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Abstract: We present a secure multi-party quantum summation protocol based on quantum teleportation,
in which a malicious, but non-collusive, third party (TP) helps compute the summation. In our protocol,
TP is in charge of entanglement distribution and Bell states are shared between participants. Users
encode the qubits in their hand according to their private bits and perform Bell-state measurements. After
obtaining participants’ measurement results, TP can figure out the summation. The participants do not
need to send their encoded states to others, and the protocol is therefore congenitally free from Trojan
horse attacks. In addition, our protocol can be made secure against loss errors, because the entanglement
distribution occurs only once at the beginning of our protocol. We show that our protocol is secure against
attacks by the participants as well as the outsiders.

Keywords: quantum information; quantum cryptography; quantum summation; quantum teleportation;
Bell states; participant attacks

1. Introduction

Secure multi-party computation, as a subfield in cryptography, has been gaining attention in
recent years [1–4]. It was first introduced by Yao [5] and later extended by Goldreich et al. [6]. Secure
multi-party computation has also been studied in quantum settings [7–11]. Lo [7] pointed out the
insecurity of quantum computation without a third party in a two-party scenario. Chau [9] employed
quantum resources to speed up classical multi-party computation. Ben-Or et al. [10] investigated
distributed quantum computation. They showed how many players must be honest in order to make
any multi-party quantum computation secure. Smith [11] proved that any multi-party quantum
computation can be secure as long as the number of dishonest players is less than n/6, when n,
the number of players, is larger than 6.

Secure multi-party quantum summation [12–16], which helps the construction of complex
multi-party computation, is a fundamental primitive of secure multi-party quantum computation.
In quantum summation protocols, the privacy of participants’ inputs is preserved and the correctness
of the summation is guaranteed by quantum properties. Quantum summation has also potential
applications in quantum voting [17–21] and quantum private equality comparison [22–24]. Designing
quantum summation protocols that can be implemented with current or near future quantum
technologies is therefore of interest, as we pursue in this paper.

In the past few years, various quantum summation protocols have been proposed by employing
a variety of quantum resources. Zhang et al. [25] presented a quantum summation protocol with
single photons encoded in both polarization and spatial-mode degrees of freedom in 2014, in which
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unitary operations are utilized to encode the private bits on the travelling single photons. Such single
photons must somehow be handed over/transmitted to the next user so that the collective sum of
all private bits can be calculated. Most other protocols rely on sharing a multipartite entangled
state among players. For instance, in 2015, a quantum summation protocol without a trusted third
party was constructed [26]. However, the number of participants was limited to three due to the
requirement of the so-called genuinely maximally entangled six-qubit states. In 2016, Shi et al. [27]
used quantum Fourier transform, controlled NOT (CNOT) gates and oracle operators to propose
protocols for summation and multiplication. Later, they proposed a common quantum solution to
a class of two-party private summation problems [28]. In 2017, a multi-party quantum summation
without a trusted third party was investigated by first generating a multipartite entangled state by one
player and then sharing it with other users [29]. In the same year, Liu et al. [30] adopted Bell states to
construct multipartite entangled states that were used to carry participants’ inputs, where the quantum
communication in their protocol is two-way. This means that special care with regard to Trojan horse
attacks [31–33] should be provided to participants. Unlike their protocols, participants in our protocol
do not need to send the encoded states back to others, thus our protocol is naturally free from Trojan
horse attacks and no protection against such attacks are needed. In 2018, Yang et al. [34] provided a
quantum solution to secure summation depending on n-partite multi-dimensional entangled states.

One common feature in all hitherto proposed quantum summation protocols is their dependence
on a reliable means for quantum state transfer. In the case of protocols that rely on sharing multipartite
entangled states [27–30,34], such a state is often generated by one player and then its different
components are sent to other players. If any of these components does not reach its respective
destination, then the whole procedure must be repeated. In such a case, relying on photons travelling
through lossy channels does not seem to be an efficient option. Moreover, it could open us to new
security threats that an eavesdropper can exploit by hiding behind the channel loss. Even for the case
of the protocol in Ref. [25], the loss of the single photon in any leg of the system requires repeating
the whole procedure. In addition, an eavesdropper can send a photon of her choice to a user and
measure it after the user has applied his encoding to find out about the user’s private bit. Most of
these protocols fail to work unless a reliable quantum state transfer (RQST) service is available to them.
This is a kind of service that one may expect to have once we have a fully functional quantum network.

