Mg/Ca ratio, which may not be the case.26 (B-D) Gaussian peak fitting of the ν1 

band of three selected amorphous precipitates spanning the investigated range of seawater Mg/Ca 

ratios. Panels B and C represent samples precipitated under different [Ca2+
sw], whereas D was 

precipitated with Mg2+
sw reduced from 53 to 10 mM. The ν1 band in ACCs precipitated under variable 

[Ca2+
sw] is symmetric (these spectra can be fit equally well with one or two peaks). In contrast, ACC 

precipitated at the lowest seawater Mg/Ca ratio is characterised by an asymmetric ν1 band which is 

best modelled by two peaks with different widths. This suggests that these precipitates are physical 

mixtures of low-Mg ACC and calcite.
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Figure 8: The control exerted by solution carbonate chemistry, Mg/Ca ratio and amino acid 

concentration on ACCSI, the seawater saturation state necessary to precipitate ACC. Bold symbols are 

experiments for which solution chemistry was directly measured, others are calculated following the 

method outlined in Fig. 1. Vertical grey bars delineate the approximate range of DIC and pH at the 

site of biomineralisation in tropical zooxanthellate corals and foraminifera.21,25 (A) ACCSI as a 

function of DIC. Only the amino acid-free experiments in normal seawater (Mg/Ca = ~5) are shown. 

(B) The differential response of ACCSI to reducing Mg/Casw through varying seawater [Mg2+] and 

[Ca2+]. Both adjustments result in ACC precipitation at lower DIC compared to the experiments in 

normal seawater (black dots from panel A). (C) The effect of varying pH and DIC in seawater with a 

reduced Mg/Ca ratio (10 mM Mg2+ instead of 53 mM or 20-50 mM Ca2+ instead of 10 mM, see panel 

B for legend). Lines join experiments of equivalent initial DIC at different pH. Note that the low DIC 

experiments may contain a calcite component (Fig. 7D). (D) Titration rate exerts no systematic effect 

on ACCSI. (E) The impact of amino acid concentration on ACC precipitation. Power coefficients of 

least-squares regressions are shown. (F) The combined influence of varying pH/DIC in the presence 

of Asp and Gly. Low AA concentrations (2 mM) produce data that fall within the range of the 

additive-free experiments (black dots from panel A), higher concentrations strongly inhibit ACC 

precipitation at lower, more biologically relevant pH, but to a much lesser extent at high pH. Amino 

acid concentration is shown as a function of symbol opacity in panels E and F.
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Figure 9: Combining the data shown in Fig. 8 to examine the overall controls of solution chemistry 

on ACCSI, the seawater saturation state required to induce ACC precipitation. Most experiments, 

especially those performed in the presence of amino acids, fall on a negative ACCSI-Mg/Casw array 

and positive ACCSI-DIC array, indicating that the inhibitive effect of these additives is overcome 

through Ca2+ and/or DIC titration (see also the multiple linear regression models in Tab. 2). Error bars 

are omitted for clarity (see Fig. 8).
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Figure 10: Comparing strategies to reduce the [CO3
2–] necessary for ACC precipitation from 

seawater; Mg2+ removal (triangles) or Ca2+ addition (diamonds). Data from experiments in which 

Mg/Casw was not the principal variable are shown for comparison (circles). Dashed lines show 

hypothetical endmember scenarios of the relationship between ACC precipitation and solution 

chemistry. Almost no data lie on the horizontal dashed line, with the exception of experiments that 

contained high concentrations of amino acids, demonstrating that reducing Mg/Casw either by raising 

the seawater [Ca2+] or reducing [Mg2+] lowers the [CO3
2–] necessary for ACC precipitation. In 

addition, these data highlight the interplay of solution elemental and carbonate chemistry. At a higher 

(less biologically relevant) pH, raising [Ca2+
sw] results in a reduction in the required [CO3

2–] required 

to precipitate ACC, but to a lesser extent than at pH 9.5, demonstrating that ACC precipitation is 

differently (more) sensitive to [Ca2+
sw] at lower pH.
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Table 1: Overview of the investigated factors impacting ACC precipitation from seawater. The 

carbonate chemistry details represent those at the onset of precipitation (i.e. at ACCSI), whereas the 

seawater [Mg2+] and [Ca2+] are those at the start of the experiment. See the Supplementary 

Information for full details.

