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ABSTRACT In this paper, we present the first indoor light-based detection and localization system that
builds on concepts from radio detection and ranging (radar) making use of the expected growth in the use
and adoption of visible light communication (VLC), which can provide the infrastructure for our Light
Detection and Localization (LiDAL) system. Our system enables active detection, counting, and localization
of people, in addition to being fully compatible with the existing VLC systems. In order to detect human
(targets), LiDAL uses the visible light spectrum. It sends pulses using a VLC transmitter and analyses the
reflected signal collected by a photodetector receiver. Although we examine the use of the visible spectrum
here, LiDAL can be used in the infrared spectrum and other parts of the light spectrum. We introduce LiDAL
with different transmitter-receiver configurations and optimum and sub-optimum detectors considering the
fluctuation of the received reflected signal from the target in the presence of Gaussian noise. We design
an efficient multiple input multiple output (MIMO) LiDAL system with a wide field of view (FOV) single
photodetector receiver, and also design amultiple input single output (MISO) LiDAL systemwith an imaging
receiver to eliminate the ambiguity in target detection and localization. We develop models for the human
body and its reflections and consider the impact of the color and texture of the cloth used as well as the
impact of target mobility. A number of detection and localization methods are developed for our LiDAL
system, including cross correlation and a background subtraction method. These methods are considered to
distinguish a mobile target from the ambient reflections due to background obstacles (furniture) in a realistic
indoor environment.

INDEX TERMS Optical indoor localization, VLC systems, people detection, counting, localization,
optimum receviers.

I. INTRODUCTION
Visible Light Communication (VLC) systems are used to
provide illumination and data communications. VLC uses
light emitting diodes (LEDs) or lasers to encode data into
light intensity in the visible spectrum [1]–[5]. VLC systems
have many advantages such as cost-effectiveness using the
existing lighting infrastructure, operating on a broad, unli-
censed bandwidth, security (light signals do not penetrate
walls) and there is no interference with Radio Frequency (RF)
signals [4], [6]–[8].

People counting has become an emerging and attractive
area in the past decade [9], [10]. Many approaches have been
developed for counting in public places such as subways,
bus stations and supermarkets [10], [11]. The outcome of
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these techniques can be used for public security, resources
allocation and marketing decisions. Passive infrared (PIR)
imaging systems have been employed to detect and count
people, however, the PIR system is temperature dependent,
thus leading to a vast number of detection failures [11], [12].
Other passive optical detectionmethodswere studied that rely
on detecting the shadow of subjects to determine the position
of the subject [13]. These approaches show good accuracy
in the presence of a single object, however the presence of
multiple moving shadows can be an issue, and there is a
need to carefully position the illumination sources for good
positioning. Ultra-wideband (UWB) radar has been utilized
to effectively detect and track outdoor pedestrians. However,
for an indoor environment, the effects of signal scattering and
absorption by obstacles significantly impairs the performance
of UWB indoor radar [11], [14]. IR Laser detection and rang-
ing (LADAR) has been used to detect people by monitoring
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the reflected signal patterns of people legs [11]. Counting
systems based on computer vision and digital image process-
ing are becoming meaningful and useful. Video cameras with
image processing algorithms have been widely used to count
people indoor and count pedestrians outdoor [10], [14], [15].
It should be noted however that acquiring images of people
poses in many cases privacy concerns, whereas our LiDAL
system uses light reflections from people and therefore no
images of people are acquired, stored or transmitted.

In this paper, we introduce for the first time indoor light-
based detection, counting and localization of people based on
the use of radar-like reflections. This can significantly expand
the utility of indoor VLC systems. The key concept behind
our LiDAL system is the use of the (visible) light reflected
from targets (people) where the light reflectivity is a function
of the material type and colour of the target’s surface. The
reflected light signal is captured by a photodetector which
monitors the change in the light intensity in the time domain.
LiDAL can be a system embedded in the VLC system to
provide additional functionality to detect, count and local-
ize people. In addition, LiDAL reduces the complexity and
cost associated with the acquisition and digital processing of
images to detect the presence of people.

To the authors’ best knowledge, the proposed system is the
first to employ an indoor optical radar for people detection
and localization. It uses the visible light spectrum associated
with VLC systems, and can potentially use other parts of
the light spectrum. It is worth noting that the use of the
infrared spectrum for example can eliminate issues with light
dimming and switching off light sources. The concept of
LiDAL has the benefits of active radio waves used in radar
systems while avoiding, as mentioned, the issues associated
with UWB (and other radio) radar signal propagation indoor.
It also makes use of the existing lighting / illumination sys-
tems and potentially the existing VLC systems infrastructure.

Due to the fact that (visible) light is reflected from opaque
objects, the major critical issue in LiDAL is how to distin-
guish the people (targets) from other background objects,
i.e., furniture. In order to overcome this problem, we have
considered the mobility of people as a key distinguishing
feature between humans and furniture. Even in the case
of nomadic users, people exhibit movement of body parts
while stationary, for example while sat working in an office
environment. They may also standup from time to time.
We introduced a background subtraction method and a cross-
correlation method for target detection when targets are
mobile. The contributions of this work can be summarized
as follows:

1) We proposed for the first time an indoor (visible) light
pulsed radar-like system which utilises the VLC sys-
tem transmitters to detect, count and localize multiple
targets.

2) We developed a model for the human body and its
reflections and the impact of the colour and texture of
the clothing used, which are all important attributes of
the target of interest.

3) We considered a range of different mobility models for
humans and used these as an important input to our
LiDAL human detection and localization system.

4) We designed optimum and sub-optimum receivers and
algorithms for the proposed LiDAL systems.

5) We designed MIMO-LiDAL and MISO-Imaging-
LiDAL systems which are compatible with VLC and
light fidelity (Li-Fi) systems.

We would like to note that the current work is analytic and
simulation in nature. It is however the first work to the best of
our knowledge that uses radar-like techniques to detect and
localize people indoor. We intend to conduct experimental
demonstrations in the future.

We would also like to note that we have adopted a staged
approach in the introduction of the concepts; (i) as this is
the first treatment, we believe, of radar-like concepts for
localization indoor using light and (ii) we believe that this
approach can help the reader understand the boundaries. For
example, we initially consider and then build on a system that
is not able to achieve localization such as the single input
single output system. This system illustrates the principles,
but does not have enough measurements/equations to achieve
localization. We also allocate space to cases such as the case
of a single target in an empty room and multiple targets in
an empty room, which are later seen to be special cases of
multiple targets with obstacles.

This paper is divided into sections as follows: Section II
introduces the modeling of the environment and the targets.
Section III presents the analysis of LiDAL system range,
resolution and optimum and sub-optimum receiver design.
Section IV presents target distinguishing approaches and
mobility modeling in a realistic environment. Section V
develops the design of MIMO-LiDAL systems. Section VI
considers the design of the MISO-IMG-LiDAL system.
Section VII presents the simulation setup and results. Finally,
conclusions are drawn in Section VIII.

II. REALISTIC ENVIRONMENT AND TARGET MODELLING
To study the performance of the proposed LiDAL system,
simulations were performed in a typical office consisting
of a furnished room, with dimensions of 4 m (width) ×
8 m (length) × 3 m (height) as shown in Fig.1a. The walls,
furniture and floor were segmented into small reflective
elements. The reflective elements were represented as small
secondary emitters that diffuse the received signal in the
shape of a Lambertian pattern, with a reflectivity of 0.8 for the
walls and ceiling and 0.3 for the floor [16], [17]. In addition,
the reflection elements can be treated as small secondary
transmitters that diffuse the incident rays back into space from
their center [17], [18]. The accuracy of the received impulse
response profile was controlled by the size of the reflective
elements, which were 5 cm × 5 cm and 20 cm × 20 cm
for the first and second order reflections, respectively [16],
[17], [19]. Eight light units were placed at a height of 3m
above the floor and were used to satisfy ISO and European
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FIGURE 1. (a) Realistic simulation environment setup and (b) basic 3D
target model.

illumination standards. Each unit had 9 RGB laser
diodes (LDs), and the total transmitted power from each
RGB-LDs light unit was 18 W [20], [21], [22]. It is worth
mentioning that, each light unit consists of red, green and
blue laser diodes which are driven by different modulation
currents to meet the illumination standards [20], [21]. It is
also worth noting that the light engine has a diffuser infront
of the RGB laser diodes and the radiation pattern emitted is
thus lambertian. This lambertian pattern was measured and
verified experimentally in [23]. The work in [23] consid-
ered RGB laser diodes and employed them for illumination.
We have also discussed the design of this light engine in [20].
It is also worth noting that a single colour can be used for
our localisation (radar) application, however all three (RGB)
colors are needed for illumination.

The average target (person) dimensions considered were
15 cm × 48 cm × 170 cm (depth × width × height) [24]
as shown in Fig.1b and colored polyester fabric was con-
sidered as the target coating material. The fabric reflection
model used was based on the work in [25], which ana-
lyzed the reflections from different types of fabric includ-
ing silk, cotton, polyester, acetate and glass fiber. We also
made use of the work in [26] which examined the combina-
tion of fabric colour and material and their impact on light
reflection. The resulting reflections in [25] were observed
to be a combination of diffuse (Lambertian) and specular

TABLE 1. Reflection model for a different target coating materials [17].

reflections. In [25], the distribution of the reflected visible
light of several cloth materials was experimentally studied.
In particular, cotton reflectance was about 9% specular and
91% diffuse, while polyester reflectance was 10% specular,
26% diffuse and 63% internal multiple reflections which
are treated as diffuse reflections as can be seen in Table 1.
It should be noted that 1% of the polyester reflections are
internal reflections which occur inside the fabric layers [25].
Therefore, in our simulation, we only considered a Lamber-
tian pattern (i.e. diffuse) as the model for the target’s surface
material. The reflectivity factor of different dyed polyester
fabrics ranges between 0.25 and 0.72 [26]. Moreover, the
reflectivity of dark and white human skin is 0.04-0.35 and
0.16-0.86 respectively [27]. Regarding furniture, office desks
(1.54 m (width) × 0.76 m (length) × 0.75 m (height)) and
a bookshelf (3 m × 0.8 m × 2 m) are considered, and are
located in the room as shown in Fig.1a, where the office
desks and bookshelf materials were finished-wood with a
reflectivity factor of 0.55 and diffuse reflections [28]. The
Lambertain diffuse reflections order for the furniture and
target is assumed to be 1.

III. LiDAL SYSTEM
In this section, we analyze the LiDAL system maximum
range which is related to the receiver’s field of view. We also
pay attention to the received reflected signal in two LiDAL
configurations that relate to the colocation or separation of
transmitter and receiver in space. Furthermore, we analyze
the resolution and the ambiguity of target detection which are
related to the transmitted pulse width. In addition, we exam-
ine the optical receiver design for LiDAL and consider the
receiver bandwidth and thermal and ambient noises. In our
LiDAL system, the sources of randomness are attributed
to the target colour of cloth, the target orientation and the
receiver noise. Note that in terms of indoor optical wireless
channel, we consider the channel at the target’s maximum
range dictated by the receiver field of view (and the receiver
sensitivity). The fluctuation of the received reflected signal
attributed to the different colors worn by the target is modeled
leading to a pdf of the target reflection factor. The target
(human) random orientation and its impact on reflections was
determined through extensive simulations, leading to a pdf
of the effective target cross-section. The optimum LiDAL
receiver is then formulated using Bayes structures and signal
space theory for single and multiple targets in the presence of
the impairments outlined above.

A. RANGE ANALYSIS
The light unit emits a narrow pulse in a wide optical
beam (Lambertian radiation pattern) directed towards the
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FIGURE 2. LiDAL range and reflection analysis: (a) a spaced transmitter-receiver (bistatic) arrangement placed on room ceiling
with a target located near the transmitter at a distance of RFOV

Max from the receiver; (b) a spaced transmitter-receiver placed on
room ceiling with a target located away from the transmitter at a distance of RFOV

Max from the receiver; (c) and (d) collocated
transmitter-receiver (monostatic) arrangement placed on room ceiling with a target at two locations.

floor. An optical receiver, collocated or separated from the
transmitter, collects the received reflected pulses. The
received signal is a superposition of the reflected pulses
from the target(s), static environment obstacles (furniture)
and noise. Note that, in this section we assumed the target(s)
are located in an ideal environment (i.e. an empty room with
zero reflectively from walls, ceiling and floor). Therefore,
the received reflected signal randomness is only due to tar-
get(s) colors and effective cross-section and is corrupted by
noise. In Section III we deal with the presence of furniture
(reflections) and reflections from the walls.

The maximum range of LiDAL can be determined depend-
ing on the receiver’s photodetector FOV. Themaximum range
RFOVMax for a certain receiver concentrator FOV (9c) is given as
(see Fig. 2):

RFOVMax = tan(9c)(do − h) (1)

where 9c is the semi-angle of photodetector’s concentrator,
do is the perpendicular distance between the ith receiver

location L iRx(x
i
Rx , y

i
Rx , z

i
Rx) and the ground reference point

L io(x
i
o, y

i
o, 0) as shown in Fig. 2 and h is the target height.

Fig. 2 presents two different possible transmitter and
receiver configurations with a target located inside the
receiver optical footprint (i.e. receiver FOV). We refer to the
collocated transmitter-receiver configuration as ‘monostatic
LiDAL’ and refer to the spaced transmitter-receiver configu-
ration as ‘bistatic LIDAL’.

The received reflected optical power (PBr
RFOVMax

) from a target

at maximum range, i.e., located in the receiver optical foot-
print at a radius of RFOVMax , for a bistatic LIDAL (see Fig. 2a, b)
is derived as:

PBr
RFOVMax

=
(n+ 1)(nele + 1)

4π2R21R
2
2

Gc (9c)PtdAρAR

×cosn (θ) cos(ϕ)cosnele (ϕ1) cos(9c) (2)
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and for monostatic LiDAL (see Fig. 2c, d), PMr
RFOVMax

is

written as:

PMr
RFOVMax

=
(n+ 1)(nele + 1)

4π2
(
(do − h)2 + RFOV

2

Max

)2
×Gc (9c)PtdAρARcosn+3 (9c) (3)

where R1 is the distance between the transmitter and target,
R2 is the distance between the target and receiver, R2 =(
(do − h)2 + RFOV

2

Max

) 1
2
, Gc (9c) is the gain of the concentra-

tor, Pt is the transmitted power, dA is target cross section area
(top and/or the sides), AR is the photodetector physical area,
ρ is the target reflection coefficient, θ and ϕ are the angles of
irradiance and incidence respectively, nele is the Lambertain
order for the target diffuse reflector and n is the Lambertian
emission factor of VLC light source defined as [29]:

n = −
ln (2)

ln(cos(8))
. (4)

The gain of the concentrator Gc (9c) is given as [30]:

Gc (9) =
N 2

sin2(9c)
(5)

where 8 is the semi-angle at half power of the VLC light
source (8 > 9c) and N is the concentrator refractive index.
It should be noted that the transmitter has a broad radiation

pattern (n = 0.52 for illumination purposes [20], [21]) and
the target assumed has a diffuse emission factor of nele = 1.
Therefore, the target has a narrow radiation pattern com-
pared to the transmitter’s radiation pattern. With such narrow
radiation pattern, the target delivers maximum power to the
receiver if it is directly under or near the receiver. As such,
the weakest received reflected signal from a target occurs
when the target is at the edge of the receiver FOV (i.e. target
located at RFOVMax ).

The photodetector area (AR) and the concentrator’s FOV
and gain are among the receiver’s key parameters that deter-
mine the LiDAL detection performance. The values of these
parameters have to satisfy the LiDAL (radar) design require-
ments. We analyze their impacts later in this paper. In addi-
tion, the transmitted power Pt is set at the maximum power
needed for normal illumination in the room. (i.e. Pt = 18W
according to the design in [20]). We therefore do not consider
in this paper the impact of dimming on our LiDAL system,
and in cases where dimming is an issue, infrared sources and
detectors can be used for LiDAL.

B. RECEIVER BANDWIDTH
To determine the maximum receiver bandwidth needed,
we selected the LiDAL configurations that result in the largest
channel bandwidths which the receiver has to deal with. The
largest channel bandwidths occur when the target is under
the receiver. We have also evaluated, through simulation,
the channel bandwidths at a large number of target locations.
Figs. 3a and b show a target located underneath the receiver

for the LiDAL bistatic and monostatic scenarios respectively.
We have simulated the pulse dispersion associated with the
bistatic and monostatic LiDAL channels due to target pres-
ence at different target locations. The target’s locations have
been generated uniformly inside the receiver optical foot-
print (see Figs.3a and b) to calculate the channel impulse
response and then to obtain the 3dB channel bandwidth for
each location. It should be noted that we considered an
ideal indoor environment without furniture or background
obstacles, and we treated the room’s floor as a non-reflective
surface (i.e. zero reflection factor). In addition, the simulation
and calculations of the received reflected signal were carried
out using MATLAB. Our simulation tool is similar to the
one developed by Barry [30] in terms of the indoor channel
impulse response calculation method. Figs. 3c and 3d depict
the probability distribution of the channel bandwidth (Bwch)
for the bistatic and monostatic LiDAL systems respectively.
As can be seen in Figs. 3c and 3d, the bistatic LiDAL chan-
nel is more dispersive than the monostatic LiDAL channel
due to the large distance between the transmitter, target and
receiver. Table 2 summarizes the bistatic and monostatic
LiDAL channels characteristics.

TABLE 2. Characteristics of LiDAL channel.

We calculated the channel bandwidth for the monostatic
and bistatic LiDAL systems as follows:

1) An input pulse pl (τ ) with time duration τ of 0.01ns
(equal to the time bin duration used in the simulation
[31]) is presented to the input of a transmitter unit,
RGB-LDs, with impulse response htx (t) followed by
calculation of Htx(f ) = F(htx (t))F (pl (τ )). It is worth
mentioning that, the RGB-LDs have a large bandwidth
(few GHz) [20] and therefore, given a channel with few
hundred MHz bandwidth, we ignored the laser transfer
function.

2) We set the following simulation parameters for the
monostatic and bistatic LiDAL systems: The room has
dimensions of 8m × 4m × 3m and the illumination
requirements were met using 8 light units distributed
as shown in Fig. 1a. These light units also represent
the LiDAL receiver locations. To provide overlapping
LiDAL coverage zones, the receiver FOV was set
to 43◦. The transmitter beamwidth was set 75◦ for
illumination purposes [21] and the impulse response
was calculated with a time bin of 0.01ns duration.
The monostatic transmitter-receiver pair was located at
(2m, 4m, 3m) at the center of the room in Fig.1a. The
bistatic transmitter was located at (2m, 5m, 3m) and the
receiver was located at (2m, 4m, 3m).

3) We calculated the LiDAL channel impulse response
hch(t) (i.e. the LiDAL system configuration with the
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FIGURE 3. LiDAL channel configurations (a) Tx and Rx placed in different locations (bistatic) with a target located at the center of the
optical footprint, (b) Tx and Rx placed in the same location (monostatic) and a target located at the center of the optical footprint,
(c) the histogram of the received power in bistatic LiDAL versus bandwidth and (d) histogram of the received power in monostatic
LiDAL versus bandwidth.

target present) using the ray tracing propagation model
in [29], [30], [32], [33]. In this paper, we considered the
first and second order reflection components in the sim-
ulation of the impulse response of the LiDAL channel.
We then determined the 3dB channel bandwidth, Bwch,
using hch (t) .