There are two well-known approaches to RQST. In one scenario, one distributes entangled states
between the two end users of a quantum communication system, and then use teleportation to transfer
an unknown quantum state from one place to another. In the second approach, one has to use perhaps
complex quantum error correction codes to compensate for the erasure errors caused by photon
loss as well as operational errors caused by system components. In both cases, we need quantum
memories in our setup to store quantum states and to execute certain quantum processing tasks such
as entanglement distillation or quantum error correction. This requirement of the system has thus far
been neglected in the design of quantum summation protocols.

In this paper, we take advantage of the idea of quantum teleportation [35] to devise our protocol.
In order to get a better insight into the practicality of a quantum summation protocol, in this work,
we account for the bipartite entangled states that one would need to distribute if teleportation is used
for the RQST part of the protocol. We discover that in fact such Bell states are sufficient to devise a secure
quantum summation protocol without requiring the distribution of additional multipartite entangled
states. Moreover, by not revealing the information about which Bell state is shared between two players,
we, in effect, can protect ourselves against attacks by malicious participants. In our protocol, similar to
Ref. [25], participants’ private bits are encoded into single-qubit unitary operations. Encoded states
are then effectively teleported to the next user by performing local Bell-state measurements (BSMs).
This makes our protocol congenitally free from Trojan horse attacks. In our protocol, the required Bell
states are shared by a third party (TP), who can be malicious but does not collide with other players.
In any case, our protocol does not rely on multipartite entanglement or high-dimensional states, which
makes its implementation much more feasible.
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Table 1 summarizes the required resources for various protocols as compared to ours. In particular,
we have compared these protocols in terms of their efficiency, defined as the number of qubits (quantum
memories) they need in order to find the sum of n private bits, when one accounts for a minimum of
two quantum memories needed for teleportation. The assumption here is that maximally entangled
states are shared among users, but we do not account for additional memories that may be needed for
entanglement distillation or for possible repeater nodes. It is clear from this table that our protocol not
only is more efficient than other protocols in the table but also only relies on bipartite entanglement
rather than multipartitite states.

Table 1. A comparison between different quantum summation (QS) protocols in terms of their required
resources and operations, as well as their efficiency.

QS Protocols Efficiency Quantum Resource Quantum Operations

Shi et al.’s [27] 1
3n−2 (n+ 1)-partite entangled state

Quantum Fourier operator,
CNOT operator, and oracle
operator

Zhang et al.’s [29] 1
3n−2 n-partite entangled state CNOT operator and Hadamard

operator

Liu et al.’s [30]

1
3n−2
or

1
3n+1

n-partite entangled state or
(n+ 1)-partite entangled state

Pauli operators and Hadamard
operators

Yang et al.’s [34] 1
3n−2 n-partite entangled state Quantum Fourier operator and

Pauli operators

This work 1
2n+3 Bell states Pauli operators and Bell

measurement

The rest of this paper is organized as follows. In Section 2, we illustrate our idea to design a
secure multi-party quantum summation protocol and provide an example of a two-party scenario.
In Section 3, we describe our multi-party quantum summation protocol in detail, followed by its
correctness and security analysis in Section 4. Practical considerations of our protocol will be discussed
in Section 5, and conclusions are given in Section 6.

2. Key Idea of Our Protocol

In this section, we work out our proposed quantum summation protocol for the particular case of
two participants and a malicious but non-collusive third party (TP). TP has to calculate the modulo 2
sum of the participants’ secret bits by satisfying the following requirements:

1. Correctness: the result of summation in modulo two of all participants’ private input bits is
correct.

2. Security: an eavesdropping outsider cannot learn any information about participants’ private
input bits without being detected.

3. Privacy: TP cannot learn about participants’ private inputs.

Note that although TP cannot obtain two participants’ private bits in the two-party scenario, each
participant can find out the private bit of the other participant once the sum is known. Nevertheless,
this is a simple example by which we can explain our protocol. In Section 3, we generalize this idea to
the multiple participants scenario, where the privacy requirement will be extended to include most
participants as well as TP.