Principal experimental 

variable n

DIC (mM) at 

ACCSI

pH (NBS) at 

ACCSI

Titration rate 

(ml/min)

Amino acid 

conc. (mM)

Initial seawater 

[Mg] (mM)

Initial seawater 

[Ca] (mM)

Detailed sample 

ID (see SI)

pH & DIC 14 10.0-24.9 9.0-10.1 0.5 - 53 10.3 1-1, 1-2, 1-3,

1-13

Titration rate 4 13.0-14.9 9.6 0.1-1.0 - 53 10.3 1-15, 1-16

pH & DIC in low-Mg

(10 mM) seawater

3×3 7.1-15.5 9.4-10.2 0.5 - 10 10.3 1-17

[Ca] @ 2× pH 3

4

3.0-8.7

4.2-8.2

9.5-9.7

10.0-10.1

0.5 - 53 15.0-45.0

20.0-50.0

1-6, 1-7

2-19

pH & DIC

with 50 mM Asp

6 12.2-20.5 9.2-10.0 0.5 50 53 10.3 -

[Asp] 5 11.0-17.0 9.5-10.0 0.5 2.5-75 53 10.3 1-4, 1-10

[Glu] 5 11.1-17.0 9.5-10.0 0.5 2-75 53 10.3 1-5, 1-11

[Gly] @ 3×pH 11 12.6-19.6 9.2-10.0 0.5 2-75 53 10.3 -

[Mg] & [Ca] @

Constant Mg/Ca

2 3.0,14.5 9.7 0.5 - 53,10 50,10.3 -

Mg-free SW 1 3.8 9.7 0.5 - 0.1 10.3 1-8

High pH extreme 2 9.0-9.1 10.2-10.4 0.5 - 53 10.3 1-9
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Table 2: Gradients and goodness of fit of multiple linear regression models through subsets of the 

ACC precipitation data shown in Fig. 2 and summarised in Tab. 1. The models were produced twice, 

both with and without amino acid concentration as an independent variable, otherwise taking the form 

defined in Eq. 2 (see text for rationale). The variable pH/DIC model was also performed twice, both 

with and without one outlier removed (the highest DIC data point in Fig. 8A, based on its Cook’s 

distance). Coefficient uncertainties are 1SE except where noted. Bold values denote independent 

variables that are significant predictors of ACCSI at the 95% CI. Note that a coefficient p value >0.05 

does not necessarily imply that the predictor is not significant, as this can also arise from covariance 

in the predictors (e.g. amino acid concentration and Mg/Casw; Fig. 9). The units of the slopes for 

Mg/Casw, pH, DIC, and [AA] are mol/mol-1, unit-1, mM-1, and mM-1 respectively.

Principal 

variable: pH/DIC

pH/DIC

Exc. one outlier Aspartic acid conc. Glutamic acid conc.‡ Glycine conc.

pH/DIC in low-Mg

(10 mM) seawater Entire dataset†

m* p* m* P* m p m p m p m p m p

Amino acid concentration used in multiple linear regression model

Mg/Casw -9.4±5.6 0.15 -16.2±4.0 0.01 -10.4±9.6 0.33 -9.1 -40.0±23.6 0.14 16.5±106.1 0.882 -30.0±4.6 4.3×10-7

pH 24.3±16.6 0.14 37.6±11.8 0.01 -96.1±35.5 0.04 74.4 40.7±25.6 0.16 25.3±16.9 0.195 47.5±14.2 2.0×10-3

DIC 4.0±1.2 0.01 7.1±1.4 5×10-4 -4.9±3.3 0.19 16.2 4.0±2.7 0.19 8.8±1.3 9.1×10-4 8.7±1.6 3.5×10-6

[AA] - - - - 0.6±0.2 0.02 0.1 0.2±0.1 0.06 - - 0.17±0.09 0.06

Overall model:

R2 0.66 0.79 0.98 1.00 0.95 0.98 0.89

p 0.01 2.0×10-3 1.9×10-4 4.5×10-4 1.8×10-4 1.3×10-15

RMSE 6.9 5.2 5.6 5.4 5.1 9.3

Amino acid concentration not used in multiple linear regression model

Mg/Casw As above As above -35.8±9.1 7.5×10-3 -30.9±9.5 0.19 -62.8±27.3 0.05 As above -33.5±4.2 2.1×10-9

pH 1.6±30.5 0.96 101.2±21.1 0.13 77.5±25.6 0.02 64.0±11.7 4.0×10-6

DIC 3.5±3.3 0.34 14.9±3.3 0.82 5.3±3.4 0.16 10.7±1.2 2.6×10-10

Overall model:

R2 0.94 1.00 0.91 0.88

p 4.9×10-4 0.02 5.4×10-4 7.6×10-16

RMSE 9.0 0.8 6.8 9.7

*These estimates represent the median±2SD values of a Monte Carlo simulation (1000 models) including normally-distributed uncertainty in both dependent and 

independent variables. For all other models the least-squares regression through the best estimate of all data are shown. See the SI for a demonstration that 

there is no significant difference between the two approaches.
‡There are insufficient data from this subset of experiments to reliably estimate coefficient or model uncertainties for this number of independent variables.
†The experiments conducted in low-Mg seawater were excluded from this regression model as some precipitates are likely ACC-calcite mixtures (see text). The 

model that uses amino acid concentration as a predictor considers all amino acids together, i.e. Asp, Glu, and Gly were not included as separate terms. This 

choice makes little difference to the result (see the SI).
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For Table of Contents Use Only