4) The required 3dB receiver bandwidth is determined as

BwRx = max
(
Htx (f ) |3dB,H ch (f )|3dB

)
(6)

C. LiDAL RESOLUTION AND AMBIGUITY IN TARGET
DETECTION ANALYSIS
The distance (R1) between the monostatic LiDAL transceiver
unit (TRx) and the target is calculated based on the round trip
time (i.e. time taken by the pulse from the transmitter to the
target plus the time taken by the reflected pulse back from the
target to the receiver), ttrip, and the speed of light, c, as:

R1 =
ct trip
2
. (7)

The range resolution of LiDAL is defined as the minimum
separation distance (1R) at which two or more targets can
be reliably detected as illustrated in Fig. 4. The range reso-
lution is related to the pulse width of the transmitted signal.

FIGURE 4. The LiDAL resolution needed to distinguish two targets.

The LiDAL resolution (1R) is given as [34]:

1R = R1,1 − R1,2 =
cτ
2

(8)
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FIGURE 5. The reflected received signal current from two targets located
in an empty room in a monostatic LiDAL configuration.

where τ is the transmitted pulse width. The separation dis-
tance 1xy between two targets, as can be seen in Fig. 4, is
given as:

1xy = R1,1 sin θ1,1 − R1,2 sin θ1,2 (9)

and if θ1,1 ∼= θ1,2 = θ, then

1xy =
(
R1,1 − R1,2

)
sin θ = 1R sin θ. (10)

Therefore, 1xy ≤ 1R, and in a typical room such as that
in Fig. 1a, we determined that θ = 430, hence here 1xy ≤
0.681R.

Fig. 5 shows an example, a simulation, of the received
pulse response attributed to the reflected signal, as received
by a transceiver (TRx) unit which covers an optical footprint
that includes two targets in the presence of noise. In this
work, we considered typical room layouts, where for example
in a meeting room (closest separation between people in a
business setting), the designers recommend an inter-chair-
distance more than 60cm as in [35] and 75cm as in [36], and
the typical justifiable distance between two people having a
conversation is 30 cm. Therefore, we selected a minimum
LiDAL resolution of 1R = 30cm and therefore given (10),
1xy ≤ 30cm which is the required minimum separation
between two targets (i.e. the required τ is 2ns from (8)). Opti-
cal transmitters and optical receivers that support this band-
width are readily available, and the optical wireless channel
is able to provide such bandwidth [37], [38]. The analysis of
the channel bandwidth for the bistatic and monostatic LiDAL
systems (see Fig. 3c, 3d) showed high channel dispersion
and low channel bandwidth which cannot accommodate a
transmitted pulse of 2ns duration without pulse spreading in
the receiver. Thus, an equalizer is required to mitigate the
imperfections of the LiDAL channel.

Let us first assume an ideal indoor environment (i.e.
no reflected signal from the room’s background). Here

ambiguity in multiple targets detection occurs when the dis-
tance between targets is less than the LiDAL (radar) resolu-
tion 1R. In other words, when the difference of the targets’
round trip times is less than the transmitted pulse width(∣∣ttrip (1)− ttrip (2)∣∣ < τ

)
. This leads to ambiguity. Further-

more, the ambiguity in target detection is affected by the
configurations of the LiDAL system.

Table 3 provides a comparison between conventional radar
and LiDAL when the only available information is range.
Note that the angle of arrival in LiDAL can be determined
through coherent optical detection, but this is too complex,
and is not considered here. As Table 3 shows, complete local-
ization is only achieved when three or more anchor points are
available to provide range estimations.

D. RECEIVER NOISE
We considered the receiver bandwidth needed in Section B,
here we consider receiver noise in LiDAL.

In optical wireless (OW) systems, the noise can be divided
into two components, a shot noise (σ 2

shot ) component and a
thermal noise component (σ 2

thermal). The total noise variance
σ 2
t is given by [17], [29]:

σ 2
t = σ

2
thermal + σ

2
shot . (11)

The shot noise variance is defined as the sum of contributions
from the ambient lights (direct sunlight, desk lamps etc.) and
the noise from the received signal. The shot noise, σ 2

shot ,
is written as [39]:

σ 2
shot = 2qBwRx

(
Ib + RespPr

)
(12)

where q is the electronic charge, BwRx is the receiver band-
width, Resp is the photodiode responsivity and Ib is the back-
ground current due to ambient lights. We considered the
effects of shot noise due to desk-lamps. For the four office
desk-lamps shown in Fig. 1a, we considered Philips light
bulbs where each light bulb has an optical power of 13w
[40]. The background current measured in [40] was Ib =
8.8µA (without optical filter) and corresponded to a typi-
cal setup, with a 0.85 cm2 photodetector area at a distance
of 2.2m from the light source with a line of sight path
(worst case induced shot noise) between the light source
and the receiver. The setup in [40] is comparable to the
realistic environment setup used in LiDAL in terms of the dis-
tance between the desk-lamp and LiDAL receiver (distance
of 2.25m in LiDAL). The background current was scaled
by a factor that accounts for the difference in area between
the photodetector in [40] and the photodetector we used,
where our photodetector had an area of 20 mm2 to provide
sufficient bandwidth [29]. An optical bandpass filter (OBPF)
can be used to suppress the effect of the ambient noise. For
example the background current in [40] was reduced from
8.8µA to 0.48µA when an OBPF is used. It is worth men-
tioning that the measurements in [40] included the infrared
part of the optical spectrum, while this work focuses on the
visible spectrum, however, an optical bandpass filter within
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TABLE 3. LiDAL localization compared to traditional radar localization.

the visible spectrum can be used to reduce the background
noise to comparable levels. In addition, an electrical high pass
filter can be implemented to reduce the DC component of
the ambient noise. However, these solutions may increase the
cost and the complexity of the LiDAL receiver. We have not
used an optical bandpass filter and have not used an electrical
high pass filter to simplify the system design.

In this work, the optical receiver was a silicon p-i-n pho-
todetector with a transimpedance amplifier (TIA), selected to
achieve high sensitivity and a good dynamic range [41], [42].
The receiver considered in this work had high speed and low
input noise, designed by Texas Instruments R© [43].The TIA
with a BwRx of 300 MHz had a thermal input noise current of
about 2.5 pA/

√
Hz [43].

E. RECEIVED SIGNAL FLUCTUATION AND TARGET
REFLECTIVITY MODELLING
The fluctuation of the received optical power reflected from
a target is related to the target coating reflection factor (ρ)
(i.e. colour, material type and, reflection type) and the target
effective cross section area (Ae). The target effective cross
section area is the size of the target surface area illumined
by the transmitted pulse (which reflects light) and depends
on the target position, LiDAL transmitter and receiver con-
figurations and LiDAL field of view. It should be noted that,

the fluctuation of the received signal due to target reflection
factor (colour of clothing and type of clothing worn) is inde-
pendent of the target position and the target orientation (i.e.,
independent of the target effective cross section area).

Table 4 presents a range of people favorite colors with the
weights associated with each colour and reflection factors for
dyed cotton coating material [44], [45]. The people favorite
colors weights show features of a Gaussian distribution,
Fig. 6. This can be explained by observing that the received
reflected signals over an extended period of operation of the
LiDAL system will be due to multiple colors and coating
materials worn by the person (target) in every case; and
this together with the large number of subjects allow the
central limit theorem to be involved. Therefore, we fitted
and optimized the survey data of the people favorite colors
using a Gaussian distribution as can be seen in Fig. 6 where,
the target reflection factor is the random variable of the
distribution. The survey data of favorite colors [44], [45] was
fitted to minimize the root mean square error (RMSE), and
the minimum RMSE obtained was about 15%.

The probability distribution function (PDF) of the target
reflection factor p (ρ) is given as:

p (ρ) =
1

σρ
√
2π

e
−

(
(ρ−µρ )2

2σ2ρ

)
(13)
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TABLE 4. People favouratie colors survey data.

FIGURE 6. The PDF of target reflection factor.

where, µρ and σρ are the mean and standard deviation of the
target reflection factor respectively.

We determined the PDF of the effective target cross section
area through simulation. The target shown in Fig. 1b (human
body model) was placed at a large number of locations in the
room and the ray tracing indoor propagation method of [17],
[46], [47] was used to determine the power reflected by all
the target surface area elements for the given target location
and orientation, and the given LiDAL transmitter and receiver
configurations. We then fitted the simulated data to a nor-
malized Gaussian distribution as can be seen in Fig. 7 where
the target is placed randomly in the receiver optical footprint
edge at different locations and with different orientations.
At each location, the target is rotated to eight directions with a
step size of 45◦ angle randomly. The minimum RMSE of the
effective target cross section area fitting obtained was 5%.
The PDF of the effective target cross section area p (Ae) is
written as:

p (Ae) =
1

σAd
√
2π

e
−

(
(Ae−µAe)

2

2σ2Ae

)
(14)

where, µAe and σAe are the mean and standard deviation of
the target effective cross section area respectively. Observing

FIGURE 7. The PDF of the effective target cross section area.

the results in Fig. 7, it can be seen that the effective target
cross section area variation is small with a σAe = 4 and a
large mean µAe = 50. Thus, the average value of target cross
section area is used. In other words, the target effective cross
section area is modeled as a random viable with mean (µAe )
and very small variance, which is ignored.

The received reflected signal from target is given as:

Pr = Aoρ (15)

where, Ao is the LiDAL channel gain for a target located
at RFOVMax as in equations (2) and (3) of bistatic and monas-
tic LiDAL systems respectively; and ρ is a Gaussian ran-
dom variable described in equation (13). Thus, the PDF
of the received reflected signal p(Pr) without noise can be
defined as:

p (Pr) =
1

σs
√
2π

e
−

(
(Pr−µ)2

2σs

)
(16)

where, (µ = Aoσρ) and (σs = Aoσρ) are the mean and stan-
dard deviation of the received reflected signal. Equation (16)
represents a Gaussian random variable scaled by a positive
constant representing the LiDAL channel gain for a target
located at RFOVMax .
In the OW channel, ambient light induces shot noise in

the photodetector receiver in addition to the thermal noise
of the receiver amplifier. This noise is modeled as a white
Gaussian noise [29] with zero mean and variance of σ 2

t (see
equation 6). The noise probability density is given as:

p(n) =
1

√
2πσt

e
−

(
n2

2σ2t

)
(17)

where n is the total detected noise current in the receiver and
σt is the noise current standard deviation.

The noise is statistically independent and additive to the
received reflected signal from the target. The shot noise due
to the signal presence may be neglected compared to the ther-
mal and shot ambient noises. Therefore, the joint probability
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density of the received signal in the presence of noise p
(
prn
)

is written as:

p
(
prn
)
=

1√(
σ 2
s + σ

2
t
)√

2π
e
−

(
(Pr−µ)2

2(σ2s +σ2t )

)
(18)

where, µ and
√(
σ 2
s + σ

2
t
)
are the mean and standard devia-

tion of the received reflected random signal in noise.

F. LiDAL OPTIMUM RECEIVER DESIGN
We used Bayes receivers and signal space theory to design
an optimum receiver structure for LiDAL taking into account
the minimization of the average cost of making decisions and
the error in target detection. We then design a sub-optimum
receiver. Bayes criterion takes into account the impact of
the cost of making a wrong decision in different LiDAL
applications by setting an optimum detection threshold.
For the sub-optimum receiver we also establish detection
thresholds.

For instance, in a people counting application the cost of
miss-detecting people may be low, however, for a LiDAL
security application the cost of miss-detecting a target may be
very high. We employed signal space techniques with a max-
imum posterior probability (MAP) decision rule to design an
optimum LiDAL receiver based on minimum probability of
error to detect target(s) for multiple cases as we discuss later
in this paper. In addition, We evaluated the performance of
the optimum detection threshold Dth (z) where the random
variable z represents the received power in (18).

1) OPTIMUM DETECTION THRESHOLD
ANALYSIS (HARD DECISION)
We analyzed the optimum detection threshold for the LiDAL
receiver considering the fluctuation of the received reflected
signal and the cost of making a decision on LiDAL given
the application considered. In LiDAL, the goal is to decide
the presence or absence of a received reflected signal from
a target in the presence of noise. This situation can be cast
into two hypotheses. Let H1 represent the hypothesis where
noise is present and the reflected signal (from the target)
is absent. Let H2 represent the hypothesis where both the
received signal (from target) and noise are present. The PDF
of H1 can be written as:

Fz (z|H1) =
1

√
2πσt

e
−

(
z2

2σ2t

)
(19)

and the PDF of H2 is given as:

Fz (z|H2) =
1

√
2πσ

e
−

(
(z−µ)2

2σ2

)
(20)

where, σ 2 andµ are the variance and the mean of the received
signal in H2 with σ 2

=
(
σ 2
s + σ

2
t
)
, see equation (18).

The Bayesian average cost of making decision C (D) is
given as [48], [49]:

C(D) = (poα21 + qoα22)+
∫
(qo(α12 − α22)Fz(z|H2)

−(po(α21 − α11)Fz(z|H1)))dz (21)

where, po and qo are the prior probabilities of H1 and H2
respectively. For LiDAL, we define the four prior costs
as : α11 which is the cost of deciding that the target is
absent when it is true, α22 is the cost of deciding the target
is present when it is true, α12 is the cost of deciding the target
is absent when it is false and α21 is the cost of deciding the
target is present when it is false. It should be observed that
po and qo were set to 0.5 which is a general case where it is
equally likely to have a target or no target (for example in an
indoor environment). In particular dense (user wise) indoor
environments qo may be higher than po and the converse is
true in sparse indoor environments. Therefore, the parameters
can be determined accordingly. We are interested in the costs
of wrong decisions (α12 and α21), hence we assumed α11 and
α22 (costs of correct decisions) are equal to zero. To clarify
this, α12 is defined as the cost of missing a target, while α21 is
defined as the cost of a false alarm. Note that, α12 should be
set higher than α21, for security applications where missing a
target is worse than a false alarm. However we are interested
here in target counting applications, and therefore α12 was set
equal to α21 where both wrong decisions equally contribute
to wrong counting. Thus, the LiDAL average cost of making
decision C (D)VLP can be written as:

C (D)VLP

= poα21 +
(
qoα12

∫
Fz (z |H2) dz−poα21

∫
Fz (z |H1)dz

)
.

(22)

The first term of (22) represents the fixed cost while the sec-
ond term represents the variable cost. We wish to minimize
the second term of (22) by choosing the value of z. Mathe-
matically (22) can be summarized by a pair of inequalities,
and can thus be rewritten as:

qoα12F z (z |H2)
H1
≶
H2

poα21F z (z |H1) . (23)

For LiDAL, we define γFA and γFP as the cost factors of
missing the target and false alarm respectively. Therefore, γFA
(FA is False Absence) is given as:

γFA = qOα12 (24)

and the γFP (FP is False Presence) is given as:

γFP = pOα21. (25)

Thus, we get:

Fz(z|H2)
Fz(z|H1)

H1
≶
H2

γFP

γFA
(26)

where γFP
γFA

is the LiDAL likelihood test threshold, and Fz(z|H2)
Fz(z|H1)

is the LiDAL likelihood test ratio.
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FIGURE 8. The Optimum detection threshold with βσ and LiDAL cost
factors.

Substituting equations (19) and (20) into equation (26), the
optimum detection threshold Dth can be derived as (27), as
shown at the bottom of this page, where, we define βσ =(
σ 2s +σ

2
t

σ 2t

)
as a colour factor where βσ ≥ 1. The colour factor

βσ is a measure of the variation in the received reflected sig-
nal due to the colour worn by the target, versus the variation in
the received signal due to noise. For example, if all the targets
wore the same colour, then σ 2

s = 0 and βσ = 1. At the other
extreme, if the colors worn by the targets are very different
and the receiver noise is very small, βσ → ∞. It is worth
observing that in addition to colour, other optical properties
of the target coating affect βσ , such as the material used in
the clothing (e.g. cotton verses polyester).

As can be noted in Fig. 8, when the weights of cost factors
are equal ( γFP

γFA
= 1) and βσ ≈ 1 (i.e. the value of signal

variance is very small σs ≈ 0), the optimum Dth ≈
µ
2 .

This case is the classical scenario [49], which acts to vali-
date our derivation of equation (27). Fig. 8 shows the main
operating region for the LiDAL detection system. Firstly,
the LiDAL system can be used for counting purposes only.
In other words, to count the number of human pedestrians.
Here the cost of missing a target and the cost of a false alarm
are identical as they result in equal counting errors. This is

represented by γFP = γFA. Secondly, if the application is such
as that there is high cost associated with falsely identifying
the presence of a target in the indoor environment, then the
detection threshold is set high, represented for example by
γFP = 10 and γFA = 1 in Fig. 8. Finally, if the cost of
missing a human pedestrian target is very high (security or
safety application), then the threshold should be set very low
as shown in Fig. 8 where for example γFP = 1 and γFA = 10
and γFA = 100.

2) LiDAL OPTIMUM DETECTOR
We use the term detector here to imply and include the
initial signal detection by the optical receiver, followed by its
optimum processing and finally decision making. We imple-
mented a MAP detection approach in LiDAL to design
an optimum receiver based on observation of the received
reflected signal(s); and hence calculation of the posterior
probability to minimize the probability of decision errors
[48]. In LiDAL, a single transmitted pulse is sent and is
reflected from the target(s) to the receiver where the receiver
uses a finite listening time. The LiDAL receiver listening
time (Ts) is divided into N time slots. Two cases arise,
the single target case and the multiple targets case. In the
single target case, (i) if the target presence in all spatial
locations is equally likely, then the time slots have equal
prior probabilities for target reception; (ii) in the single target
case, however, the reception of a pulse in a time slot implies
that the remaining time slots (if any) will contain no pulses,
hence the independence of the time slots does not hold. In
the multiple targets case, condition (i) holds, and further in
(ii) the reception of a pulse does not exclude the remaining
time slots from having targets / pulses. Therefore, indepen-
dence of the time slots can be assumed (ignoring instances
where targets may walk in pairs for example). Therefore,
we assume here equal prior probabilities for the time slots
and assume the independence of the time slots, which is a
general common case. The LiDAL receiver has to optimally
determine (i) target presence, (ii) number of targets (number
of time slots containing pulses) and (iii) identify the time slot
(target’s range).

The time slot width (Ts) is related to the desired LiDAL
resolution and target ranging accuracy. Therefore, we select
a time slot width equal to the transmitted pulse width (Ts = τ )
in order to obtain a 1R = 30cm resolution. This 30cm
resolution corresponds to the minimum typical separation of
interest between humans in an indoor environment. Select-
ing narrower pulses can improve the resolution, however
this is not needed and can lead to higher dispersion in
the channel.

Dth
H1
≶
H2


√√√√√ µ2

(βσ − 1)2
+

µ2

βσ − 1
+

2
(
σ 2
s + σ

2
t
)

βσ − 1

ln
γFP

γFA
− ln

σt√
σ 2
s + σ

2
t


− ( µ

βσ − 1

)
(27)
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Here we analyze three cases of interest: Single target
case, multiple targets case and multiple targets with channel
dispersion.
Case I Assumptions: Single target, noise present, no chan-

nel dispersion, the receiver’s N time slots are orthogonal
(i.e. only one received reflected pulse), the received reflected
pulsemay fit into a single time slot, or overlapwith a neighbor
time slot (i.e. the received pulse is shifted in the listening
frame depending on target location and may occur at the
boundary of the time slot), and independent time slots. For the
purpose of this case, the objectives of the designed receiver
are detecting the target presence and its range.