Our protocol relies on sharing a chain of Bell states among participants and teleporting an
unknown state by TP to itself via this chain; see Figure 1. Along the way participants can affect the
linked states by applying local operations on their share of entangled states. TP can calculate the sum
by comparing the teleported state with the original state she has generated.
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Before describing the protocol, let us first review the teleportation protocol and introduce the
notation used in the paper. In general, Bell states are of the following form

|Bxy〉 =
1√
2
(|0, x〉+ (−1)y|1, x⊕ 1〉), (1)

where x, y ∈ {0, 1} and ⊕ represents addition modulo 2. The relationship between Bell states and
classical bits can be defined as

|Bxy〉 ↔ xy, x, y ∈ {0, 1}. (2)

For any qubit |ϕ〉 and any single-qubit unitary operation U, a general teleportation equation, based on
an initial Bell state |Bab〉, a, b ∈ {0, 1}, shared between the two users, can be written as

|ϕ〉1 ⊗ (I ⊗U)|Bab〉2,3 =
1
2 ∑

x∈{0,1}
∑

y∈{0,1}
(−1)b·x|Bxy〉1,2 ⊗UZy⊕bXx⊕a|ϕ〉3, (3)

where X = (|0〉〈1|+ |1〉〈0|), Z = (|0〉〈0| − |1〉〈1|) and the subscripts denote different systems.
In this work, we are particularly interested in the unitary operation U = ZX, for which we have:

UZbXa = ZXZbXa = (−1)bZbZXXa = (−1)bZbZXaX
= (−1)b · (−1)aZbXaZX = (−1)a⊕bZbXaZX
= (−1)a⊕bZbXaU,

(4)

where a, b ∈ {0, 1}. Additionally, the following equations

U|0〉 = ZX|0〉 = −|1〉, (5)

U|1〉 = ZX|1〉 = |0〉, (6)

U|+〉 = ZX|+〉 = |−〉, (7)

U|−〉 = ZX|−〉 = −|+〉, (8)

hold, where |+〉 = 1√
2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 − |1〉). Note that both computational basis

{|0〉, |1〉} and diagonal basis {|+〉, |−〉} are closed under U. Ignoring the phase, U swaps |0〉 and |1〉
(|+〉 and |−〉). We use U = ZX from now on and it will be applied on one of the two components of a
Bell state if the participants’ private bit is 1.

Now, let us describe a simple version of our protocol that, for now, does not fulfill the security
requirement; see Figure 1. Suppose each participant has two quantum memories. Then, we implement
the following steps:

(Step 1) Entanglement distribution. TP distributes Bell states, each of which is randomly selected
from the Bell basis, among participants and generates a state |ϕ〉T chosen randomly from the
set {|0〉, |1〉, |+〉, |−〉}. The state |ϕ〉T is stored in quantum memory T.

(Step 2) Private inputs encoding. P1 (P2) applies U = ZX on quantum memory 1 (quantum memory
3) if her private bit is 1. Otherwise, she does nothing.

(Step 3) Bell-state measurement. TP measures quantum memories T and 0 in the Bell basis. Similarly,
P1 (P2) measures quantum memories 1 and 2 (3 and 4) in the Bell basis. P1 and P2 will
announce their measurement results to TP.

(Step 4) Correction and computation. After necessary corrections on quantum memory 5 depending
on all the measurement results and the original Bell states, TP measures quantum memory 5
in the same basis as that of the original state of quantum memory T. If the state of quantum
memory 5 is the same as the original state of quantum memory T, TP concludes that the sum
is 0, otherwise, the sum is 1.
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Figure 1. A simple example of our protocol in the two-party scenario. (a) Step 1: third party (TP) shares
entangled states among users to create a chain of entangled links back to herself. In this example,
we assume state |B00〉 is shared over all links. In general, different Bell states can be shared over
different links, and only TP knows which state has been shared. (b) Step 2: users with private bit
1 apply operator U to thier first qubit. Here, only P2 must do this. (c) Step 3: all players perform a
Bell-state measurements (BSM) on their two qubits and let TP know of the results. In our example, we
have assumed |B00〉 has been obtained in all cases. (d) Step 4: TP measures qubit 5 in the same basis as
her originally chosen basis for qubit T. By comparing the result with the original state of T, TP can
calcualte M1 ⊕M2.