The characteristics and biological relevance of inorganic amorphous 

calcium carbonate (ACC) precipitated from seawater

David Evans, Paul B. Webb, Kirsty Penkman, Roland Kröger, and Nicola Allison

ACC precipitated from normal seawater is formed at a [CO3
2-] of 10±2 mM, exceeding that at the 

calcification site of marine organisms reported to utilise an ACC precursor such as corals. The only 

investigated method of lowering the necessary [DIC] for precipitation was to reduce the seawater 

Mg/Ca ratio, raising the possibility that this is an important component of utilising an ACC pathway.

Page 31 of 42

ACS Paragon Plus Environment

Crystal Growth & Design

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



9.2

9.1

9.0

8.9

8.8

s
e
a
w

a
te

r p
H

 (N
B

S
)

4003002001000

time (s)

18

16

14

12

10

s
e
a
w

a
te

r 
[C

a
2
+
] 
(m

M
)

7.6

7.5

7.4

1.2

1.0

0.8

0.6

0.4

fra
c
tio

n
 titra

te
d
 C

a
 to

 s
o
l.

200

150

100

50

0

[C
O

3

2
- ] 

×
 [
C

a
2
+
] 
(m

M
 ×

 m
M

)

1 2 3

B

A

C

D

b) modify DIC

a) ASW ± Asp, Glu, Gly

c) pH adjustment

d) begin titration

'ACCSI'

Page 32 of 42

ACS Paragon Plus Environment

Crystal Growth & Design

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37



22

22

66

66

1010

1010

1414

1818

2222

8.88.8 99 9.29.2 9.49.4 9.69.6 9.89.8 1010 10.210.2 10.410.4

pH (NBS scale)pH (NBS scale)

00

55

1010

1515

2020

2525
d
is

s
o
lv

e
d
 i
n
o
rg

a
n
ic

 c
a
rb

o
n
 (

m
M

)
d
is

s
o
lv

e
d
 i
n
o
rg

a
n
ic

 c
a
rb

o
n
 (

m
M

)

marine

calcifiers

Principal experimental 

variable:

pH/DIC

Titration rate

Seawater [Ca]

[Asp]

[Glu]

[Gly]

pH/DIC@10 mM [Mg]

Dominant precipitate of 

experiments that did not 

exclusively yield ACC:

ACC/brucite

calcite

Page 33 of 42

ACS Paragon Plus Environment

Crystal Growth & Design

1

2

3

4

5

6

7

8

9

10

11

12

13



12001000800600400200

wavenumber (cm
-1

)

Mg/Ca = 50/10

+20 mM Asp

Mg/Ca = 50/20

Mg/Ca = 50/50

Mg/Ca = 10/10

Mg/Ca = 0/10

pH = 10.3

A

B

C

D

E

F

G

ν1 CO3

symmetric stretch

ν4 CO3

in-plane bend

calcite lattice
mode vibrations Page 34 of 42

ACS Paragon Plus Environment

Crystal Growth & Design

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30



2000 1600 1200 800

wavenumber (cm
-1

)

4000 3000

+20 mM Asp

Mg/Ca = 50/20; pH 9.9

Mg/Ca = 50/50; pH 10.1

Mg/Ca = 10/10; pH 9.9

Mg/Ca = 0/10; pH 9.7

Mg/Ca = 50/10; pH 10.3

A

B

C

D

F

G

H

I amorphous brucite

Mg/Ca = 50/50; pH 9.7E

var. pH/DIC

Mg/Ca = 50/10

ν
2

ν
1

ν
4

ν
3

ν
3

CO
3

H
2
O

Page 35 of 42

ACS Paragon Plus Environment

Crystal Growth & Design

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31



x
1
0

3
 

70605040302010

2θ (°)

x
1
0

3
 

Mg/Ca = 0/10

Mg/Ca = 5/10

pH 10.3

var. pH/DIC

pH 10.0

Page 36 of 42

ACS Paragon Plus Environment

Crystal Growth & Design

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18



100

90

80

70

60

50

T
G

A
 (

%
 m

a
s
s
 l
o
s
s
)

700600500400300200100

10
-12

10
-11

10
-10

b
a
s
e
lin

e
-c

o
rre

c
te

d
 io

n
 c

u
rre

n
t (A

)

100

90

80

70

60

50

T
G

A
 (

%
 m

a
s
s
 l
o
s
s
)

700600500400300200100

10
-12

10
-11

10
-10

b
a
s
e
lin

e
-c

o
rre

c
te

d
 io

n
 c

u
rre

n
t (A

)