Case I is similar to M-ary orthogonal signals (pulse posi-
tion modulation (PPM)) [49], where a single transmitted
pulse is reflected from one target and received by a time slot
Tsj . The MAP rule for minimum probability of error is given
as [48], [49]:

P (Hi | z1, . . . zN ) =
fZ(z1, . . . zN |Hi)P(Hi)

fZ(z1, . . . zN )
(28)

where, Z = [z1, ..zN ] is the observed received signal vector
in N time slots and P(Hi) is the probability of receiving Hi,
with P (Hi) =

(
1

N+1

)
, i ∈ {1...,N + 1} ;P (Hi) takes this

values since the received reflected signal from a target can
be present (equi-probably) in any of N time slots depending
on the target location. Note that, P(Hi) and fZ(z1, . . . zN ) do
not depend on Hi [48]. Therefore, we require a receiver to
calculate fZ(z1, . . . zN |Hi) and choose the Hi associated with
the largest probability [49]. The orthonormal expansion of the
received signal can be written as [49]:

Zj =
∫ T

0
(pr (t)+ n (t)) φj (t) dt j ∈ {1, . . .N } (29)

where, pr (t) is the received signal, n (t) is the noise and φj(t)
is the orthonormal basis function chosen as:∫ T

0
φu (t) φj (t) =

{
1, u = j
0, u 6= j

(30)

where, φj (t) =
∏

(t − jTs). It should be noted that z1, . . . zN
are uncorrledetd and statistically independent. Therefore their
joint probability is given as:

fZ (z1, . . . zN |Hi) =
N∏
j=1

Fz
(
zj|Hi

)
i ∈ {1...,N + 1} (31)

The mean and variance of hypothesis Hi are given as:

E
{
Zj |Hi

}
= Aij (32)

var
{
Zj |Hi

}
= σ 2 (33)

where Aij is the orthonormal coefficient given as [49]:

Aij =
∫ T

0
pr (t) φj (t) dt (34)

Equation (35) can be rewritten as:

fZ (z1, . . . zN |Hi) =
N∏
j=1

e−

(
zj−Aij

)2
2σ2

σ
√
2π

(35)

fZ (z1, . . . zN |Hi) =
e

−

∑N
j=1

(
zj−Aij

)2
2σ2


(σ2π)N/2

. (36)

Thus,

fZ (z1, . . . zN |Hi) =
e
−

(
||zj−si||

2

2σ2

)
(σ2π)N/2

(37)

where:

si (t) =
N∑
j=1

Aijφj (t) (38)

Therefore, as equation (37) shows, the optimum receiver
that maximizes the likelihood is one that minimizes the dis-
tance between z and si. In other words, it is a receiver that
chooses the minimum distance to the orthonormal coefficient
coordinates.

For instance whenN = 2, we have three hypotheses: (i)H0
no target and both time slots contain only noise (note equation
19 for Fz (z|H1)), (ii) H1 time slot Ts1 contains the received
reflected signal form a target with noise and Ts2 contains
only noise and (iii) H2 time slot Ts1 contains only noise and
Ts2 contains the received reflected signal with noise. The
receiver decision rule for H1 and H2 will be to compare
the values of zj to the orthonormal coefficient values and
select the minimum distance to the orthonormal coefficients
as illustrated in Table V. However, for H0 all time slots
(i.e. zj values) have comparable energy.
Fig. 9a shows the optimum LiDAL receiver structure to be

used to detect a single target (see Case I) based on the analysis
of Table 5 and equation (29). Each branch uses one of the
orthonormal functions (see shift register) and an integrator
to determine the N dimensional expansion point collectively
between the branches. Therefore, after observing the received
signal in N time slots during the listening time (T = NTs),
the receiver decides the target presence and range (related to
Tsj ) through the decision circuit. Fig. 9b presents an example
of the orthonormal functions φj (t) for N = 4 time slots with
Ts = 2ns for three radar (LiDAL) scans during the T listening
time.

TABLE 5. Single target detection in time slots.
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FIGURE 9. LiDAL receiver, (a) The LiDAL optimum detector block diagram,
single target detection and (b) the orthonormal φj

(
t
)

signaling diagram.

We evaluated the performance of the LiDAL receiver
through the probability of making a correct decision Pc on
Hi, where the reflected signal from the target is received as
zi; Pc can be derived as:

Pc = P
(
zi|Hj

)
= P(zj > zm) where ∀m ∈ {1, ..N } ,m 6= j.

(39)

Substituting equations (29) and (17) in equation (39), we get:

Pc =


∫ Dth

−∞

e
−

(
n2j
2σ2t

)
√
2πσt

dnj


N−1

. (40)

Case II Assumptions:Multiple targets, target locations are
spaced by 1R or more, noise is present, no channel dis-
persion, the receiver N time slots are orthogonal, but the
received multiple reflected pulses from k targets (k ≤ N )
may be shifted depending on the targets locations and hence
the received pulses are not orthogonal.We do not consider the
case where there are more targets than time slots, which is an
extension that warrants further investigation.We consider this
situation however in the imaging receiver case in Section V.

a: EXHAUSTIVE SEARCH RECEIVER (ESR)
In this section, we propose an optimum receiver for Case II
based on an exhaustive search algorithm as follows:

1. The receiver observes the reflected signal pr and pro-
duces the orthonormal expansion Z for the N time slots
in the presence of noise.

2. First, the receiver’s decision block (as can be seen
in Fig. 9a) compares these N orthonormal coeffi-
cients coordinates to the ‘no target’ hypothesis as all
N time slots contain only noise, where the observed
N orthonormal coordinates are (z1, z2..zN ) and the
orthonormal coefficient are (Av1 ,Av2 , ..AvN ). For the
no target case, Aij = 0,∀j and the error ev can be
defined as:

ev =
∑N

j=1
||zj − Avj ||

2 (41)

3. The decision block then compares the observed N
orthonormal coefficients coordinates to the coefficients
associated with the presence of a single target hypothe-
sis; where there are N possible time slots to receive the
reflected signal from the target, yielding N candidate
answers; and calculate their errors (see equation (41)).

4. Next, the decision block calculates the errors assuming
the presence of two targets, where there are

(
N (N−1)

2

)
candidate answers. Thus, the total candidate answers
(CA) for N time slots and k targets can be defined as:

CA = 1+
N∑
k=1

N !
(N − k)!k!

N ≥ k (42)

5. Finally the decision block continues to find the errors
for all cases and chooses the vth case (number of targets
and their time slots) which has the minimum error:

v = argmin
v

( CA∑
v=1

ev

)
v ∈ {1, ..CA} (43)

For example, a LiDAL system with listening time divided
into N = 14 time slots and maximum counted targets of
k = 10, the total candidate answers are CA = 15914. There-
fore, the exhaustive search receiver may be very complex to
implement for the LIDAL system. It should be noted however
that the exhaustive search receiver visits and compares all the
possible answers and thus its probability of correct decisions
converges to that in (40), [49].

b: SUB-OPTIMUM RECEIVER (SOR)
In this section, we introduce a sub-optimum receiver
with lower complexity compared to the exhaustive search
receiver. Following the analysis of the MAP rules,
Fig. 10 presents the sub-optimum receiver for Case II. For
the sake of simplifying the analysis of Case II, let us assume
two targets, k = 2, detection in N = 2 time slots. Hence,
we have four hypotheses: (i)H0 noise present only and targets
are absent, (ii) H1 a single target is present at Ts1 with noise,
(iii) H2 a single target is present at Ts2 with noise and
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FIGURE 10. The LiDAL sub-optimum receiver block diagram.

TABLE 6. Multiple targets detection hypotheses with N time slots.

(iv) H3 two targets present at Ts1 and Ts2 with noise.
Table 6 illustrates the four possible hypotheses and receiver
observation with the decision. To determine H0 with min-
imum error, a comparator is connected at the output of
each correlator to determine the presence/absence of the
received reflected signal at each time slot compared to a
lower detection threshold DthL as can be seen in Fig. 10.
In addition, the receiver has to determine whether there
is a single reflected pulse located between two neigh-
boring time slots (i.e. the correct decision is H1 or H2)
or there are two reflected pulses from two targets received
in the two time slots (i.e. the correct decision is H3). Conse-
quently, we set up a second comparator at the output of each
correlator with a high detection thresholdDthH =

µ
2 as can be

seen in Fig. 10. Therefore, the final receiver decision block
decides as follows:

1. If the observed received signal zj is below DthL , then
the target is absent in Tsj .

2. If the observed received signal zj is above DthH , then
the target is present in Tsj .

3. If the observed received signal zj is above DthL and
below DthH , then it is a pulse received in two neigh-
boring time slots Tsj ,Tsj+1 . Thus the decision circuit
compares zj with zj+1 and selects the largest.

It should be noted that the lower threshold, DthL , is selected
based on the application and the acceptable probabilities
of false alarms and misses. This is discussed in detail in

Section V where the results in Fig. 20 and Fig. 21 are used to
select the detection threshold. For example, if false alarms are
to be avoided, a high threshold should be set. This however
leads to missing targets. In our current application, the pur-
pose is to count people and therefore high false alarms are
accepted to ensure that every target is counted and localized.
For example, we chose in Section V a high false alarm
probability of 0.1. This led (from Fig. 20) to a detection
probability of 0.92 and hence a threshold of 0.32 times the
received signal, where the evaluation was done at maxi-
mum range. In terms of the high detection threshold, DthH ,
the worst detection case occurs when a pulse is received
in a position such that it is exactly equally split between
two neighboring slots. We have thus set the high detection
threshold to half the received power in this sub-optimum
receiver.
Case III Assumptions: These are the same as Case II, but

now we consider the effects of the optical channel prop-
agation. The LiDAL channel can be heavily dispersive as
shown in Figs 3c, 3d. The narrow-transmitted pulse and
receiver time slot widths cause: (i) pulse spreading (over
two or more neighboring time slots) of the received pulse
reflected from a single target. This leads to a decrease
in the probability of correct decision for the proposed
LiDAL optimum receivers (ESR and SOR); (ii) ambigu-
ity in target location due to the pulse spread over multiple
time slots.
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TABLE 7. ZFE delay spread and noise enhancement.

To eliminate the effect of the inter-time slots interfer-
ence (ITI), the receiver time slot width must be selected
according to the minimum LiDAL channel bandwidth where
the optimum time slot width TsOp for ITI free operation can
be chosen as TsOp =

1
BWchmin

. The optimum time slot width
for ITI free operation is TsOp = 12ns in the room in Section
II.B using the system parameters in that section. However,
for Ts = 12ns, the radar (LiDAL) detection resolution 1R
will decrease significantly by a factor of 6 (from1R = 0.3m
to 1R = 1.8m). Thus, the time slot width was chosen in
Section II.C to maintain the desired radar detection resolution
of 1R = 0.3m with Ts = 2ns. Therefore, we implemented
a zero forcing equalizer (ZFE) in the LiDAL receiver to
equalize the channel [50], [51], [52]. In other words, to min-
imize the inter-time slots interference, while maintaining the
selected time slot width (Ts = 2ns) for optimum radar
detection resolution.

We designed the ZFE to equalize the LiDAL channel at the
worst target location. Table 7 illustrates the noise enhance-
ment and LiDAL channel delay spread with number of
ZFE taps.

The ZFE consists of 7-taps weighted finite impulse
response filter (FIR). The weights c[−l, . . . l] were optimized
according to [52]. The ZFE output signal is written as:

yZFE (t) =
l∑

n=−l

cnPr (t − nT ) (44)

The noise variance after ZFE can be given as [52]:

σ 2
ZF = σ

2
t

l∑
n=1

c2n. (45)

Note that, for the ZFE design
∑K

n=1 c
2
n is 1.2 and therefore

the new variance σ 2
ZF = 1.2σ 2

t .
The receiver listening time is divided into N = 4 time slots

(which is the number of time slots needed to cover one optical
footprint whose radius is 1.2m, Fig 2, and with 1R = 0.3m.
Results for the SOR will be reported in Section VII.

IV. TARGET DISTINGUISHING APPROACHES
AND MOBILITY MODELLING IN
REALISTIC ENVIRONMENT
To detect the desired targets (humans in our case) using
LiDAL, first the unwanted reflected signals from the environ-
ment obstacles must be eliminated through signal processing
then detection and localization of the target follows using an

optimum receiver in conjunction with an operating algorithm.
Hence, the most important task in LiDAL is to distinguish
the target reflected signal from the background obstacles
reflections in a realistic indoor environment. We considered
an active target located in a realistic environment (office room
in Fig 1a). We define an ‘active target’ as a target that has the
ability to be mobile, standing, sitting and moving in general
which are considered a unique signature that can be used to
identify the target from the static obstacles in the realistic
environment. In other words, the received reflected signal
from the target is time-variant due to target activity while the
background obstacles reflections are time-invariant (here we
ignore for example the potential slow OW channel variations
due to oscillations of indoor fans and the fast variations due
to fan blades rotation for example). Thus, by monitoring
multiple received signals for a duration of time, it is possible
to eliminate the time-invariant signals and detect the changes
in the signals reflected from the target movement.

In this paper, we considered and analyzed two main
approaches for target detection in a realistic environment.
Firstly, a background subtraction method was developed
to distinguish the target from background obstacles under
the assumption that the realistic environment obstacles are
static. Here, the target is detected by distinguishing the back-
ground reflections in multiple LiDAL measurements/scans.
Secondly, a cross-correlation method is used to identify the
changes in the LiDAL received signal scans in order to estab-
lish the target mobility. Furthermore, we have considered
two types of target movement which describe pedestrian
and nomadic targets. The target behavior is modeled as;
(i) a random walk using a model that avoids obstacles
employingMarkov chains. This may suit a small environment
where a target may move randomly if the environment is
mostly empty; (ii) a pathway model where the target chooses
to walk on certain fixed paths due to the layout of the indoor
environment.

A. BACKGROUND SUBTRACTION METHOD (BSM)
The background subtraction method was investigated and
implemented practically in [53]–[55] for UWB radar and
camera surveillance systems. This method has poor perfor-
mance only in cases where a target is moving (i.e. horizontal
movement) and its signal reflections arrive at the same time
during radar scans leading to ambiguity in single mobile tar-
get detection [54]–[56]. In LiDAL systems we introduce and
make use of collaboration between monostatic and bistatic
LiDAL configurations to eliminate the ambiguity in mobile
target detection.

To develop the BSM concept in LiDALwe first considered
a BSM example under two assumptions (which we remove
later) (a) single mobile target with a single stationary back-
ground obstacle and zero reflections from the room’s floor
and walls; (b) there is no ambiguity between the target and the
background obstacle (i.e. the target and the obstacle are sep-
arated by a minimum distance of 1R or more). The received
signal is pri (t) representing the ith snapshot measurement
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taken during a time frame of duration T in the presence of
noise. The received signal is a superposition of the signals
reflected from the target, background object and noise, thus
pri (t) can be expressed as:

pri (t) = αim
(
t − tmi

)
+ βib

(
t − tbi

)
+ ni (t) (46)

where m (t) is the reflected signal from the target, b (t) is the
reflected signal from the background obstacle, ni (t) is the
noise during the ith snapshot, α and β are the attenuation fac-
tors due to signal propagation and tmi , tbi are the time delays
for target and background signals respectively. It should be
noted that

(
tmi − tbi | ≥ τ

)
according to assumption (b). The

BSM requires at least two snapshots to distinguish a pedes-
trian target and eliminate the background reflections. Thus,
the received signal for the next snapshot (i +1) is given as:

pri+1 (t) = αi+1m
(
t − tmi+1

)
+ βi+1b

(
t − tbi+1

)
+ ni+1 (t) .

(47)

The subtraction of equations (46) and (47) yields:

ys(t) = αi+1m(t − tmi+1)− αim(t − tmi )+ (ni+1(t)− ni(t))

(48)

where tmi+1 6= tmi as the target is assumed to move while
tbi+1 = tbi due to the stationary obstacle. Equation (57)
results in perfect elimination of the reflected signal from the
background obstacle only if (βi+1 = βi) . However, part of
the signal reflected from the target (due to multiple reflec-
tions) may contribute to the reflected signal from the obsta-
cle. This is attributed to the presence of the target and its
movement which may also block partially the signal reflected
by the obstacle. This leads to βi+1 6= βi → βi+1 = ωiβ i,

where ωi is the target impact factor on background reflec-
tions due to target presence and/or movement. Thus ys (t) is
written as:

ys (t) = αi+1m
(
t − tmi+1

)
+ αim

(
t − tmi

)
+βi(ωi−1)b

(
t − tbi

)
+ (ni+1 (t)− ni (t)) . (49)

The subtracted signal term βi(ωi−1)b
(
t − λbi

)
of equa-

tion (49) may be interpreted as a reflected signal from a
target if βi(ωi−1)b

(
t − tbi

)
≥ DthL and this can lead to false

target distinguishing. Furthermore, the subtracted noise term
(ni+1 (t)− ni (t)) has a variance σ 2

ts equal to 2σ 2
t . Note

that, the lower detection threshold DthL introduced in this
work is based on two hypotheses H0 only noise is present
and H1 noise and target are present. Thus, this leads to a
new hypothesis which we have not included and will be
considered in future work. It is however typically not an
issue for the imaging receivers in Section VI due to their
narrow FOV.

Fig. 11 shows an example of two snapshot measurements
for a mobile target and a stationary obstacle. As can be
seen in Fig. 11 the BSM of the snapshots may lead to false
target distinguishing due to target movement which affects

FIGURE 11. Results of BSM of the received snapshots measurements.

FIGURE 12. Receiver block diagram of LiDAL with BSM.

the signal reflected by the stationary obstacle. The simula-
tion in Fig. 11 was carried out in a room (4m×8m×3m)
in the presence of a single target and background obstacle
located at ranges of 2m and 3m receptivity. A monastic
LiDAL setup was used where the transmitter and receiver
are located at the center of the room’s ceiling. Fig. 12 illus-
trates the proposed LiDAL receiver for target detec-
tion and distinguishing using BSM with the sub-optimum
receiver.

B. CROSS-CORRELATION METHOD (CCM)
If there is target motion with continuous velocity (mobile)
or discrete velocity (nomadic) in an indoor environment,
the target can then be distinguished relative to the station-
ary background furniture by monitoring the changes in the
received reflected signals through the use of multiple snap-
shots. We employed cross-correlation to identify the corre-
lation between the snapshot measurements of the received
reflected signals. Although there is relative motion between
the target and TRx unit, Doppler techniques cannot be used
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in LiDAL systems due to the limited target speed. Further-
more, cross-correlation is better than Doppler methods at low
speeds, for example to estimate low velocity dispersion using
ultrasound signals [57]. Also, cross-correlation has the advan-
tage of detecting weak signals [58]. The peak displacement
resulting from the cross-correlation between the two snap-
shots indicates target movement as the background obstacles
are stationary and can also be used to determine target range.