Let us work out a simple example to show how the protocol works. In Figure 1,

(Step 1) Entanglement distribution. Suppose the initial state among TP, P1 and P2 is given by

|ζ0
j 〉 = |+〉T ⊗ |B00〉01 ⊗ |B00〉23 ⊗ |B00〉45. (9)

(Step 2) Private input encoding. Suppose P1’s (P2’s) private bit is 0 (1), P1 then does nothing
on quantum memory 1, but P2 applies U = ZX on quantum memory 3. According to
Equations (3)–(8), the state becomes

|ζ1
j 〉 =|+〉T ⊗ (I ⊗ I)|B00〉01 ⊗ (I ⊗ (ZX))|B00〉23 ⊗ |B00〉45

=
1
8 ∑

x0∈{0,1}
∑

y0∈{0,1}
∑

x1∈{0,1}
∑

y1∈{0,1}
∑

x2∈{0,1}
∑

y2∈{0,1}

|Bx0y0〉T0|Bx1y1〉12|Bx2y2〉34Zy1⊕y2⊕y3 Xx1⊕x2⊕x3 |−〉5, (10)

where a global phase in the state of quantum memory 5 is ignored.
(Step 3) Bell-state measurement. Suppose all the measurement results are x0y0 = x1y1 = x2y2 = 00,

and they are announced to TP. Then, effectively, the state of T is teleported to qubit 1,
and then teleported to qubit to 3, at which point it is flipped by the U operation, and
teleported back to TP.



Entropy 2019, 21, 719 6 of 16

(Step 4) Correction and computation. In this particular case, there is no correction needed by TP.
TP measures quantum memory 5 in the basis {|+〉, |−〉}, and finds that the state of quantum
memory 5 is different from the original state of quantum memory T. TP concludes that the
sum is 1.

In (Step 3) of the above example, if not all the measurement results are 00, TP can correct the state
of quantum memory 5 by performing quantum operations on it using Equations (3) and (4) before she
measures quantum memory 5.

In a full protocol, we need to include steps that alert us to possible attacks. We consider two kinds
of attacks in our protocol: those by outsides and those by malicious participants. We employ extra Bell
states to detect these attacks and meet the security requirements. By measuring each component of a
Bell state in the same basis (all in the computational basis or all in the diagonal basis) and comparing
the measurement results, these attacks can be detected. The details of the detection process can be
found in Section 3.

3. Multi-Party Quantum Summation

We assume that the classical channels are authenticated and quantum channels are noiseless.
The third party, TP, who conducts the summation is assumed to be malicious but non-collusive. That is
to say, TP can do whatever she would like within boundaries of quantum mechanics except collision
with dishonest participants. The summation can be revealed in public. For simplicity, we denote TP as
P0 in the rest of the paper.

Suppose that the q-th participant (q = 1, 2, . . . , n; n > 2) has a private bit string Mq. P0 computes
the summation ⊕∑n

q=1 Mq, where ⊕∑ denotes pointwise addition in modulo 2, and

M1 = (m11, m12, . . . , m1L),
M2 = (m21, m22, . . . , m2L),

. . . ,
Mn = (mn1, mn2, . . . , mnL),

⊕∑n
q=1 Mq = (∑n

i=1 mi1, ∑n
i=1 mi2, . . . , ∑n

i=1 miL),

(11)

where L is the length of each private bit string.
Our n-party (n > 2) summation protocol shall meet the following requirements:

1. Correctness: the result of pointwise summation in modulo two of all participants’ private input
bits is correct.

2. Security: an outside eavesdropper cannot learn any information about participants’ private input
bits without being detected.

3. Privacy: no participant can learn about other participants’ private input bits without being
detected, except in the obvious case of n− 1 players collaborating to learn the remaining user’s
private bits.

Our full protocol is described in the following.