100

90

80

70

60

50

T
G

A
 (

%
 m

a
s
s
 l
o
s
s
)

700600500400300200100

temperature (ºC)

10
-12

10
-11

10
-10

b
a
s
e
lin

e
-c

o
rre

c
te

d
 io

n
 c

u
rre

n
t (A

)

16.7%

6.2%

A

B

C

1.6%

2.3%

16.8%

19.6%

m/z = 18

m/z = 44

Page 37 of 42

ACS Paragon Plus Environment

Crystal Growth & Design

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32



11001050

wavenumber (cm
-1

)

11001050

wavenumber (cm
-1

)
11001050

wavenumber (cm
-1

)

40

30

20

10

0

C
O

3
ν
1
 F

W
H

M
 (

c
m

-1
)

76543210

seawater Mg/Ca (mol/mol)

This study

 ACC

 ACC/calcite mixtures

R
2
 = 0.92

m = 3.0

calcite

coral aragonite

DeCarlo et al. [2017]

inorganic aragonite

A

B C D
panel D

one peak fit

two peak fit

residuals

Raman ν
1
 peak

peak fit result

Page 38 of 42

ACS Paragon Plus Environment

Crystal Growth & Design

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19



0 10 20 30

DIC (mM)

50

100

150

200

250
A

C
C

S
I (

s
e
a
w

a
te

r 
[C

O
32

- ]
[C

a
2

+
])

0 5 10 15

DIC (mM)

50

100

150

200

250

8.5 9 9.5 10 10.5

pH (NBS)

50

100

150

200

250

0 0.5 1

titration rate (ml/min)

50

100

150

200

250

A
C

C
S

I (
s
e
a
w

a
te

r 
[C

O
32

- ]
[C

a
2

+
])

0 20 40 60 80

amino acid conc. (mM)

50

100

150

200

250

0.12

0.1

0.74

8.5 9 9.5 10 10.5

pH (NBS)

50

100

150

200

250

A B C

in
c
re

a
s
in

g

[C
a
] @

 p
H

 1
0

decreasing DIC 

at 10 mM [Mg]

Asp

Glu

Gly

6 mM

10 mM

initial DIC

14 mM

D E F

var. pH/DIC

@ 10mM [Mg]

var. [Ca]

2 mM

25 mM

50 mM

6 mM

var. DIC & pH 

@ 50 mM Asp

var. pH

@ 3× [Gly]

DIC:

10 mM

increasing [Ca] 

@ pH 9.5

approximate calcification 

site of corals/foraminifera
Page 39 of 42

ACS Paragon Plus Environment

Crystal Growth & Design

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22



0 1 2 3 4 5

seawater Mg/Ca (mol/mol)

0

50

100

150

200

250
A

C
C

S
I (

s
e
a
w

a
te

r 
[C

O
32

- ]
[C

a
  
  
  
])

0 5 10 15 20 25

DIC (mM)

0

50

100

150

200

250
2

+

pH ~10

pH ~9.5

Principal experimental 

variable:

pH/DIC

Titration rate

Seawater [Ca]

[Asp]

[Glu]

[Gly]

pH/DIC@10 mM [Mg]

Dominant precipitate of 

experiments that did not 

exclusively yield ACC:

ACC/brucite

calcite

Page 40 of 42

ACS Paragon Plus Environment

Crystal Growth & Design

1

2

3

4

5

6

7

8

9

10

11

12

13

14



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

seawater Mg/Ca ratio (mol/mol)

0

5

10

15
[C

O
32
- ] 

re
q
u
ir
e
d
 t
o
 p

re
c
ip

it
a
te

 A
C

C
 (

m
M

)

Asp, Glu, Gly

pH/DIC

Other experiments for 

comparison, principal variable:

variable [Ca sw
] @ pH 10

variable [Ca
sw

] @ pH ~9.5

seawater Mg/Ca has no influence on

[CO
3

2-] required to precipitate ACC

variable pH/DIC

@ 10 mM [Mg]

[Ca]     1/[CO
3

2-]

constant ACC
SI

(if [Mg] constant)

Page 41 of 42

ACS Paragon Plus Environment

Crystal Growth & Design

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15



carbonate system conditions necessary for

ACC precipitation from seawater

10

10

8

8

12

12

marine

calcifiers

8.8 9 9.2 9.4 9.6 9.8 10 10.2 10.4

pH (NBS scale)

0

5

10

15

20

25

d
is

s
o

lv
e

d
 i
n

o
rg

a
n

ic
 c

a
rb

o
n

 (
m

M
)

0

2

4

s
e

a
w

a
te

r M
g

/C
a[C

O
3

2-]

Page 42 of 42

ACS Paragon Plus Environment

Crystal Growth & Design

1

2

3

4

5