In using cross-correlation we firstly look at coarse time
scales to determine if there is a mobile target. We refer to this
as fast cross-correlation. Here two snapshots are correlated
over the full observation time window T . If target movement
is detected, then a finer time scale cross-correlation is car-
ried out at the slot level comparing two or more time slots,
and carrying out each time a cross-correlation of up to S
snap shots. We refer to this finer cross-cross-correlation as
slow cross-correlation.We furthermore define a binary Target
Movement Indicator (TMI) whose value is equal to one if the
fast or the slow cross-correlations show a change, TMI is
equal to zero otherwise. Fig. 13 presents the proposed LiDAL
snapshot measurements cube for target movement and shows
the values of TMI. In Fig. 13, the y axis represents time and
shows a single time frame of duration T subdivided into N
time slots. The z axis of Fig. 13 represents the TMI values
associated with fast cross-correlation when two snapshots are
cross-correlated. Finally, the x axis represents TMI values for
each time slot when the slow cross-correlation is evaluated.
Note that the values of S indicate the number of snapshots
cross-correlated. As can be seen in Fig. 13, the first snapshot
measurement (i = 1) is stored until the next measurement
(i = 2) is collected. Then a cross-correlation between the
two snapshots for the whole time duration T is carried out
to determine the TMI (‘0’ and ‘1’) i.e. to determine the ‘fast
cross-correlation’. In this case, cross-correlating the (i = 1)
and (i = 2) snapshots yields TMI=0. If TMI is equal to
zero, the fast cross-correlation is continued, to carry out
cross-correlation between the current snapshot (i = 2) and
the next snapshot (i = 3). However, if TMI is equal to
one, multiple cross-correlations are implemented between the

FIGURE 13. LiDAL snapshots measurement cube.

identical time slots of the consecutive snapshots yielding the
slow cross-correlation. The slow cross-correlation determines
the TMI values associated with each time slots. The value
of the TMI associated with slot j is referred to as a weight
(wj) which represents change/no change in each time slot.
For example, S = 4 represents cross-correlation between
snapshots (i = 1), (i = 2), (i = 3) and (i = 2) and yields
a TMI value for each time slot where the TMI values (wj) are
(w1, w2 and w3 = 1; w4, w5 and w6 = 0). The values of
the TMI weights are integrated in the proposed LiDAL sub-
optimum receiver to detect and localize the targets as will be
discussed in conjunction with Fig. 15.

1) FAST CROSS-CORRELATION
To investigate the performance of the proposed cross-
correlation method let us consider (i) a single mobile tar-
get with a stationary background obstacle, (ii) no ambiguity
(i.e. the minimum distance between the mobile target and the
background obstacle is1R or more) and (iii) white Gaussian
noise due to the receiver and ambient noise as discussed in
Section III. Here, we analyze the key scenarios of interest and
in particular we consider five propositions / scenarios to test
the fast cross-correlation method to decide the TMI.
Proposition I: we assume that there is no target in

the environment, only (background) an obstacle in the
two snapshot measurements (i, i + 1) as can be seen
in Fig. 14a. The received signal reflected from the obstacle
in the presence of noise in the ith snapshot, pri (t), can be
expressed as:

pri (t) = βib
(
t − tbi

)
+ ni (t) (50)

and the received signal pri+1 (t) is given as:

pri+1 (t) = βi+1b
(
t − tbi+1

)
+ ni+1 (t) . (51)

The fast cross-correlation function (Rpri ,pri+1
) of equa-

tions (50) and (51) over the listening time T is:

Rpri ,pri+1
(τ ) = Rbb (τ )+ Rbn (τ )+ Rnn (τ ) (52)

where the term Rbb is an auto-correlation function of the
received signal from the obstacle which is defined as:

Rbb (τ ) ,
∫ T

−T
βib

(
t − tbi

)
βi+1b

(
t − tbi+1 + τ

)
dt (53)

and Rsn is the cross-correlation of the received signal (from
the obstacle) with noise; andRnn is the noise auto-correlation.
These two correlations are given as:

Rbn (τ ) ,
∫ T

−T
βib

(
t − tbi

)
ni+1 (t + τ)dt

+

∫ T

−T
βi+1b

(
t − tbi+1

)
ni (t + τ)dt (54)

and

Rnn (τ ) ,
∫ T

−T
ni (t) ni+1 (t + τ)dt. (55)
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FIGURE 14. Cross-correlation method (a) and (b) received signal and CCM of received snapshots
measurement of Proposition I respectively, (c) and (d) received signal and CCM of received snapshots
measurement of Proposition II respectively, (e) and (f) received signal and CCM received snapshots
measurements of Proposition III respectively and (g) and (h) received signal and CCM received
snapshots measurement of Proposition IV respectively.

FIGURE 15. LiDAL receiver block diagram with CCM.

The correlation factor t̂ (i.e. displacement factor which rep-
resents the time delay) can be calculated by determining τ =
t̂ for which Rbb is maximized. Therefore, t̂bb is defined as:

t̂bb = argmax
τ
(Rbb (τ )) (56)

It should be noted that the noises in the snapshot mea-
surements are assumed uncorrelated and orthogonal, thus
Rnn ≈ 0 [59], [60]. Also, the value of Rbn can be assumed

very small and can thus be neglected [59], [60]. Hence,
Rbb

(
t̂bb
)
identifies whether there is a change or not between

the snapshot measurements. For proposition I, the obstacle is
stationary (tbi = tbi+1∀i ). Therefore t̂bb = 0, see Fig. 14b,
indicates that no change took place in the ‘‘target’’ location
(TMI=0). Note that the received signal is sampled with
Ts = 0.01ns as discussed in Section III-C, which yields the x
axis scale of Fig. 14b.
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Proposition II: We assumed that the target appears in the
environment in the ith + 1 snapshot measurement while the
ith snapshot includes only the stationary obstacle as depicted
in Fig.14c. The received signal reflected from the target and
the obstacle in noise, pri+1 (t), is given as:

pri+1 (t) = αi+1m
(
t − tmi+1

)
+ βi+1b

(
t − tbi+1

)
+ ni+1 (t)

(57)

while pri (t) is as given in (50). Thus using (50) and (57)
Rpri ,pri+1

(τ ) is given by:

Rpri ,pri+1
(τ )=Rbm(τ )+Rbb(τ )+Rbn(τ )+Rmn(τ )+Rnn(τ )

(58)

where Rbm (τ ) is the cross-correlation function between the
signal received from the target and that received from the
obstacle, while Rmn (τ ) is the cross-correlation between the
signal reflected from the target and noise. Thus Rbm (τ ) is
written as:

Rbm (τ ) ,
∫ T

−T
βib

(
t − tbi

)
αi+1m

(
t − tmi+1 + τ

)
dt (59)

and the Rmn (τ ) is:

Rmn (τ ) ,
∫ T

−T
αi+1m

(
t − tmi+1

)
ni (t + τ)dt. (60)

It should be noted that, Rmn (τ ) can be neglected in a similar
fashion to the decision to neglect Rbn. The peak in the target-
obstacle cross-correlation occurs at t̂bm which can be calcu-
lated as t̂bm = argmax

τ
(Rbm (τ )). For proposition II, t̂bm 6= 0

and t̂bb = 0. Thus, t̂bm indicates the change that occurred due
to the target presence (TMI=1) as can be seen in Fig. 14d.
Proposition III:Here we assumed the presence of a mobile

target in two successive snapshot measurements with a
stationary obstacle as shown in Fig14e. The received reflected
signals are:

pri (t) = αim
(
t − tmi

)
+ βib

(
t − tbi

)
+ ni (t) (61)

and:

pri+1 (t) = αi+1m
(
t − tmi+1

)
+ βi+1b

(
t − tbi+1

)
+ ni+1 (t)

(62)

The cross-correlation, Rpri ,pri+1
, of equations (61) and (62),

gives:

Rpri ,pri+1
(τ ) = Rmm(τ )+Rmb(τ )+Rbm(τ )

+Rbb(τ )+Rbn(τ )+R̀mn(τ )+Rnn(τ ) (63)

where Rmm is the auto-correlation function of the received
reflected signal from the target given as:

Rmm (τ ) ,
∫ T

−T
αim

(
t − tmi

)
αi+1m

(
t − tmi+1 + τ

)
dt (64)

The cross-correlation Rmb (τ ) is given as:

Rmb (τ ) ,
∫ T

−T
αim

(
t − tmi

)
βi+1b

(
t − tbi+1 + τ

)
dt. (65)

TABLE 8. Target movement indictor decision.

The cross-correlation R̀mn (τ ) is given by:

R̀mn (τ ) ,
∫ T

−T
αi+1m

(
t − tmi+1

)
ni (t + τ)dt

+

∫ T

−T
αim

(
t − tmi

)
ni+1 (t) (t + τ) . (66)

The time t̂mm is defined as t̂mm = argmax
τ
(Rmm (τ )) while

t̂mb = argmax
τ
(Rmb (τ )). In proposition III, we are interested

in observing the values of t̂mm, t̂mb, t̂bm and t̂bb, as seen in
Fig. 14f, to determine whether a change has occurred or not
between the snapshot measurements.
Proposition IV: In this proposition, we assume that the

target and the obstacle are stationary during the snap-
shot measurements as presented in Fig. 14g. Here the
cross-correlations will have the same definitions as in
proposition III, however, tmi = tmi+1(ie a stationary target).
Therefore, as can be seen in Fig. 14h t̂mb = t̂bm and the
corresponding (side) peaks have the same magnitude.
Proposition V: We assumed in this case that in the ith

snapshot the target and the obstacle are present, while in the
ith+1 snapshot, only the obstacle is present (i.e. the target left
the environment). This is similar to Proposition II, the case
shown in Fig. 14c, but with the pri (t) and pri+1 (t) exchanging
their roles. Here t̂mb 6= 0 and t̂bb = 0. The cross-correlation
will be similar to that shown in Fig. 14d.

Table 8 summarizes the fast correlation outcomes and the
value of TMI associated with two consecutive snapshot mea-
surements in LiDAL.

2) SLOW CROSS-CORRELATION
The slow cross-correlation is employed over the duration of
the time slot Tsj where the same time slot in the frame is con-
sidered over several (S) consecutive snapshotsmeasurements.
The cross-correlation Rxy

(
τ,Tsj

)
can be given as:

Rpri ,pri+1
(τ,Tsj ),

∫ Ts

−Ts
pri+1

(
t−Tsj+τ

) S∑
i=1

pri
(
t − Tsj

)
dt

(67)

where, i ∈ [1, ..S] and S is the total number of snapshots.
The time slot correlation factor t̂Tsj is calculated as:

t̂STsj = argmax
τ

(
Rpri ,pri+1

(
Tsj , τ

))
(68)

VOLUME 7, 2019 85663



A. A. Al-Hameed et al.: LiDAL

It should be noted that, if the value of t̂STsj
changes for different

values of S (i.e. when, more snapshots measurements are
considered), then this indicates the presence of the target in
a time slot Tsj . Thus, when t̂

S
Tsj

equals to zero, this indicates
no change between the received reflected pulses in Tsj in S
consecutive snapshots. We define a time slot weight wSj in
CCM to be used in the operation of the LiDAL sub-optimum
receiver. The weight wSj is defined as:

wSj =

{
0 if t̂STsj

= 0

1 otherwise
(69)

Equation (69) can be understood by observing that t̂STsj
is the

time slot at which the peak of the correlation occurs. If there is
no target and hence no motion, then the correlation (67) is an
auto-correlation whose peak occurs at t̂STsj

= 0 and therefore,

the wSj is equal to zero in this case indicating the absence of
the target.

The time of arrival (TOA) of the received reflected pulse
from the target in Tsj can be determined as:

TOAj = argmax
τ

(∫ Ts

−Ts
wSj pri

(
t − Tsj + τ

)
x (t)dt

)
(70)

where x (t) is the shape / structure of the transmitted signal.
Equation (70) can only have a meaningful use if the receiver
time slot of interest is large and the received pulse is much
narrower than the time slot. In which case equations (67)
and (69) identify the time slot in which the reflected pulse
from the target occurs (i.e. time slot number); while equation
(70) can identity the target pulse location within a time slot.

Fig. 15 presents the LiDAL optimum receiver for target
distinguishing and detection using CCM. As can be noted
in Fig.15, The output of CCM is represented by time slot
weights wSj which are multiplied (to take target mobility into
account) by the orthonormal expansion coefficient, 8j (t),
of each time slot and are multiplied by the ZFE output which
is the received equalized signal. The target indicator block
has to be allowed to operate and accumulate S snapshots
(see second term of equation (67)) and hence produce wSj val-
ues for the jth slot and forN time slots before the sub-optimum
receiver starts operating. This is only an initialization phase.
Furthermore, thewSj weights cause the j

th slot to produce zero
energy in the SOR if there is no target motion, hence stopping
the SOR from reporting the reflected pulse from an obstacle
as a target.

C. TARGET MOBILITY MODELLING
Target distinguishing relies on the target movement in the
indoor environment in conjunction with the use of the BSM
and CCM distinguishing approaches in our study. Target
movement leads to a change in the observed signals received
by LiDAL. Therefore, modeling the target mobility behav-
ior is essential to examine the performance of the pro-
posed LiDAL systems. A random walk approach that avoids
obstacles is considered for pedestrian and nomadic targets

in the realistic indoor environment. For pedestrian targets,
we assumed continuous movement at a speed of 1m/s, while
for the nomadic targets, discrete movement is assumed.

Three distinct additional studies can be conducted in this
area. We address two of these and leave the third for future
work. Firstly, mobility helps distinguish targets, however not
all locations may be allowed in the room or indoor envi-
ronment, due to obstacles and furniture. To account for this,
we define a space utilization factor (SUF) that effectively
reflects the reduction in the allowed target mobility. Sec-
ondly, some spaces may be more popular than others, for
example a working desk surface in a room. We account for
this in simulations by using different transition probabilities
from location to another. This is also used to reflect possible
target nomadic behavior. Thirdly, the probability of correct
decisions at the output of the receiver can be combined with
the probability of detecting target movement as derived in
this section to give a combined performance analysis of the
receiver and the human mobility pattern and indoor space
configuration. In this third study target motion through a
number of steps in a given time window (for example a one
second time window) provides more repeated opportunities
for the receiver to detect the moving target. This can be
analyzed within the framework of repetition coding. This
third study area warrants further research and is not reported
here. We consider the first two studies in this section.

1) PROBABILITY OF MOBILITY DETECTION (PMD)
The BSM and CCM employ snapshot measurements to
distinguish the target. This relies on the target’s motion
where a minimum step distance of 1R (LiDAL resolution)
is assumed. The calculation of the probability of detection
is related to: (i) the probability that the target moves from
location (L1) to location (L2) and (ii) the number of target
steps required to achieve a 1R distance. In order to deter-
mine the probability of detection, the following setting was
considered:

1) A Markov chain is considered as a representation of
the random walk process on a graph. This models the
target mobility behavior in the indoor environment in
two dimensions. Markov chain models allow the target
walking behavior to be represented either on directed
or on undirected paths [61], [62]. The presence of
obstacles was accounted for through the elimination of
certain transitions in the Markov chain.

2) The indoor environment floor of the interest G(x, y) is
divided into a 2D grid with size j × i and L locations
where L = x×y

12
l
, i = x

1l
and j = y

1l
; here 1l is the

inter-locations distance as shown in Fig. 16.
3) The target can move in space to one of ND neighbor

destinations (ND ∈
[
l1..,lND

]
) or can stay at the current

location (lc) as shown in Fig. 16. The Markov chain
considered is a stochastic process on states defined in
terms of a transitionmatrix (P) (ND+1 rows andND+1
columns). The transitionmatrix of the graph in Fig.16 is
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FIGURE 16. Target random walk model in G(x, y ) space.

given as:

P =


ps(1) pm(1,2) pm(1,ND)
pm(2,1) ps(2) pm(2,ND)
...

. . .
...

pm(L,1) · · · ps(L)

 (71)

where ps(i) is the probability of the target staying in
the current state (location i) which is related to the
target’s behavior, pm(i,j) is the probability of the target
moving from current location (i) to one of the neighbor
locations (j). Note that in (71) there areND neighboring
points to each location and there are L locations in the
room in total.

4) We have considered an undirected target motion pat-
tern. Typically, the target walks to one of L random
locations inside an indoor environment where at each
location the probability of the target staying at the
current location (i), ps(i), can be written as:

ps(i) = 1−
ND∑
j=1

pm(i,j) j 6= i (72)

To simplify the setup of modeling the indoor environment, let
the inter-locations distance be equal to the LiDAL resolution
(i.e.1l = 1R). Thus the grid size considered is

( x
1R ×

y
1R

)
.

This is reasonable as 1R is typically about 30 cm where
we set this design parameter for LiDAL resolution and it is
the minimum typical expected distance between people in an
indoor environment. Also, we will assume that pedestrians
move at a speed that is an integer multiple of 1R m/s to
simplify the analysis. Therefore, if the pedestrian speed is v
m/s, then in one second the pedestrian visits v

1R locations at
most. At each location the target can be distinguished since it
has moved at least1Rwhich is a change that can be captured
in the snapshot measurements. Therefore, the probability
of target movement detection taking into account the target
speed in an empty indoor environment, GE (x, y) ,PEMDT can
be expressed as:

PEMD =

(
1R2

xy

)
L∑
j=1

ND∑
i=1

p(i,j). (73)

Equation (73) describes the probability of target movement in
an empty environment that has L possible locations with ND
neighbor destination to each current location. The probability
p(i,j) is the probability of the target occupying location (i, j) .
It describes the popularity of locations in the room. It depends
also on the target activity behavior (nomadic, continuous
motion etc). It is worth mentioning that, we assumed for all
L possible locations an equal probability of being in that
location, given by

(
1R2
xy =

1
L

)
.

For a realistic indoor environmentGR(x, y), free flow in the
space is hindered by obstacles (i.e. furniture and walls) where
the target movement is restricted and mobility detection can
be harder. Therefore, we introduce a ‘space utilization factor’
in realistic environments to determine the target probabil-
ity of detection. The space utilization factor SUF can be
written as:

SUF = 1−

(
1R2

xy

)(
1
ND

) L∑
j=1

(
ND −

1
p(j)

)
(74)

where, p(j) is a property of the current location j and is given
as p(j) = 1

NA
. Note thatNA is the number of neighbor locations

of location j allowed for the target to move to; with NA ≤ ND.
The space utilization factor, SUF, has a unity value for a
room that has no obstacles (NA = ND), while for a room with
obstacles (NA < ND), SUF is less than one. The probability
of target mobility detection in a realistic environment PRMDT
can be given as:

PRMDT = f
(
SUF,PEMD

)
(75)

where PRMDT is a function of the corresponding probability of
target mobility detection in an empty environment,PEMDT , and
the space utilization factor. Fig. 17 presents the probability
of target mobility detection in a realistic environment for
different values of LiDAL resolutions and space utilized by
background obstacles (furniture). The results are obtained
for a pedestrian target walking randomly with a speed of
v = 1 m/s in space of GE (4m, 8m). The Markov transi-
tion matrix for the pedestrian behavior selected has ps =
0.02,

∑ND
i pm = 0.98 and ND = 8. As can be seen

in Fig. 17, the space utilization SUF significantly affects the
PRMDT due to variation in the space allowed for the target to
be mobile.