(Step 1) Entanglement distribution. P0 uses a certain entanglement distribution protocol [36–40]
to distribute (n + 1)(L + R) ordered Bell states, Ki = (|ψi

1〉(2i)(2i+1)|ψi
2〉(2i)(2i+1) . . .

|ψi
L+R〉(2i)(2i+1)) (i = 0, 1, . . . , n), where |ψi

1〉(2i)(2i+1) is chosen from the set {|Bxy〉|x, y ∈
{0, 1}}, to n participants such that these states form a chain. Specifically, for Ki, all first
(second) components of Bell states are stored in quantum memory Gi

2i (Gi
2i+1). As shown in

Figure 2, banks of quantum memories Gi−1
2i−1 and Gi

2i belong to Pi (i = 1, 2, . . . , n) and
quantum memories G0

0 and G2n+1
2n are held by P0. P0 also generates L ordered states,

AT = (|ϕ1〉T , |ϕ2〉T , . . . , |ϕL〉T), where |ϕi〉T (i = 1, 2, . . . , L) is randomly chosen from the set
{|0〉, |1〉, |+〉, |−〉}. These states remain in P0’s quantum memory G0

T . Note that all the initial
states are only known to P0.
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(Step 2) Security detection. Participants detect if genuine Bell states are shared among them in an
honest way.

(Step 2.1) To examine the genuinity of the Bell states shared between P0 and P1, P1 first randomly
chooses R Bell states shared between quantum memory G0

0 and quantum memory
G0

1 and asks P0 to announce the corresponding initial states. P1 then measures each
corresponding component in G0

1 randomly in the computational basis {|0〉, |1〉} or in the
diagonal basis {|+〉, |−〉}, and keeps the measurement results to herself. Subsequently,
P1 asks P0 to measure the corresponding components in the same basis as P1 does and
publicize the measurement results. According to the property of Bell states, P1 checks
if these measurement results are correlated with each other. If the error rate exceeds a
certain threshold, the protocol will be aborted and repeated from (Step 1). Otherwise,
the protocol will continue.

(Step 2.2) To check the genuinity of the Bell states shared between P0 and Pn, Pn also uses R Bell
states to complete this detection utilizing the similar method as that used by P1. If the
error rate exceeds the threshold, the protocol will be aborted and repeated from (Step 1).
Otherwise, the protocol will continue.

(Step 2.3) To check the genuinity of the Bell states shared between Pi and Pi+1 (i = 1, 2, . . . , n− 1),
Pi randomly selects R/2 Bell states shared between Gi

2i and Gi
2i+1 and asks P0 to

announce the corresponding initial states. Later, Pi measures each corresponding
component in Gi

2i randomly in the computational basis or in the diagonal basis,
announcing the measurement results. Next, Pi+1 measures each component in Gi

2i+1
entangled with the one in Pi’s hands in the same basis, publicizing the measurement
results. Pi and Pi+1 can finally check if these measurement results are correlated
according to the initial states and the property of Bell states. The same procedure will
be used by Pi+1 with R/2 Bell states of his choice and randomly selected measurement
bases. If the error rate in either case exceeds the threshold, the protocol will be aborted
and repeated from (Step 1). Otherwise, they ensure that the states shared between them
are genuine Bell states and distributed in an honest way, and the protocol will continue.

(Step 3) Private input encoding. P0 removes R states used for detection from quantum memory G0
0

(Gn
2n+1), leaving L ordered states, denoted by V0

0 (Vn
2n+1), in it. Pi (i = 1, 2, . . . , n) also removes

R states used for checking from quantum memory Gi−1
2i−1 (Gi

2i), resulting in L ordered states,
denoted by Vi−1

2i−1 (Vi
2i), in it. Note that quantum memories Gi

2i and Gi
2i+1 (i = 0, 1, . . . , n)

now share L ordered Bell states, which form L chains of Bell states among all participants
(inlucding P0). Namely, the j-th (j = 1, 2, . . . , L) state of Vi

2i in Gi
2i and the j-th one of Vi

2i+1
in Gi

2i+1 form a Bell state. Afterwards, Pi (i = 1, 2, . . . , n) performs Umi1
i ⊗Umi2

i ⊗ . . .⊗UmiL
i

on the ordered sequence Vi−1
2i−1, where Ui = U = ZX and (mi1, mi2, . . . , miL) is Pi’s private

bit string.
(Step 4) Bell-state measurement. P0 measures the j-th (j = 1, 2, . . . , L) state of V0