2) DIRECTED RANDOM WALK WITH
OBSTACLE AVOIDANCE
In this model, we assume that the pedestrian and nomadic
targets walk freely inside the room in all the directions except
directions that lead to obstacles. In addition, we considered a
common scenario where the targets arrival into the room fol-
lows a Poisson distribution [63], [64] and the time spent in the
room follows a negative exponential distribution [65], [66].

Initially, targets reach the room’s entrance at different
arrival times ta with an arrival rate of λ and mean time spent
in the environment of 1/γ and therefore in a simulation,
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FIGURE 17. Probability of target mobility detection in a realistic
environment.

the leaving times td can be determined. Targets spend times
tsp in the environment.

For nomadic behavior in an indoor environment such as
an office room, the nomadic target continuously walks inside
the room until it reaches one of the interesting destinations
(for instance an office desk). For each nomadic target, LD
interesting destinations are generated randomly where LD ∈
[1, ..L]. It is assumed that the nomadic target has a speed of
(0.5 m/s-2 m/s). A Markov transition matrix is then created
for the current location to describe the probability of transi-
tion to its neighbours. We consideredND = 8 neighbours that
are equi-probable if no obstacle is present. In the presence
of obstacles, some of the ND directions have zero transition
probabilities, while the rest are equi-probable. The decision
of staying in the current location or moving to the next des-
tination relies on the allocated probabilities in the transition
matrix. Let us assume that the nomadic target has the same
behavior in terms of staying at the interesting destinations
(i.e. the staying probability is equal among the locations of
interest LD). Thus the probability of staying at a location lD
of interest (lD ∈ [1, ..LD]) for a nomadic target is pnos(lD) =

1
LD

and the probability of moving is pnom(lD,j) =
1−pnos(lD)
ND

. For the
locations other than the LD locations of high interest, ie for
the l(i) general locations where (i 6= lD), the nomadic target
moves with a speed v, thus the probability of staying at l(i)
should be very small due to lack of interest. We thus set the

pnos(i) = 0 and pnom(i) =
1−pnos(i)
ND

.
During the simulation the nomadic target follows the path

with the highest probabilities. Note that, the neighbor des-
tinations to the location of interest have equal probabili-
ties, therefore, the next neighbor destination is decided on
equi-probable basis.

The simulation starts with the arrival of targets into the
environment following a Poisson distribution and proceeds by
determining the time each target spends in the environment
where this time follows a negative exponential distribution.
The motion of the targets within the environment is then
governed by the transition matrix probabilities.

Let the arrival rate be λ per hour and let the average dwell
time be 1/γ in hours. Let Tob be the observation window, i.e

FIGURE 18. Pathways mobility model.

the simulation time. The probability of having k arrivals in
Tob is given as:

pa (k) =
(λTob)k

k!
e−λTob . (76)

The probability of a target leaving after td is:

pd (td ) = γ e−γ td td < Tob (77)

The room is thus considered a form of M /M /1 queue and
therefore the maximum number of targets K , given λ and γ ,
can be written as:

K =
λ/γ

1− λ/γ
. (78)

Note that, the European standards for the minimum work-
place space required per person is 3.7m2 for an office envi-
ronment and 2m2 for a meeting room [67]. Thus, in this work
we set K = 6 for the office room presented in Fig. 1a (with
an area of 8m × 4m) where the space left unoccupied by
obstacles is 24 m2. We have used λ = 12 arrivals per hour
and γ = 14, giving the average time spent in the room as
K
λ
= 30 minutes.

3) PATHWAY MOBILITY MODEL
In this model, the targets move on pre-determined indoor
pathways as shown in Fig. 18. Note that, the targets’ behav-
ior in terms of arrival rate, departure rate and number of
destination of interest are similar to the setup discussed in
the ‘random walk with obstacle avoidance’ model. However,
in this model, there is no random target motion, the targets
follow the pre-determined paths.

V. MULTIPLE-INPUT MULTIPLE-OUTPUT LiDAL
(MIMO-LIDAL)
Target ambiguity is the main challenge when using mono-
static or bistatic LiDAL systems in an indoor environment.
Whenever, the distance between targets or between a target
and a background obstacle is less than the LiDAL resolution,
target detection ambiguity occurs. Increasing the LiDAL res-
olution by decreasing the transmitted pulse width improves
the target detection resolution, however this requires a higher
transmitter and receiver bandwidth and calls for a more com-
plex optical receiver (for example in terms of equalization).
Target localization requires determination of the target range
and/or the direction (angle) of the received reflected pulse
from the target. Unlike the work reported in the literature,
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our localization approaches in this paper are passive in the
sense that the target does not have to carry an optical (VLC)
receiver. In the literature [4], [68], [69], many techniques
have been proposed for VLC mobile user localization such
as triangulation, scene analysis and proximity using angle of
arrival, time difference of arrival and received signal strength
form multiple transmitters. Our passive approach in LiDAL
relies on detecting signals reflected from the target, and there-
fore received signal strength indicator (RSSI) is not a good
detection strategy as discussed in Section III. In this passive
localization approach the reflected signals experience heavy
fluctuations when reflected signal from the target owing to
the environment, target cloth colors and the potential loss of
the line of sight component.

In this section, a new multiple-input multiple-output
LiDAL system (MIMO-LiDAL) is introduced for target
detection, counting and localization. The proposed system
is designed to mitigate the ambiguity of multi-target detec-
tion to distinguish the targets correctly from the background
obstacles in a realistic indoor environment. To tackle the
ambiguity of target detection, a collaboration of multiple
transmitters and receivers is employed. The detection floor is
divided into multiple optical footprints using multiple single-
photodetector receivers which provide spatial selection for
target detection, see Fig. 19. In addition, we integrated the
MIMO-LiDAL system with the proposed target distinguish-
ing approaches of Section IV and the sub-optimum receiver
of Section III to optimize the targets detection, counting
and localization supported by an algorithm (Section V-C)
executed in a connected controller. Furthermore, time-of-
arrival (TOA) is employed in the MIMO-LiDAL system for
target localization. A simulation is reported in Section VII for
the MIMO-LiDAL system in order to identify the accuracy
of detecting, counting and localizing multiple targets in a
realistic environment.

A. SYSTEM CONFIGURATIONS
We introduce the MIMO-LiDAL system, to detect, count
and localize multiple targets. We implemented multiple

FIGURE 19. MIMO-LiDAL system.

narrow-FOV receivers collocated with the light units. The
system is designed to tackle the ambiguity of target detec-
tion, maximize the number of counted targets and minimize
false target distinguishing by employing both monostatic
and bistatic LiDAL systems. Fig. 19 presents the setup of
the MIMO LiDAL system with the controller. The MIMO-
LiDAL system includes eight receivers that are collocated
with the eight VLC transmitter units on the room ceiling.
The room setup and transmitters’ configuration is similar to
that in [20] which is a versatile setup used to realize a multi-
gigabit/s VLC system. In this work, we assumed that the
LiDAL system has access to and can use all the VLC trans-
mitters. The room detection floor is divided into eight optical
footprints as shown in Fig. 19. The transmitters and their FOV
have to be selected to comply with the illumination levels
recommended by the standards [20]. Therefore, we have
created the LiDAL optical detection zones through design
and selection of the LiDAL receivers FOVs. Each receiver
is chosen as a single narrow-FOV photodetector with 9c =

43.8◦ which is the acceptance semi-angle of the compound
parabolic concentrator (CPC). This FOV is determined based
on the required maximum LiDAL range, RFOVMax , and is equal
to 1.25m in our system, see Section III-A. The collocated
transmitter-receiver (i.e. transceiver) unit covers an optical
footprint area of 4.91 m2. It is worth mentioning that the
VLC transmitters designed in [20] are spaced by a distance
of 2m. Therefore, the maximum spatial overlap between two
neighboring optical footprints, 1x, is 0.5m as can be seen
in Fig. 19.

In MIMO LiDAL, each transceiver unit (collocated
TX and RX ) represents a monostatic configuration. Thus,
the mean reflected received signal power (P̄Mr

RFOVMax

) from a

target located at the edge of the optical footprint at a distance
of RFOVMax can be derived as:

P̄Mr
RFOVMax

=
Cµρ (do − h)n+3

4π2
(
RFOV

2

Max + (do − h)
2
) n+7

2

(79)

where, C = (n+ 1)(nele + 1)PtdAARdAGc (9c).
The standard deviation of the received signal, P̂Mr

RFOVMax

,

is given as:

P̂Mr
RFOVMax

=
Cσρ (do − h)n+3

4π2
(
RFOV

2

Max + (do − h)
2
) n+7

2

. (80)

In this work, for the MIMO-LiDAL design we set the
LD-based light engine beamwidth for illumination purpose
[20] as n = 0.5; and set the power transmitted by each light
unit as Pt = 18W (as discussed in Section II). The PD area is
AR = 20mm2, Gc (9c) = 6 obtained using the concentrator
gain equation (5) with N = 1.7 [29] and 9c = 43.8◦. The
target effective cross section area was set as dA = 0.29m2,
which is the minimum target cross section area using Fig. 1b.
This minimum area occurs when the target orientation is such
that the human (left or right) side faces the transceiver unit
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(a larger target cross section area results if the person faces or
gives their back to the transceiver). The target height selected
was h = 1.7m and, do = 3m (room height). The receiver
bandwidth is 315 MHz which corresponds to the maximum
channel bandwidth according to the monostatic LiDAL sys-
tem analysis in Section III-B. Thus the TIA thermal input
noise current σthermal is about 2.6 pA/

√
Hz [43].

To determine the detection threshold to be used in the
receiver, the receiver operating characteristics (ROC), [49],
have to be determined building on the results in Section III F,
and therefore for given acceptable detection or false detec-
tion probabilities, the detection threshold can be determined.
These probabilities of interest are determined next:

1) PROBABILITY OF FALSE DETECTION (PFD)
In the absence of a target there is a chance that a noise
signal from any ambient light source can exceed the detection
threshold. This noise signal can thus be interpreted as a
reflected signal from a target which causes false detection
(earlier referred to as false presence or false alarm). The prob-
ability of false detection (PFD) is therefore the probability that
a target (human) is absent, however the LiDAL system reports
in error (due to noise) that a target is present. The probability
of false detection (PFD) is therefore given as [34], [49]:

PFD =
∫
∞

Dth
Fz (z|H1)dz (81)

By solving (81), PFD can be written as (82), as shown at
the bottom of the next page, where erfc is the error function
complementary.

2) PROBABILITY OF DETECTION (PD)
The probability of detecting a target relies on the received
signal reflected by the target in the presence of noise.
Thus the probability of detection (PD) is the probability
that the LiDAL system makes a correct decision that a tar-
get (human) is present when such a target is in reality present
in the environment. This is the probability that the received
reflected random signal in the presence of noise is above
the detection threshold. The probability of detection (PD) is
therefore given as [34], [49]:

PD =
∫
∞

Dth
Fz (z|H2) dz (83)

Solving equation (83) we get (84), as shown at the bottom
of the next page. The ROC can now be evaluated for the
proposedMIMO and Imaging LiDAL systems. The detection
threshold Dth can be determined.
Fig. 20, shows the ROC depicting the trade-off between

PMD and PMFD of the Monostatic LiDAL system for two
locations where the targets are located at ranges of RFOVMax
and 1

2R
FOV
Max respectively. The impact of selecting the detec-

tion threshold DMth on the target false detection can be seen
in Fig. 21. In this work, we consider MIMO-LiDAL for peo-
ple detection, counting and localization applications. There-
fore, we adjusted the DMth to maximize the value of PMD which

FIGURE 20. ROC of monostatic MIMO LiDAL.

FIGURE 21. Monostatic MIMO LiDAL false detection with detection
threshold DM

th .

implies that high false alarms are accepted to ensure that
every target is counted and localized. We chose PMFD = 0.1
which leads to PMD = 0.92 and therefore the optimum detec-
tion threshold for the monostatic LiDAL isDMth = 0.32P̄Mr

RFOVMax
in this case.

B. COLLABORATION OF THE MIMO-LiDAL
TRANSCEIVERS UNITS
In a realistic environment, the ambiguity of target detection
can be divided into two types. Firstly, when a single target
moves along a circle centered at the center of the receiver
optical footprint, the reflected pulses from the target arrive
at the same time. Therefore, the exact location of a target on
this circle (where on the circle) beneath the receiver cannot be
established. Secondly, two or more stationary targets cannot
be distinguished if they are located at different locations but
their distances to a monostatic transceiver (TRX1 in Fig. 22a)
are the same as can be seen in Fig. 22a (targets 1 and 2).

These forms of target ambiguity can be resolved if bistatic
transceivers are used, see Section III-A and Fig. 22a. In this
case, the target position has to be covered by multiple trans-
mitters (at least three transmitters, for spatial localization)
that act as anchors, and by at least one receiver.
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FIGURE 22. Target detection ambiguity: (a) target detection ambiguity in
MIMO-LiDAL system with targets ranging, (b) the reflected pulses from
targets when Tx1-Rx1 are active, (c) the reflected pulses from targets
when Tx2-Rx1 are active and (d) the reflected pulses from targets
when Tx3-Rx1 are active.

The footprint coverage radius of each VLC transmitter unit
is 4.8m (transmitter beamwidth was set as 75◦ for illumi-
nation purposes [20]) which results in a minimum cover-
age overlap of 3.8m between the neighboring transmitters
(ie between the circular optical zones covered by each trans-
mitter). Consider target 2 in Fig. 22a located at the maximum
range of RX1, ie located at RFOVMax of RX1. This target is illumi-
nated by LiDAL TX2. Therefore, this collaboration between
neighboring transceivers (CoNTRx) has established the sec-
ond anchor in a bistatic configuration where TX2 is now an
anchor. The first anchor is TX1, where TX1 and RX1 act as
a monstatic LiDAL sub-system. The third anchor is estab-
lished in the example in Fig. 22a through a bistatic LiDAL

subsystem formed by TX3 and RX1. Therefore, the MIMO
LiDAL system in Fig. 22a acts to establish the target location
by removing the location ambiguity.

To illustrate the removal of target ambiguity through the
joint use of the three anchors, consider Fig. 22a which
depicts a worst case scenario with two targets located at
positions P1 (target 1) and P2 (target 2). Observed through
the field of view of the MIMO LiDAL sub-system TX1-RX1
(i.e. monostatic LiDAL) and TX3-RX1 MIMO LiDAL sub-
system (i.e. bistatic LIDAL), both targets are at same dis-
tance to RX1 and therefore ambiguity occurs. Considering
TX1-RX1, the round trip time of the reflected pulse from
target 1 (2R1(1)) is equal to the round trip time associated
with the pulse reflected from target 2, 2R1(2), resulting in the
pulse seen in Fig. 22b. Similarly, considering TX3-RX1 and
the trip distances (R3(1)+ R1(1)) and (R3(1)+ R1(2)) results
in the pulses seen Fig. 22d. Thus, ambiguity exists. How-
ever, if TX2-RX1 are used, the distinct trip distances (R2(1)+

R1(1)) and (R2(2)+ R1(2)) result in ambiguity resolution as
seen in Fig. 22c.

For the bistatic LiDAL, the mean received reflected signal
power, P̄Br

RFOVMax

, from a target located at the detection edge, ie at

a distance of RFOVMax (see Fig. 22a target located at P2) can be
derived as:

P̄Br
RFOVMax

=
Cµρ

(
do − h

)n+3
4π2

((
3 RFOVMax

)2
+
(
do−h

)2) n+32 (RFOV2

Max +
(
do−h

)2)2 .
(85)

The standard deviation of the received signal, P̂Br
RFOVMax

, is

given as:

P̂Br
RFOVMax

=
Cσρ

(
do−h

)n+3
4π2

((
3RFOVMax

)2
+
(
do−h

)2) n+32 (RFOV2

Max +
(
do−h

)2)2 .
(86)

Fig. 23 presents the ROC of the bistatic MIMO-LiDAL. Note
that unlike the monostatic LiDAL system, the bistatic LiDAL
systemmakes use of distant anchor points, to help resolve the
localization ambiguity. Therefore, the mean received signal is
low when a distant anchor point is used. To maintain high
detection probability in this case, a higher false detection
probability, PBFD, is used, PBFD = 0.25. Here higher false

PFD =
1
2
erfc


(√

µ2

(βσ−1)2
+

µ2

βσ−1
+

2σ 2
βσ−1

(
ln γFP

γFA
− ln σt

σ

))
−

(
µ

βσ−1

)
√
2σt

 (82)

PD =
1
2
erfc


((√

µ2

(βσ−1)2
+

µ2

βσ−1
+

2σ 2
βσ−1

(
ln γFP

γFA
− ln σt

σ

))
−

(
µ

βσ−1

))
− µ

√
2σ

 (84)
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FIGURE 23. ROC of bistatic MIMO LiDAL.

FIGURE 24. Bistatic MIMO LiDAL probability of false detection with
detection threshold DB

th.

alarms are accepted to ensure that the probability of people
detection is high. This results in a detection threshold DBth
of (0.35P̂Br

RFOVMax

) as can be noted in Fig.24, with PBD = 0.7

from Fig. 23. To improve the performance of MIMO-LiDAL
system, we (i) implemented different detection thresholdsDBth
which are adjusted adaptively in the sub-optimum detector
for the both the monostatic and the bistatic LiDAL systems;
(ii) optimized the ZFE for the monostatic and the bistatic
LiDAL systems.

There is a finite probability that a target is present, but is
missed. This probability of miss-detecting a target located
at RFOVMax (see for example the target at P2 in Fig. 22a which
is located at the maximum range, RFOVMax ) of MIMO-LiDAL

(P
RFOVMax
MD(MIMO)

) can be derived as (87), as shown at the bot-
tom of the next page, where erf (·) is the error function
and Kn is the number of neighbor transceiver units (bistatic
LIDAL). The derivation of (87) can be understood by noting
that a target can only be missed if the monostatic LiDAL
receiver misses it (erasure error) which is the first term in
(87), jointly with the Kn bistatic LiDAL receivers missing
it, which is the second term made up of a product form.

Therefore
(
1− P

RFOVMax
MD(MIMO)

)
represents the probability of the

target detected by at least one transceiver unit (for example
(TX2-RX1) as in the case shown in Fig. 22).

Let TcM be the maximum number of targets that can be
counted successfully when the targets are located at different
distances from the LiDAL transceiver with minimum separa-
tion distance of1R. This number, TcM , for theMIMOLIDAL
system is given as:

TcM (MIMO) =
Tw(MIMO)

τ
NOF (88)

where NOF is the number of optical footprint zones and Tw
is the LiDAL channel time window which corresponds to
the difference in the round-trip times of a target placed at
RFOVMax and a target placed underneath the transceiver, ie at
the center of the LiDAL transceiver optical detection zone.
Thus Tw(MIMO) of the MIMO-LIDAL is determined as (89),
as shown at the bottom of the next page, where d0 is the
perpendicular distance between of the ith transceiver unit
coordinates LTRx(i) and the center of the transceiver illumi-
nation Lo(i) (see Fig. 24a).