0 and the
j-th one in quantum memory G0

T in the Bell basis, obtaining measurement results
(x01y01, x02y02, . . . , x0Ly0L) in accordance with Equation (2). Similarly, Pi (i = 1, 2, . . . , n)
measures the j-th state of Vi−1

2i−1 and the j-th one of Vi
2i in the Bell basis, attaining measurement

results (xi1yi1, xi2yi2, . . . , xiLyiL). Finally, They announce the measurement results to P0.
(Step 5) Correction and computation. Based on all the measurement results and the knowledge

of original Bell states (only known to P0), P0 performs correcting operations on the j-th
(j = 1, 2, . . . , L) state of Vn

2n+1. Next, P0 measures these resulting states in the same basis as
the original states in quantum memory G0

T , gaining the measurement results (t1, t2, . . . , tL).
With these measurement results, P0 compares the j-th state of Vn

2n+1 with the j-th original
state in quantum memory G0

T . If these two states are the same (different), P0 knows that the
j-th bit of the sum is 0 (1). At last, P0 can achieve the sum modulo 2 of participants’ private
bit strings, and the privacy of these private strings is preserved.
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Note that, if the summation is only intended for a certain participant, say Pi, she can be selected
as the one who distributes Bell states like TP. The process is analogous to that with TP if Pi is also
assumed to be malicious, but non-collusive.

Figure 2. Entanglement distribution by P0. Each player has a qubit which is entangled with another
qubit held by the next user in the chain. At the start of the protocol, TP shares L + R Bell states over
each link, where R of which (randomly chosen) is used for detecting malicious activities.

4. Analysis of the Multi-Party Quantum Summation

In this section, we study the security of our protocol. It can be verified that the protocol would
provide us with the correct sum if all parties follow the protocol. A detailed derivation of the correctness
is given in Appendix A. In terms of security, we have to show that our protocol is secure against both
outsider and participant attacks, and it fulfills the security and privacy requirements mentioned in
Section 3. In our case, an outsider can potentially influence our protocol via the initial entanglement
distribution. We show here how by using extra Bell states we can verify if the distributed states are
genuinely Bell states. There also exist Trojan horse attacks [31–33], such as the delay-photon Trojan



Entropy 2019, 21, 719 9 of 16

horse attack and the invisible photon eavesdropping Trojan horse attack if quantum states are encoded
and relayed in quantum communications protocols. Since our protocol uses Bell states to compute
the summation and no encoded states are needed to be relayed, our protocol is secure against these
attacks. We therefore focus here on the case of an attack by the TP, or possibly an outsider, and leave
the details of the security against other malicious participants to Appendix A.

Attacks from P0. We here consider the attacks from P0 who cannot collude with any other
participants. For simplicity, we suppose that P0 wants to obtain one bit of Pi’s (i 6= 1, n) private bit
string and consider the chain related to this bit. In order to learn about this bit of Pi, P0 has to find
out if Pi performs quantum operation U = ZX on her memory. P0 can therefore launch entanglement
swapping attack on this chain, as shown in Figure 3.

Figure 3. Entanglement swapping attack by P0 through sharing entangled states in a dishonest way.

Suppose, in Figure 3, the states of quantum memories b and (2i − 1) and quantum memories
c and (2i) distributed by P0 are |B00〉b(2i−1) and |B00〉c(2i), respectively. Pi will apply U = ZX on
quantum memory (2i − 1) if her secret bit is 1, otherwise she will do nothing. Pi then measures
quantum memories (2i− 1) and (2i) in the Bell basis and announces her measurement result xiyi to P0

as described in (Step 4) in the proposed protocol. After that, P0 can measure quantum memories b and
c as well and obtain the measurement result xcyc. Because the original states of quantum memories b
and (2i− 1) and quantum memories c and (2i) are the same, if xiyi and xcyc are the same, P0 knows
that Pi has not performed U on quantum memory (2i− 1) and learns about Pi’s private bit being 0,
according to the entanglement swapping property. Otherwise, P0 concludes that Pi’s private bit is 1.
However, this attack will be detected in (Step 2) where the genuinity of Bell states shared between Pi
and Pi+1 (between Pi−1 and Pi) is checked.