C. TARGET LOCALIZATION
To localize a target, the time of arrival of the reflected pulse
and its direction are required. However, in theMIMO-LiDAL
system considered, the direction of the reflected pulse from
the target cannot be determined due to the wide-FOV of the
receiver. An angle diversity receiver can be used which can
help determine a coarse direction of arrival based on the
receiver face that detects the signal. The angular resolution is
however typically coarse as the number of faces in the angle
diversity receiver are typically limited and small. An even
coarser localization can be achieved with a single wide FOV
LiDAL receiver which can provide an estimated range, thus
placing the target (human) on a circle on the floor in an indoor
environment.

For accurate target localization, collaboration of neigh-
boring MIMO-LiDAL transceiver units can be utilized with
a time of arrival (TOA) approach to localize the target.
To determine the exact target location, ranges to at least
three transmitters (anchors) must be obtained. In Fig. 22a
R1(j), R2(j) and R3(j) are the ranges of target j to the three
transceivers. The location of the target is calculated as the
intersection of the three (circles) ranges. Any target in the
indoor environment will lie in the coverage area of at least one
monostatic receiver (LiDAL system), see Fig. 19. Therefore,
this localization technique relies on the success of target
detection by at least K ≥ 2 neighboring bistatic LiDAL
sub-systems. The monostatic MIMO-LiDAL range can be
written as:

R1(j) =
t jtrip(Tx1,Rx1)c

2
. (90)

As discussed, to detect a target, three ranges are needed
to three anchors. Equation (90) provides one of these three
ranges, using a monostatic receiver which is always present.
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The bistatic MIMO-LiDAL range is given as:

Rk (j) =
(
t jtrip(Txk ,Rx1)

)
c− R1 (j) ∀k ∈ K , k 6= 1 (91)

where R1 (j) is the range in meters of the jth target from the
monostatic LiDAL subsystem (subsystem number 1), Rk (j)
are the ranges in meters of the jth target from LiDAL bistatic
subsystem k , t jtrip(Tx1,Rx1) and t jtrip (Txk ,Rx1) are the trip
times between the identified transmitter and receiver units,
which are monostatic and bistatic respectively in this case.

Consider a target jwhose position isPj(xj, yj), and consider
the k th transmitter anchor located at

(
xt(k), yt(k)

)
, we have:(

xt(k) − xj
)2
+
(
yt(k) − yj

)2
= R2k (j) . (92)

A least squares approach [69], [70] can be used to solve (98)
to provide an approximate location of the jth target at the
intersection of K + 1 circles is given as:

xj
(
xt(k) − xt(1)

)
− yj

(
yt(k) − yt(1)

)
=

1
2

(
R21 (j)− R

2
k (j)+ x

2
t(k) + y

2
t(k) − x

2
t(1) − y

2
t(1)

)
. (93)

Equation (99) can be written in matrix form where A and B
are location matrices [71], [72]:

A =
(
xt(k) − xt(1) yt(k) − yt(1)
xt(K ) − xt(1) yt(K ) − yt(1)

)
(94)

B =
1
2

(
(R21(j)− R

2
k (j))+ (x2t(k) + y

2
t(k))− (x2t(1) + y

2
t(1))

(R21(j)− R
2
K (j))+ (x2t(K ) + y

2
t(K ))− (x2t(1) + y

2
t(1))

)
(95)

and X is:

X = [xj yj]T . (96)

The target position Pj gives the coordinates (xj, yj) and can be
determined as [72]:

X =
(
ATA

)−1
ATB. (97)

In MIMO LiDAL, target localization depends on collab-
oration of neighboring transceivers. Thus, to localize tar-
get 2, located at P2, in Fig 22.a, TX1, TX2 and TX3 work
separately with RX1 to localize target 2. This requires three
separate LiDAL scans. Hence, the probability of detection
of target 2 by TX1-RX1 (Monostatic LiDAL sub-system) is
independent of the probabilities of detection of the same
target by TX2-RX1 and TX3-RX1 (both are Bistatic LiDAL
sub-systems). Consequently, the probability of localizing a

FIGURE 25. the receiver block diagram of MIMO-LiDAL system.

target located at the maximum range, RFOVMax , P
RFOVMax
L(MIMO)

can be
written as:

P
RFOVMax
L(MIMO)

= PMD

K∏
k=1

PBD (k) (98) (98)

P
RFOVMax
L(MIMO)

=

(
1
2

)K+1
erfc

DMth − P̄MrRFOVMax

P̂Mr
RFOVMax

√
2

 K∏
k=1

×

erfc

DBth(k)− P̄BrRFOVMax

(k)

P̂Br
RFOVMax

(k)
√
2


 (99)

which is derived in a fashion similar to equation (87) and the
steps described there.

D. MIMO LiDAL SYSTEM OPERATING ALGORITHM
To distinguish human targets from other objects (obstacles)
and to localize human targets in MIMO-LiDAL, pulses are
transmitted from the transmitters in a sequence through M
frames (single pulse per frame) which are managed by the
controller. The receiver collects the reflected signal from
the targets and ambient obstacles including walls, floor and
furniture during the receiver listening time T . Fig. 25 shows
the proposed receiver block diagram in each transceiver unit
of the MIMO LiDAL system.

In Fig 25, the controller instructs transmitter (anchor) k to
emit a pulse while the other anchors are silent. This action
as well as the received reflected pulse (from the target) form
the input to the receiver in Fig. 25. The received signal is
fed in Fig. 25 firstly to a ‘‘distinguishing method’’ block, this

P
RFOVMax
MD(MIMO)

=

(
1
2

)Kn+11+ erf

DMth − P̄MrRFOVMax

P̂Mr
RFOVMax

√
2

 Kn∏
k=1

1+ erf

DBth(k)− P̄BrRFOVMax

P̂Br
RFOVMax

√
2



 (87)

Tw(MIMO) =

(((√(
3RFOVMax

)2
+ (do − h)2

)
+

(
RFOVMax
sin(9c)

))
− 2 (do − h)

)
c

(89)
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having been discussed in Section IV, where humans are dis-
tinguished from obstacles using for example human motion.
The output of the distinguishingmethod block forms the input
to the optimum detector block of Section III. The optimum
detector output identifies the time slots that contain targets.
This information is used to determine the TOA. Furthermore,
the slots that contain targets are counted to determine the
number of human targets in the environment. Given that a
number of LiDAL subsystems collaborate (three or more
anchors), the target location is estimated. Finally, duplicate
targets are eliminated. These are targets that lie in the overlap
areas of the optical zones covered by the LiDAL receivers.

The controller conducts the detection, counting and local-
ization process as follows:

1) The first pulse of the control signal c(t) activates the
transceiver monostatic LiDAL sub-system to i) send
an optical pulse x(τ ) from the transmitter Tx(k), and
(ii) initiate the receiver Rx (k) to listen to the reflected
signal.

2) The receiver Rx (k) collects the reflected optical sig-
nal in an observation widow of duration T . A distin-
guishing method (in this work we considered BSM
and CCM methods) in conjunction with the designed
sub-optimum LiDAL receiver are then used to detect
the targets’ presence and their ranges and update the
counter Vc (i) as can be seen in Fig. 25.

3) For target localization, the controller identifies the K
neighboring bistatic LiDAL sub-systems. In this work
we considered K = 2. The second and third control
pulses activate the neighboring transmitters Tx(k + 1),
and Tx(k + 2) with the receiver Rx (k). Each control
pulse generates a LiDAL pulse from one of the LiDAL
bistatic sub-systems and results in reflections being
observed during a time duration T . The second pulse
is generated at the end of the observation time T . The
three trip times (one monostatic and two neighboring
bistatic LiDAL sub-systems) are then used to determine
the targets’ locations using TOA.

4) Target elimination follows where the targets located
in the overlap zones are counted only once. Due to
position errors, duplicated targets are eliminated if the
Euclidean distance between any two such target loca-
tions is less than 1R. The counter Vc (i) is updated
accordingly.

5) For the remaining I -1 optical zones, steps (1) to (4) are
repeated. The I optical zones in the room are shown
in Fig. 19.

6) The number of targets, NE , is calculated as NE =∑I
i=1 Vc (i).

In terms of complexity, the number of scans (time frames
of duration T ) needed to cover all the optical zones in the
room is key. For the MIMO-LiDAL system, the number of
frames, M , required to complete one monitoring cycle (i.e.
detection, counting and localization of a full room that has
I optical zones) is determined as M = I (k + 1). There-
fore, the VLC MAC overhead, OHML , required to use the

same VLC system for communication and MIMO-LiDAL
localization is:

OHML =
TM

TMACVLC
(100)

where TMACVLC is the VLC MAC frame duration. For
instance, if the MIMO-LiDAL system is used for pedes-
trian (more demanding than nomadic) target monitoring, then
target location evaluation every 100 ms is sufficient given
a maximum pedestrian speed of 3 m/s, where the 100 ms
results in motion by 1R = 30 cm, which is the mini-
mum distance of interest in this work. Therefore, a com-
bined MIMO-LiDAL – VLC frame duration of 100 ms can
be considered. Considering one optical zone in Fig. 19,
its dimensions and considering the more demanding (dis-
tributed transmitters and receivers) bistatic LiDAL subsys-
tem observation window duration, equation (90) gives this
duration, T , for our system parameters as 44 ns. If there
are I = 8 optical zones as in Fig. 19, then the number of
frames needed is M=24 frames leading to an observation
time of 1.1µs. The other key, non-real time blocks in Fig. 25
are the location estimation which solves the matrix oper-
ations in (97) and the duplicate target elimination block
which carries out a simple Euclidian distance comparison
as in step 4 of the algorithm above. These non-real time
operations can be carried out in the remaining part of the
100 ms frame duration and may last for few milliseconds
depending on the processor used. The key point is that visible
light communication can resume after the 1.1µs. The com-
munications interruption overhead needed is thus negligible,
however a localization result may require 10 snapshots, which
are collected in 10 frames and thus a localization result
may take one second, which is acceptable for pedestrian
movement.

VI. MULTIPLE-INPUT SINGLE-OUTPUT
IMAGING-LiDAL (MISO-IMG-LiDAL)
In LiDAL, the elimination of target ambiguity is important
to detect, count and localize targets correctly. Traditional
bistiatic RF radar eliminates target ambiguity by using the
estimated target range (round trip time) with the angle of
arrival of the received signal reflected from the target, where
the angle of arrival is estimated using beam steering based
on mechanical rotated RF receivers or phased antenna arrays.
In our optical imaging radar, the receiver consists of a pho-
todiode array with an imaging lens that forms an image
of the observed region on the receiver detectors. To deter-
mine the direction of the received reflected signal from the
target, the imaging receiver pixels that observe the target
are used together with their FOV. Hence, in this work we
introduce an imaging LiDAL system that employs an imag-
ing detection receiver with multiple VLC transmitters (light
sources/engines). We refer to this system as multiple-input
(multiple LiDAL transmitters) single-output (single LiDAL
receiver) imaging LiDAL. The MISO-IMG-LIDAL system
can provide; (i) target ambiguity elimination where the
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targets are separated in the optical imaging domain;
(ii) target localization where the imaging receiver forms an
image of the floor and hence each imaging receiver pixel
observes a small and finite region on the floor. Most impor-
tantly, localization is achieved in this case using one time
frame (no need for three anchors); (iii) interference mini-
mization, (the interference results from reflections from the
background obstacles) which can lead to improvement in
the performance of the distinguishing methods such as the
BSM method; (iv) LiDAL channel bandwidth enhancement
due to the narrow FOV of the pixels which reduces the
complexity of the optimum receiver without implementing
an equalizer to tackle the channel dispersion; (v) simpli-
fied system design where the localization accuracy / reso-
lution is no longer a function of the pulse width. Instead
the localization accuracy can be increased by increasing
the number of receiver pixels (and hence also reducing the
per pixel FOV). The pulse used for localization can thus
have a larger duration compared to the pulse duration used
in the LiDAL systems of Section V. This leads to sim-
plified pulsed transmitter design, which is welcome given
that commercial high resolution imaging receivers are avail-
able with several million pixels (here we use hundreds of
pixels); (vi) overhead reduction, where the imaging LiDAL
overheads are reduced compared to MIMO LiDAL due to
the lower number of radar scans required to detect and
localize targets.

A. MISO- IMG - LiDAL SYSTEM CONFIGURATIONS
The MISO-IMG-LiDAL system consists of eight LiDAL
transmitter units and one imaging receiver installed in the
center of room’s ceiling (2m, 4m, 3m) as shown in Fig. 26.
The imaging receiver includes a number of pixels, where each
pixel is a photodiode (PD) optical receiver. The advantage of
the massive number of pixels is in providing spatial selection
to separate the targets in the optical domain (i.e. more narrow
optical footprints). This results in reduced targets ambiguity
and increased resolution in the spatial domain. The imaging
receiver lens forms an image of the floor on the receiver pixels
thus dividing the floor into an optical grid as can be noted
in Fig. 26, where each sub-receiver has a narrow FOV and
covers a given optical footprint.

The configuration of the imaging receiver is defined by (a)
the entrance area of imaging receiver lens where A = 9π

4 cm2

[31], [73]; (b) the semi-acceptance angle of the imaging lens
with semi-angle FOV of9c = 72◦ in our system to enable the
imaging receiver to cover the entire floor along room length
of 8m; and (c) the lens exit area as defined in [74]:

A′ =
Asin2(9c)

N 2 (101)

whereN is the lens refractive index. The lens semi-angle FOV
can be defined as (see Fig. 24a):

9c = tan−1
(
D
2f

)
(102)

FIGURE 26. MISO–IMG-LiDAL system.

where, f is the lens focal length and D is the PD array
length as can be seen in Fig. 27a.

The imaging receiver maximum range RFOVMax is related to
the target as:

RFOVMax = tan(9c)(do − h) . (103)

We define the imaging lens zooming ratio Rzoom as:

Rzoom =
2RFOVMax

D
. (104)

To separate two targets at a distance of 1s from each other,
as can be seen in Fig. 27b, the minimum pixels’ distance 1d
is given as:

1d =
1s
Rzoom

. (105)

The imaging lens transmission factor Tf is defined as [74]:

Tf(img) (δ) = −0.198δ
2
+ 0.0425δ + 0.8778 (106)

where δ is the angle of incidence measured in radians.
We selected an imaging receiver total photodetection area

of 2 cm2 (2 cm length × 1 cm width) which approximately
fits into the exit area of the lens [31], [74], [75]. The photode-
tector area is divided into an array of (8 columns × 16 rows)
pixels to satisfy the design parameter 1s which is chosen as
0.5 m. We assumed there is no gap between the pixels. It is
worth mentioning that, we change the LiDAL resolution from
1R of 0.3 m to 1s of 0.5 m to obtain an integer number of
pixels. Each pixel has a square area of 1.56 mm2 (1.25 mm×
1.25mm) and this corresponds to the area of a PD. The pixel’s
optical detection area can be determined by calculating the
viewing angles (azimuth and elevation) corresponding to the
receiver location as can be seen in Fig. 27c. The azimuth (Az)
and elevation (EL) angles of the imaging receiver pixels can
be written as [31], [47]:

ELj = tan−1


√
d2xj + d

2
yj

do − h

 (107)

AZj = tan−1
(

dyj
do − h

)
(108)
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FIGURE 27. LiDAL imaging receiver design, (a) lens FOV with RFOV
Max ,

(b) targets optical resolution and (c) pixel’s angles and range.

where dx and dy are the horizontal separation distances along
the x and y axes as can be seen in Fig. 27c and j is the pixels
number.

According to the design parameters of the imaging
receiver, each pixel is treated as a PD that covers a typical
square optical footprint area of 0.25 m2 (pixel’s range PR =
0.5 m i.e. pixel’s FOV = 11◦) on the floor. The optical
grid which covers the total detection floor is divided into
128 optical footprints (8×16). We assumed that the imaging
lens has no reception distortion with ideally square optical
FOV for all pixels. The proposed MISO-IMG-LiDAL can

FIGURE 28. Bistatic MISO-IMG-LiDAL system.

be used for detection, counting, and localization of multiple
targets within the optical grid.

In MISO-IMG-LiDAL, the transmitter unit and the imag-
ing (pixel) receiver are separated and therefore work as
bistatic LiDAL. We have calculated the maximum chan-
nel bandwidth for MISO IMG-LiDAL using the approach
described in Section II-B for the bistatic LiDAL. The max-
imum channel bandwidth for a single pixel receiver is
Bwch(img) = 480MHz. We also employed the TIA in [43]
for each pixel receiver with input noise current σthermal(img)
of 2.6 pA/

√
Hz.

In a Bistatic imaging MISO LiDAL system, ie Tx1 work-
ing with the imaging Rx , the mean received reflected signal

(P̄
Bimg
r
RFOVMax

) from a target located at the edge of the optical

footprint (grid), as can be seen in Fig. 28, can be derived as:

P̄
Bimg
r
RFOVMax
=

Cimgµρ
(
do−h

)n+3
4π2

((
2
√
2PR

)2
+
(
do−h

)2) n+32 (RFOV2

Max +
(
do−h

)2)2
(109)

where: Cimg = (n+ 1)(nele + 1)PtdAAGc (9c).
and the standard deviation of the received signal P̂

B(img)
r
RFOVMax

is

given as:

P̂
B(img)
r
RFOVMax
=

Cimgσρ
(
do−h

)n+3
4π2

((
2
√
2 PR

)2
+
(
do−h

)2) n+32 (RFOV2

Max +
(
do−h

)2)2
(110)

Fig. 29, presents the ROC depicting the trade-off between
P
B(img)
D and P

B(img)
FD of the bistatic MISO-IMG-LiDAL system

for a target located at a range ofRFOVMax . The impact of selecting

the detection threshold D
B(img)
th on the target false detection

can be seen in Fig. 30. In this work, we consider MISO-
IMG-LiDAL for people counting and localization applica-
tions. Thus, we selected the detection threshold D

B(img)
th to

maximize the value of P
B(img)
D . We accept P

B(img)
FD = 0.1, thus
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FIGURE 29. ROC of Bistatic MISO -IMG-LiDAL system.

FIGURE 30. Bistatic MISO-IMG-LiDAL false detection with detection
threshold D

Bimg
th .

giving P
B(img)
D = 0.9 and giving a detection threshold

D
B(img)
th = 0.39 P̄

Bimg
r
RFOVMax

in this case.

The maximum number of targets CM that can be counted
in MISO-IMG-LiDAL system is:

CM (MISOimg) =
Tw(img)
τ

OGS (111)

whereOGS is the optical grid size (128 optical footprints) and
Tw(img) is the channel time window of the imaging receiver’s
pixel (j) which corresponds to the difference in trip times of a
target placed at the edge of a pixel’s optical footprint PR (see
target location in Fig. 28) and a target placed underneath the
imaging receiver. Thus Tw(img) is given as:

Tw(img) =

(√
P2R + (do − h)

2
)
− (do − h)

c
(112)

B. TARGET LOCALIZATION
Target localization in MISO-IMG-LiDAL relies on the cal-
culation of the direction of arrival (DOA) of the reflected

FIGURE 31. Target localization in MISO imaging-LiDAL.

signal arriving at the pixel’s center. The elevation and azimuth
angles of the pixels are determined based on the design speci-
fications of the imaging receiver with respect to the receiver’s
coordinates. However, the values of these angles are recalcu-
lated whenever the location of the receiver is changed (note
that the receiver in our system is fixed in one location for a
given room). The target position can be found by calculating
the distance between the imaging receiver location (xr , yr , zr )
and the center of the target’s pixel as shown in Fig. 31.
The (range) distance Rj between the ground reference point
and the pixel’s center is given as:

Rj =

√(
do − h
cos (ELj)

)2

− (do − h)2 (113)

and the pixel (xj, yj) coordinates are defined by:

xj = Rj cos
(
Azj
)

(114)

yj = Rj sin
(
Azj
)
. (115)

The coordinates of target k , Pk (x, y), are calculated with
respect to the receiver ground reference center point
Lo(xo, yo) (see Fig. 31):

Pk (x, y) =
(
xo + xj

)
,
(
yo + yj

)
(116)

C. TARGETS DETECTION IN MISO-IMG-LiDAL
The MISO-IMG-LiDAL system (which has many small opti-
cal detection footprints) has the ability to detect targets under
different mobility schemes by tracking andmarking the target
in the imaging optical detection grid, see Fig. 32. In MISO-
IMG-LiDAL, detection is accomplished using snapshot mea-
surements, considering the change in the received reflected
signals observed by the pixels due to target motion. When the
target moves a distance more than the spatial distance of the
imaging receiver1s, the target is distinguished bymonitoring
the change that occurs in the pixels in at least two Imaging
LIDAL scans (snapshots). We identify the change between
pixel snapshot measurements using a pixels cross-correlation
method (PCCM) and a pixels subtractions method (PSM).
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PCCM is similar to the slow cross-correlation we discussed
in Section IV, however in Imaging LiDALwe employ the cor-
relation between the pixel snapshots instead of the time slots
snapshots. Thus, the cross-correlation

(
Rprk ,prk+1

)
between

the k th received pixels snapshot and S consecutive received
pixel snapshots is given as:

Rprk ,prk+1

(
τp|NP

)
,
∫ NP

−NP
prk+1

(
xn−τp

) S∑
k=1

prk (xn)dxn (117)

and

prk (xn) =
IP∑
i=1

JP∑
j=1

∫ T

0
p(i,j)rk (t)+ n (t) dt (118)

where, NP is the total number of pixel receivers (NP = IP ×
JP), i is number of pixels in row i, i ∈ [1, ..IP], j is number
of pixels in column j, j ∈ [1, ..JP], xn is the pixel number,
xn ∈ [1, ..NP] and prk (t) is the received reflected signal power
in each pixel receiver. The pixel displacement factor (X̂n) can
be defined as:

X̂ sn=argmax
τp

(
Rprk ,prk+1

(τp|NP)
)

X̂ sn∈ [1, .NP − 1] (119)

When X̂ sn is zero, this indicates no change between the
received reflected pulses in the x thn pixel.When X̂ sn 6= 0, target
motion is observed from the x thn pixel with a displacement
number of X̂ sn pixels. Similar to the CCM with time slots
receiver, we define a weight wSxn for each pixel receiver to
be employed with the pixel sub-optimum receiver. Thus wSxn
is defined as:

wSxn =

{
0 if X̂ sn = 0
1 otherwise.

(120)

For PSM, the subtraction of the k th received pixel snapshot
from S consecutive received pixel snapshots can bewritten as:

pxnrS(k,k+1) = p
rk+1

(xn)−
S∑

k=1

prk (xn). (121)

The computed value pxnrS(k,k+1) is used in the sub-optimum
receiver to decide the presence or absence of the target.

Fig. 32 shows an example of pedestrian targets where
the targets move on the detection floor of the MISO-IMG-
LiDAL system with different mobility schemes. Targets 1,
2 and 3 are nomadic, pedestrian and ‘power walking’ (ie fast)
targets respectively. As can be seen in Fig. 32, the motion
of target 1 is distinguished through snapshots measurements
of k = 1 and k = 2 where target 1 has moved from pixel
(1,1) to pixel (1, 3). While observing snapshots k = 2 and
k = 3, target 2 is detected and marked in pixel (1, 1) and
no change occurs in pixel (1,3), the nomadic target. Thus
the total number of marked pixels is two (counter value)
indicating the presence of two targets and their locations.
In snapshot k = 4, target 2 moves to the location of target 1
(at the same narrow optical zone). In this case, a counting
error occurs as the distance between targets becomes less than

FIGURE 32. A top view of three targets movement on the detection floor
of MISO-IMG-LiDAL radar system during S snapshots measurements.

the radar resolution, as pixel (1, 3) now contains both targets.
In snapshot k = 4, target 3 enters the environment at (3, 7).
In the next snapshots, comparing snapshot k = 4 and k = 5,
the counter value is updated where the detection error that
occurred at k = 4 is now resolved due to the movement of
target 2 away from target 1. Note that the nomadic target 1 has
not moved at k = 4 and at k = 5, and is still at pixel (1, 3).
The pedestrian target 2 has moved from (1, 3) at k = 4 to
(1, 4) at k = 5. The power walking target 3 has moved from
(3, 7) at k = 4 to (3, 2) at k = 5. A similar pattern continues,
comparing k = 6 and k = 7.
The main challenges of target detection in MISO-IMG-

LiDAL are; (i) the transmitters have limited optical footprints
and for coverage, these transmitter optical footprints overlap
on the floor. Therefore, for target localization, the transmitters
have to be turned on in turn to scan the entire room. A target
located in the region where the optical footprints overlap, see
Section V-B, can be counted more than a single time when it
is reported by the scans associatedwith each transmitter. Such
duplicate counting has to be removed; (ii) the receiver pixels
cover finite regions on the floor, see Fig. 26. A target may
be located at the intersection of up to four pixels, see target 2,
at k = 7 in Fig. 32. In this case, the issue is resolved by setting
up a low and a high threshold as was done in Section III-B,
where we dealt there with target overlap over multiple time
slots and here we deal with target overlap in multiple pixels.
A pixel reporting an output above the threshold contains a
target, a target is absent if the signal is below the threshold
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FIGURE 33. Imaging receiver design: (a) Eight GRPs of the imaging
receiver, (b) the proposed sub-optimum imaging receiver (SOIMR)
and (c) the receiver block diagram of MISO-IMG-LiDAL.

and the pixel with the highest output energy is selected when
multiple pixels have outputs between the thresholds.

Thus, in relation to challenge (i), and in order to elimi-
nate multiple counting of a single target due to Ltx active
transmitters, we activate each transmitter individually and
listen to reflections from the targets using the imaging
receiver. To simplify the process, we note that each transmit-
ter covers a finite optical footprint on the floor. Therefore,
the only pixels that can possibly report a reflection are a group
of pixels that cover the transmitter optical footprint on the
floor. As such we divided our imaging receiver 128 pixels
into 8 groups with 16 pixels per group. Here each group of
receiver pixels (GRP), as can be seen in Fig.33a, covers one
transmitter optical footprint, with 8 transmitters in our setup,
see Fig. 26.

In relation to challenge (ii), the solution was described at
top level above. Note that the signal at the output of each
pixel is processed using an orthonormal expansion shown
in Fig. 33 (b) which is an approach that follows our work in

Section III-B translated from a time domain approach in III-B
to a spatial approach at the pixel level in this section. Note
that, the sub-optimum imaging receiver in Fig. 33 (b) collects
signals from NP pixels. In terms of listening time, we consid-
ered one time slot (Ts = T ) for each pixel receiver. Fig.33 (b)
shows the sub-optimum imaging receiver (SOIMR) for the
MISO-IMG-LiDAL system. The SOIMR has NP orthonor-
mal functions φp (xn) with integrators and comparators. The
decision circuit decides as follows:

1. If the observed received signal zxn is below the lower
threshold, DthL , then the target is absent in pixel (i, j),
denoted here as pixel xn.

2. If the observed received signal zxn is above the higher
threshold, DthH , then the target is present in pixel (i, j),
denoted here also as pixel xn. Note that, both detection
thresholds DthL and DthH have been optimized for the
MISO-IMG LiDAL system in this section following an
approach similar to that discussed in Section III-B.

3. If the observed received signal zxn is above DthL and
below DthH , then it is a received reflected pulse from a
target located within the FOVs of multiple neighboring
pixels. Thus the decision circuit compares zxn with all
possible neighboring pixels and selects the pixel that
has the largest zxn as the pixel that contains the target.
We considered a worst case scenario of three neighbor
pixels as shown in Fig. 33 (b), where the decision
circuit compares z1 with its three neighboring pixels
z2, z3 and z4 and choses the largest.

D. MISO-IMG-LiDAL SYSTEM OPERATING ALGORITHM
Fig. 35 (c) shows the schematic receiver diagram of the
MISO –IMG-LiDAL system. The controller coordinates the
detection, counting and localization processes as detailed
below:
1) The controller activates transmitter Tx(n) which sends

an optical pulse, and also initializes the group receiver’s
pixels GRP(n) to collected the reflected signals.
We divided the imaging receiver pixels into n =
8GRPs(see Fig. 33 (a)).

2) The controller then updates the value of n, and if Ltx >
n step (1) is repeated, where Ltx is the number of active
transmitter units (Ltx = 8) of the MISO-IMG-LIDAL
system.

3) A distinguishing method (PSM or PCCM) is applied
with the SOIMR to process the received reflected sig-
nals from all pixel receivers to detect and count the
targets.

4) Finally, pixel identification is carried out to estimate the
target location.

For the MISO-IMG-LiDAL, the number of frames M
required to detect and localize targets is equal to 8. Therefore,
the overhead occupied in the VLC system MAC frame can
be calculated using (100) as discussed in Section V-D. Note
that, the MISO-IMG-LiDAL system requires 8 observation
frames to complete one monitoring cycle of the room, com-
pared to 24 observation frames for theMIMO-LiDAL system.
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The reduction in complexity is always a factor of 3 regardless
of the number of transmitters (optical footprints) used and
regardless of the number of receiver pixels. This factor relates
to the need for 3 anchors in the MIMO-LiDAL system.

Note that parallels can be drawn between our MISO-
IMG-LiDAL system and camera imaging sensors in the
sense that an image sensor mounted on the ceiling can also
localize a target. The main differences between our MISO-
IMG-LiDAL system and traditional image sensors are:
(i) simplicity, an imaging sensor based on commercial camera
components may typically have 16 million pixels to resolve
the minute image details. In our application, localization to
within a distance of about 30 cm is sufficient. Therefore the
number of pixels is reduced to about 128 pixels, a factor
of 125k reduction in complexity, (ii) with reduced number
of pixels, high speed photodetectors and wideband optical
receivers can be used leading to a localization system that
can detect fast moving targets, which become increasingly
important in applications such as robotics, (iii) If our space-
based MISO-IMG-LiDAL system is combined with our time
domain approach of Section V, then the pixels determine
the target location in two dimensions (ie on the floor) while
the time delay between the transmitted pulse and the pulse
received by the pixel determines the distance of the tar-
get. Thus this combined system can localize the target in
three dimensions while image sensors localize targets in two
dimensions.

VII. SIMULATION SETUP, RESULTS AND DISCUSSION
In this section, we describe the simulation settings, describe
three scenarios and a case study which are used in this
paper to evaluate the proposed LiDAL systems in terms of
target detection and localization. The LiDAL systems are
evaluated through computer simulation using MATLAB R©.
We believe these three scenarios and case study represent
the key extremes as well as a typical setting, hence provid-
ing good coverage of a range of potential operating con-
ditions. The three scenarios and case study are as follows:
(i) the first scenario establishes the baseline, ie the best
performance expected in our LiDAL systems. It evaluates
the performance of our LiDAL systems in an ideal environ-
ment where obstacles (furniture) are absent hence reducing
interference from the environment, and reducing the likeli-
hood of confusing a target (human) with furniture (obsta-
cles). It also considers continuous motion, where pedestrians
move continuously hence helping the target distinguishing
methods; (ii) the second scenario represents a challenging
localization setting, which is a realistic but also favorable
localization environment. It introduces the first major impair-
ment to localization in LiDAL, ie the presence of obstacles.
Therefore, this scenario considers a realistic room with fur-
niture, partitions, bookshelves, doors and windows, unlike
the empty room of scenario (i). Scenario (ii) however con-
tinues to consider continuous pedestrian motion to support
the target distinguishing methods, thus allowing the impact
of obstacles to be studied in isolation, and in this sense

it is a favorable environment; (iii) the third scenario rep-
resents a harsh localization environment. It adds nomadic
motion to the second scenario and therefore considers the
two main impairments in LiDAL localization jointly; namely
the presence of obstacles and lack of motion (sometimes)
which makes target distinguishing harder. In all three sce-
narios we evaluate the results while using BSM and CCM
for target distinguishing where mobility is the input to these
methods. We also evaluate results in the three scenarios for
the two systems of interest: MIMO-LiDAL and MISO-IMG-
LiDAL; (iv) Finally we consider a case study where a realistic
office environment is considered with pedestrian arrivals,
departures, nomadic behavior, pathway mobility and a finite
evaluation window of one hour when the office is evaluated.
In this case we use the better target distinguishing method,
namely CCM and evaluate both systems: MIMO-LiDAL and
MISO-IMG-LiDAL.

A. SYSTEMS SETUP
In this section we introduce the systems setup and the param-
eters used. The LiDAL systems were evaluated in two types
of environments. Room A is an environment of the same size
as the room in Fig. 1(a) but is an empty room (i.e. free from
furniture). Room B is a realistic environment, a furnished
office, as shown in Fig. 1(a). Table 9 illustrates the simulation
parameters used in LiDAL systems.

To evaluate the counting and localization performance of
the different LiDAL systems two key metrics are defined:
(i) The mean absolute percentage error (MAPE) which is
used to quantify the counting accuracy, and (ii) the distance
root means square error (DRMSE) which is used to quantify
the localization accuracy. The counting performance of the
LiDAL systems ismeasured in terms ofMAPEwhich is given
as [76], [77]:

MAPE =
1
J

∑J

j=1

∣∣∣∣A (j)− NE (j)A(j)

∣∣∣∣× 100% (122)

where J is the number of times the experiment is repeated
(iterations), A (j) and NE (j) are the targets’ actual and esti-
mated (by LiDAL systems) numbers, respectively. In order to
evaluate the localization performance of the LiDAL systems,
DRMSE is used to measure the location accuracy, where
DRMSE is given as [77], [78]:

DRMSE =
√
σ 2
x + σ

2
y . (123)

Here σx and σy are the error standard deviations associated
with the estimated (xe, ye) and the actual (xa, ya) coordinates
of the target, respectively.

The three scenarios and the case study were evaluated
using the simulation flow shown in Table 10. The simulation
starts by considering an indoor environment that has i targets
where the maximum number of targets is imax = K . It then
considers a number of iterations where each iteration contains
the same number of targets, however the targets are located
at different random locations in each iteration. The iterations
continue to jmax = Itr . For a given number of targets,
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TABLE 9. Simulation parameters.

TABLE 10. Simulation flow.

each iteration then generates random target locations, noise
and reflection coefficients for each target (cloth colour and
texture). The reflection coefficient associated with each target
remains fixed for the number of iterations considered. The
LiDAL system detection algorithm is then invoked resulting

in estimated number of targets, NE (j), and estimated target
locations, El(k, j). This is finally used at the end of the jmax
iterations to calculate MAPE and DRMSE. The simulation
then continues by considering more targets in the environ-
ment (with new reflection coefficients (clothing) for the tar-
gets) and full number of jmax iterations.
The human target dimensions in Fig. 1 (b) are 48 cm ×

15 cm. If a 50 cm spacing is considered between targets,
then the area needed per human target is 98 cm × 65 cm =
0.63 m2. This leads to a maximum number of targets in an
8 m×4 m room of 51 targets. This represents a very dense
reception type event. As discussed in Section IV-C, the Euro-
pean standards for the minimum workplace space required
per person is 3.7 m2 for an office environment and 2 m2 for
a meeting room [67]. Therefore, we considered a 2 m2 space
requirement per person, leading to a maximum of 16 targets
in an 8 m×4 m room. Therefore, different number of targets,
up to 15 targets, were considered in our simulations. We next
consider the three scenarios and case study.

B. SCENARIO 1: THE BASELINE
In this scenario we considered a room that has no obstacles,
ie the room is empty and no furniture is considered. We also
assumed perfect mobility conditions for the mobile targets
(i.e. pedestrian targets with a speed of 1m/s). These targets
were randomly and uniformly distributed on the detection
floor with minimum inter-target-distance of 0.5 m. We con-
sidered a normal random distribution for the target reflection
factor based on the proposed model in Fig. 6.

Fig. 34. depicts the counting error, MAPE, of the LiDAL
systems tested in scenario 1. As can be seen in Fig. 34 the
MAPE of the MIMO-LiDAL system with BSM for a single
target is about 0.5%which is comparable with the probability
of miss-detection of a single target in equation (99) with
PM(MIMO) = 0.016. This agreement is a useful verification
of our analytic results and simulations, where the single
target case can experience errors due to the randomness

FIGURE 34. MAPE of LiDAL systems with BSM and CCM in the empty
environment of scenario 1.
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associated with the target reflection coefficient and the noise
in the receiver and environment. The MIMO-LiDAL sys-
tem MAPE reaches 7% in the presence of 15 targets with
BSM. Fig. 34 shows an increase in MAPE with increase
in the number of targets. This increase in MAPE can be
attributed to a number of factors: (i) with increase in the
number of targets, the room clutter increases with more
objects (targets) acting as reflectors. Signals from LiDAL
are reflected by the desired target and by other targets as
well as secondary subsequent reflections from the walls. This
increases the probability of error in counting the targets;
(ii) with a larger number of targets, there is a higher potential
for targets to occur either at the optical footprint overlap
zones of MIMO LiDAL (see Fig. 19) or between up to
four pixels in the MISO-IMG-LiDAL (see Fig. 32). These
locations are the most challenging for the LiDAL localization
systems.

In addition, the MIMO LiDAL system performance when
the BSM is used for target distinguishing (ie using mobil-
ity to distinguish human targets from obstacles) is worse
than the performance when the CCM is used. This is
due to the increase in the inter-targets-interference (due
to increased reflections) in the presence of more targets.
Note that BSM and CCM perform comparably at lower
number of targets, with the performance gap increasing
with increase in the number of targets. As can be noted
in Fig.34, the MAPE range for the MIMO-LiDAL sys-
tem with CCM was from 0.3% to 5%. It is clear that the
CCM has better performance than BSM as the inter-targets-
interference does not affect the performance of CCM to the
same extent.

The best localization results are due to our MISO-IMG-
LiDAL configuration as can be seen in Fig. 34. The MAPE
associated with MISO-IMG-LiDAL with BSM for single tar-
get detection is about 0.8% which is comparable to P

B(img)
M =

0.1 (see Fig. 28 with P
B(img)
M = 1− P

B(img)
D ). The MAPE range

of MISO-IMG-LiDAL is from 0.8% to 3.5% with BSM,
and 0.6% to 3% with CCM as seen in Fig. 34. Compared
to the MIMO-LiDAL system, the MISO-IMG-LiDAL has
better performance due to the ability of the latter to use
the spatial dimension to resolve the ambiguity of targets
(i.e. separate the targets using multiple pixels that have dis-
tinct narrow optical footprints). Due to the spatial resolution
of targets, the MISO-IMG-LiDAL system has comparable
performance under the BSM and the CCM, with a slight
difference of 0.5% in MAPE where the CCM performs
better.

C. SCENARIO 2: CHALLENGING LOCALIZATION
ENVIRONMENT
This scenario represents a challenging environment where
obstacles (furniture and other objects) are present as seen
in Fig. 1 (a), where the obstacles can reflect the LiDAL
signals in a fashion similar to human targets. Continuous
pedestrian motion is however considered, and therefore the

FIGURE 35. MAPE of LiDAL systems with BSM and CCM in the realistic
environment of scenario 2.

environment is favorable from the point of view of being able
to distinguish human targets from stationary obstacles.

Fig. 35 presents the MAPE associated with the LiDAL
systems for targets in scenario 2. One can observe that the
MAPE increased significantly for MIMO-LiDAL with BSM
from its range of 0.5% to 7% in scenario 1 to a new range
of 6% to 35% in scenario 2. Similarly, under MISO-IMG-
LiDAL with BSM, the MAPE increased from its previous
range of 0.3% to 5% in scenario 1, to a new range of 5.5%
to 22%. This is due to the presence of obstacles (furniture)
in scenario 2 and due to the poor performance of BSM in
a furnished environment due to the interference from the
reflections attributed to background obstacles and furniture.
Furthermore, in the presence of furniture, the residual space
available for human motion is reduced, even when targets
move continuously. This leads to impaired performance of
BSM and CCM. In the MIMO-LiDAL system with the CCM,
the MAPE was 1% to 5% in scenario 1, and increased to
4% to 16% in scenario 2. The best system in both scenarios
is the MISO-IMG-LiDAL with CCM. This system saw its
MAPE increase from a ‘‘0.5% to 3.5%’’ in scenario 1 to ‘‘2%
to 12%’’ in scenario 2 due to the presence of obstacles and
their associated reflections and due to the reduced residual
space available for human motion. It is worth noting that the
other general trends are comparable in the two scenarios, with
the MAPE performance deteriorating with increase in the
number of targets, and improving with the use of the imaging
system and the CCM.

Fig. 36 shows the cumulative distribution function of the
DRMSE positioning error for the MIMO-LiDAL system.
Fig. 36 presents the CDF of targets successfully detected in
scenario 1 and scenario 2. As can be noted, the 95% CDF
confidence interval is at 0.45m and 0.5m positioning error for
scenarios 1 and 2 respectively, while the average DRMSE is
0.28m and 0.38m respectively. The results in Fig. 36 clearly
show that the DRMSE is larger in scenario 2 due to the
presence of obstacles and hence the potential for such
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FIGURE 36. CDF of DRMSE of the proposed MIMO LiDAL system.

FIGURE 37. CDF of DRMSE of the proposed IMG LiDAL system.

obstacles to be confused with human targets. The positioning
error in MIMO-LiDAL occurs due to wrong decisions in
the sub-optimum detector when it identifies the time slot
that contains the signal reflected from the target. One wrong
time slot leads to a 0.3m (1R = 0.3m) change in the error
associated with the range to the anchor.

The DRMSE CDF results associated with MISO-IMG-
LIDAL in scenarios 1 and 2 are shown in Fig. 37. It should
be observed that overall, the DRMSE values in MISO-
IMG-LIDAL are smaller than the corresponding values in
MIMO-LiDAL due to the enhanced resolution of the imag-
ing receiver which resolves the target locations spatially
into pixels, whereas the MIMO-LiDAL system relies on
three ranges that have to be determined accurately, with the
potential for wrong slot errors in the three ranges. In the
MISO-IMG-LiDAL system, at the 95% confidence interval,
Fig. 37, the DRMSE are 0.21m and 0.23m for scenarios 1
and 2 respectively, whereas the average values of DRMSE
are 0.16m and 0.19m for scenarios 1 and 2 respectively.

The sources of error in MISO-IMG-LiDAL are attributed to
noise, reflections, and targets random reflection coefficients.
These sources of error can translate in the worst case into
targets appearing at the intersection of up to four pixels,
or targets assumed to be located at the center of the coverage
area of each pixel on the floor when the target may be at the
edge of the pixel coverage area.

D. SCENARIO 3: HARSH LOCALIZATION ENVIRONMENT
In this scenario, the LiDAL systems experience both impair-
ments, namely the presence of obstacles (as in scenario 2) and
nomadic mobility. Therefore, unlike scenario 2, the users can
be stationary for periods of time and therefore the LiDAL
systems are not able to distinguish such stationary targets
from obstacles, i.e. furniture (in most cases, except when
tracked using imaging receivers). To quantify the extent of
nomadic behavior, we define a mobility factor (MF) given by

MF =
Tob −

∑LD
d=1 td

Tob
(124)

where td is the time spent by the nomadic target in location
d , which is a location of interest among the LD locations of
interest. Therefore, a MF=1 indicates a pedestrian target, ie
a target that is in continuous motion as in scenarios 1 and 2.
A MF that approaches zero, indicates a target that is fully
nomadic, ie a target that spends most of the time stationary
in a number of locations.

Fig. 38 shows the MAPE for a MIMO LiDAL system
where obstacles (furniture) are present as well as nomadic
target behavior. The MAPE decreases with increase in the
MF as it becomes easier for the target distinguishing methods
to distinguish targets from stationary obstacles. The results
in Fig. 38 used the CCM for target distinguishing.

For a given value of MF, ie for a given level of nomadic
behavior, the MAPE decreases with decrease in the number
of targets as was observed in scenario 2. It is worth observing
that a MPAE of 20% or less is only achieved in the MIMO

FIGURE 38. CDF of counting MAPE in the MIMO LiDAL system for
nomadic targets with different MF.

VOLUME 7, 2019 85681



A. A. Al-Hameed et al.: LiDAL

FIGURE 39. MISO-IMG LiDAL system MAPE CDF for nomadic targets with
different MF.

LiDAL system for mobility levels that correspond to MF
approaching one.

Fig. 39 shows the MAPE CDF for MISO IMG LiDAL
where nomadic behavior is now considered. The MAPE
decreases with increase in mobility, ie increase in the MF and
also decreases with decrease in the number of targets that can
cause clutter. The most important observation however is that
the MAPE in the MISO IMG LiDAL system is much lower
than that of the MIMO-LiDAL system. This is attributed
mainly to the improved ability of the imaging receiver to
resolve targets in space and subsequently track these targets
as the targets move from pixel to pixel. This also means that
a stationary target that was mobile at a previous point in time,
continues to bemarked as a target in a new pixel. This reduces
theMAPE by correctly identifying targets from obstacles. For
example, for MAPE of 20% or less a MF of 0.5 or higher is
sufficient.

E. CASE STUDY
In this case study, we extend the cases we considered in the
three scenarios. We build on scenario 3, namely, the case
study considers obstacles and nomadic behavior. The case
study however extends scenario 3 in a number of ways.
In particular, we consider (i) arrival and departure processes
for human targets into and out of the office environment
(not considered in scenario 3); (ii) obstacles (furniture as
in scenario 3); (iii) challenging nomadic mobility behavior,
(nomadic pathwaymobility (not considered in scenario 3) and
random walk with nomadic behavior (this was considered
in scenario 3)); (iv) one hour evaluation period (new in the
case study); (v) both MIMO-LiDAL andMISO-IMG-LiDAL
systemswith the better CCM formobile target distinguishing.

The parameters used in the case study are shown
in Table 11. The arrival and departure rates into and out of
the office environment are 12 arrivals per hour and 14 depar-
tures per hour following a Poisson distribution as outlined in
Section IV-C. This leads to an average of 30 minutes spent in

TABLE 11. Mobility simulation parameters.

the environment, with an average of 6 targets present in the
environment as shown in Section IV-C and in Table 11.

The case study considers both pedestrian targets whomove
at 1m/s and nomadic targets who move at 0.5 m/s–2 m/s
when moving between locations of interest as shown
in Table 11 and in Section IV-C.We considered 9 locations of
interest in the room where the nomadic user spends random
and uniformly distributed times.

The simulation time was Tob equal to one hour. The LiDAL
frame duration is 1ms as discussed in Section V-D, where
at the start of the frame the LiDAL system, carries out its
transmissions and measurements as discussed to determine
the targets locations. LiDAL localization measurements are
not carried out in each LiDAL frame, instead in this case
study a LiDAL set of measurements is carried out every
200 frames, ie every 200ms, leading to 5 snapshot location
measurements per second as shown in Table 11. This leads
to a total of 18000 snapshot measurements in the one hour
duration of the case study.

The nomadic targets have 9 locations of interest in the
room and spend 30 minutes on average in this office envi-
ronment. The localization measurements are aggregated for
the duration of a buffering window (see Table 11) and are
processed in batch mode. This batch processing mode allows
the localization process to consider a time span long enough
for the nomadic user to start moving again. With 30 minutes
on average in the office environment, 9 locations of interest,
equally popular with random stay duration per location, and
with 5 snapshot measurements per second, we considered
a buffering window of duration equal to 1000 frames to
capture the nomadic motion after stationary periods as shown
in Table 11.

Fig. 40 presents the CDF of the MAPE associated with
counting targets for the proposed LiDAL systems when the
targets are either pedestrians or nomadic targets. Both types
of targets move in Fig. 40 following a pathway model as
described in Section IV-C-iii. Three key observations can
be made on the results in Fig. 40. Firstly, nomadic target
behavior leads to higher MAPE when counting the number
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FIGURE 40. CDF of counting MAPE of the targets, when the targets move
along fixed pathways.

of targets regardless of the type of LiDAL system used.
Secondly, the IMG-LIDAL system performs better than the
MIMO-LiDAL system due to its improved spatial resolution.
Finally, the difference in counting MAPE between cases
when the targets are pedestrian and when they are mobile
is smaller when the IMG-LiDAL system is considered com-
pared to the MIMO-LiDAL system. This is due to the ability
of the tracking algorithms to identify targets in pixels and
track these targets, labeling them as targets even when they
become stationary during their nomadic motion.

In Fig. 40, the counting error of targets with nomadic
behavior is more than the counting errors associated with
pedestrian targets with an average (at CDF=0.5) MAPE
of 28% and 15% for MIMO-LiDAL and MISO-IMG-LiDAL
systems respectively under nomadic mobility. The aver-
age MAPE of pedestrian targets in MISO-IMG-LiDAL is
10% while for MIMO-LiDAL is 15%. For the 0.9 CDF
interval, the MAPE of pedestrian targets is 14% and 11%
for MIMO-LiDAL and MISO-IMG-LiDAL systems respec-
tively. For nomadic targets, the MAPE is 33% and 18%
for MIMO-LiDAL and MISO-IMG-LiDAL for the 0.9 CDF
interval.

The same three observations wemade in relation to Fig. 40,
apply in Fig. 41 where the pedestrian targets and nomadic tar-
gets now follow a random walk pattern (see Section V-C-ii)
instead of the pathway motion pattern used in Fig. 40.

As can be seen in Fig. 41, the MAPE associated with
the number of targets with nomadic behavior detected by
the MIMO-LiDAL system increased significantly in Fig. 41
(random walk) with average error of 38%, compared to
28% in Fig. 40 (pathway mobility pattern). The increase in
MAPE under random walk compared to pathway mobility
is attributed to the nature of the random walk, where the
random walk can result in (almost locked) mobility in a small
geographic region, whereas the pathway mobility results in
targets covering larger spans in the room and hence the detec-
tion of such ‘‘very’’ mobile targets improves.

FIGURE 41. CDF of counting MAPE of the targets, when the targets move
following a random walk model.

For the MISO-IMG-LiDAL system with nomadic targets,
the average MAPE in counting targets is 15% and 16% for
pathway mobility and random walk mobility respectively.
It should be noted that the increase in MAPE in the MISO-
IMG-LiDAL system when mobility becomes a random walk
rather than pathway based, is smaller compared to the cor-
responding increase in MAPE when the mobility pattern
changes in theMIMO-LiDAL system. This is attributed to the
ability of the imaging system to detect small movements on
the detection floor, where each pixel corresponds to 0.5 m ×
0.5 m whereas the MIMO-LiDAL coverage is within a circle
of radius 1.25 m.

VIII. DISCUSSION AND CONCLUSIONS
This paper presented the first study, to the best of our
knowledge, of light used in a ‘radar’ fashion for people
localization in indoor environments where visible light com-
munication (VLC) and optical wireless communication may
be present and in use. Our LiDAL systems can be used to
count and localize people in indoor environments, and as such
the LiDAL systems introduced can find application in a wide
range of areas from security and safety to crowd management
and marketing.

We introduced models for the indoor environment and for
the human body, the materials used indoor and their reflection
coefficients as well as the reflection coefficients of different
forms of clothing taking into account colors and textures of
clothing.

We introduced for the first time monostatic and bistatic
optical indoor ‘radar’ configurations. Our resulting LiDAL
systems provide coverage of the indoor environment through
the use of multiple transmitters. The transmitters have broad
beams for illumination, however we use relatively narrow
FOV receivers to define optical target detection zones on
the floor. This is very compatible with VLC systems where
multiple light engines are used to illuminate the indoor
environment. These light VLC sources can also act as our
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LiDAL transmitters. Humans located in the optical zones
reflect the incident optical pulses, thus allowing optical
receivers collocated with the transmitters in bistatic or mono-
static configurations to detect the reflected pulses. Each
optical zone is defined by the receiver FOV. We therefore
developed models for the LiDAL systems range, namely the
horizontal distance covered by each receiver/optical zone.
We modeled the optical channel and estimated the receiver
bandwidth needed and developed models for the spatial reso-
lution that can be achievedwith a given optical pulse duration.
Based on indoor human occupancy, we concluded that the
minimum human to human separation is typically more than
30cm even in meeting rooms and thus determined the LiDAL
pulse duration needed as 2ns.

We identified the forms of target ambiguity that can occur
in our LiDAL systems given that the target (human) has
to be on the detection floor of the room and hence deter-
mined the number of anchors (light sources / light engines)
needed concluding that three such anchors are needed for
three dimensional localization.

We developed models for the sources of randomness in
our LiDAL environment considering randomness due to the
random nature of the reflection factor of humans (random
colour and texture of clothing), the variable cross section of
the target (human) which depends on human orientation with
respect to the light source; and finally randomness due to
receiver noise and background noise.

We derived optimum Bayes receiver structures based on
the signal and noise models, considering and interpreting
the priors associated with target presence and absence and
the costs associated with correct decisions and the costs
associated with wrong decisions together with the forms of
decision errors. To simplify the receiver design, we derived
a sub-optimum receiver structure that uses two thresholds
for detection thus eliminating the need for exhaustive search
and quantified the complexity reduction and the sacrifice in
performance.

To distinguish reflections due to furniture from reflections
attributed to the human targets, we used human mobility
as the discriminator. We introduced two methods that use
human motion to distinguish human targets from furniture;
namely the background subtraction method (BSM) and the
cross correlationmethod (CCM).We integrated bothmethods
in the receiver designs developed.

To enable the evaluation of our LiDAL systems in a
realistic environment, we furthermore developed models for
human motion in the indoor environment of interest. In par-
ticular, we developed a directed random walk with obstacle
avoidance mobility model and a pathway mobility model.
Both models are based on Markov chains.

We introduced two LiDAL system configurations for tar-
get localization, a MIMO LiDAL system which has multi-
ple transmitters (can be the same transmitters as the VLC
transmitters, with MAC which we outlined) and multi-
ple collocated receivers, with each receiver having a sin-
gle photodiode. An improved alternative system design,

MISO-IMG-LiDAL, was introduced making use of the
spatial resolution afforded by the multiple pixels of an
imaging receiver.

We studied the performance of our systems in three scenar-
ios and in a case study which progressively test our LiDAL
systems. The first scenario is a baseline system that pro-
duces the best performance possible. This scenario has an
empty room with no obstacles (furniture) which reduces the
localization errors and has continuous human (pedestrian)
motion which helps distinguish humans. When the better
target distinguishing method, ie CCM, is used, the maxi-
mum target counting MAPE was reduced from 5.5% to 3.5%
when the MISO-IMG-LiDAL system is used instead of the
MIMO-LiDAL system. The maximumMAPE occurs at max-
imum number of targets, which was 15 human targets in our
8 m × 4 m × 3 m room.
In the second scenario, obstacles (furniture) are introduced,

however the environment has continuous pedestrian motion.
Here the maximum target counting MAPE was reduced from
16% to 12% for the two systems respectively.

In terms of localization errors, in scenario 1, the average
DRMSE was 0.28 m and 0.16 m for the MIMO LiDAL sys-
tem and the MISO-IMG-LiDAL system respectively, while
for scenario 2 the corresponding values were 0.38 m and
0.19 m respectively.

The third scenario is more challenging, with obstacles
(furniture) present in the room and with targets moving
in a nomadic fashion rendering the target distinguishing
task harder. We defined a target mobility factor (MF), with
MF=1 representing a fully mobile target and MF=0 being
the extreme end of nomadic behavior (fully stationary target).
It is worth observing that a MPAE of 20% or less is only
achieved in the MIMO-LiDAL system for mobility levels
that correspond to MF approaching one. The MISO-IMG-
LiDAL system offered improved performance in scenario
3 compared to the MIMO LiDAL system due to the ability
of the imaging receiver to track a human target that then
becomes stationary, but is still marked as a human target. For
example, for MAPE of 20% or less a MF of 0.5 or higher is
sufficient in MISO-IMG-LiDAL.

The case study added a number of additional realistic
features to the environment including arrival rates and depar-
ture rates of targets (humans) and hence finite time spent
per target in the environment, as well as more realistic
directed pathways mobility with nomadic motion or pedes-
trian motion (continuous motion). This more challenging
environment resulted in increased localization and counting
errors. For example, the worst performance was observed in
theMIMO-LiDAL systemwith nomadic randomwalk for the
targets where the average MAPE associated with counting
was 38%. In contrast the best system evaluated in this case
study, ie the MISO-IMG-LiDAL system with nomadic ran-
dom walk, reduced the counting MAPE from 38% to 16%.
The best result for the MISO-IMG-LiDAL system was when
the targets were pedestrian targets (continuous motion) that
use pathwaymobility, and here the countingMAPEwas 10%.
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In all three scenarios and case study, the presence of addi-
tional targets in the room increases the amount of reflections,
hence the LiDAL clutter and hence leads to worse MAPE and
DRMSE performance.
Future areas of work can include (i) consideration of

MIMO-IMG-LiDAL where an imaging receiver is used with
each light source instead of our MISO-IMG-LiDAL which
uses a single imaging receiver in the entire room. This can
lead to improved performance; (ii) angle diversity receivers
can be evaluated with our systems; (iii) the artificial neu-
ral network (ANN) can be trained as an additional / alter-
native mobility distinguishing method instead of our BSM
and CCM; (iv) the time domain can be introduced through
pulses and snapshots and used with the spatial domain in the
imaging receiver to determine the target location in the third
dimension, ie not only the pixel or two dimensional location
of the target on the floor, but also the height of the target;
(v) passive LiDAL structures can be designed where the
visible light communications (VLC) signals reflected from
targets (humans) are observed and measured to determine
the target locations (vi) the LiDAL localization information
can be used to aid the VLC system, for example in terms
of improved handovers through mobility direction and speed
prediction (vii) LiDAL can be used for improved resource
allocation in VLC systems by knowing the locations of users
hence steering beams or allocating resources (wavelengths,
time slots, transmitters etc) to reduce interference.
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