To show this note that Bell states can be rewritten in linear and diagonal bases as follows

|B00〉 =
1√
2
(|00〉+ |11〉) = 1√

2
(|++〉+ | − −〉), (12)

|B01〉 =
1√
2
(|00〉 − |11〉) = 1√

2
(|+−〉+ | −+〉), (13)

|B10〉 =
1√
2
(|01〉+ |10〉) = 1√

2
(|++〉 − | − −〉), (14)

|B11〉 =
1√
2
(|01〉 − |10〉) = 1√

2
(| −+〉 − |+−〉). (15)
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If Pi and Pi+1 shared a known Bell state, and each one measures one component of the Bell state
in the same basis (in the computational basis or in the diagonal basis), they will obtain a certain
relationship between their measurement results. For a fake Bell state (the state of quantum memories
(2i− 1) and (2i− 2) is not a Bell state, we call it a fake Bell state) used for detection, P0 is able to pass
the detection with probability of 1

2 . P0 may distribute only one fake Bell state between Pi and Pi+1 and
another fake Bell state between Pi−1 and Pi such that these two states are in the same chain to obtain
Pi’s private bit. At the same time, P0 can get the maximum probability of passing the detection. In this
case, these two states should not be chosen for detection. The probability of escaping the detection
is L2/(L + R)2. For i = 1 or i = n, this probability becomes L/(L + R). These two probabilities of P0

passing the detection and obtaining one bit of one participant will approach 0 if R is large enough.
As a result, P0 fails to steal participants’ private input bits.

5. Practical Considerations

In this section, we discuss some practical aspects of our protocol in the light of new developments
in the field. In general, secure multi-party quantum computation requires an infrastructure for reliable
quantum communications as provided by quantum repeaters and quantum networks. Our protocol is
not an exception, but given that some of the required resources for our protocol, as listed in Table 1,
are easier to achieve, we can envisage a small-scale demonstration of this protocol in the near future.
Multicore optical fibres [41,42] can be used to fish this task.

One of the key requirements in our scheme is to distribute Bell states between two parties.
A full implementation of this aspect over any arbitrary distance is only possible with fully functional
quantum repeaters. This may not be possible in the near future. But, a small-scale quantum network
with nodes within tens of kilometers from each other is within reach. In fact, there are activities in
Netherlands, for instance, to implement a four node quantum network within the country. Such a
network can then be used for an initial demonstration of protocols like ours.

Another requirement of our system is that of quantum memories for storing and processing
entangled states. In principle, we can run our protocol once all required entangled states are shared
among users. This may increase the waiting time as well as the required storage/coherence time
for memories. For a small-scale demonstration, with a few number of players at short distances
from each other, this, can, however, be manageable. Quantum memories such as nitrogen vacancy
centers in diamond [43] , or trapped ions [44,45], offer long storage times that could be suitable for our
protocol. Plus, both these memories offer settings in which high-quality deterministic CNOT gates can
be performed. The latter is necessary in order to keep our protocol loss resilient.

In terms of performance, there are two parameters that typically matter: at what rate, we can
distribute entangled states among parties, and what would be the quality of the generated entangled
state. The rate of entanglement generation is mainly affected by channel loss, but, for moderately short
links, this may not be the major obstacle. For instance, if the maximum distance between two players
is 50 km, for standard optical fiber channels with 0.2 dB/km loss, we have a channel transmissivity
of 0.1. By accounting for a similar efficiency, for other parts of the system, we have a 1% chance in
generating entangled states in every attempt. For a repetition rate of 1 M/s, we can then generate
10,000 entangled links per second, which should be sufficient for a small-scale demonstration. In terms
of quality, in our analysis, we have assumed perfect Bell states can be exchanged among users. This is
in principle possible if one can use entanglement distillation or error correction techniques. For a
simple demonstration, however, it is more likely that we have to accept a bit of error in our system.
This error rate would scale with the distance between the shared entangled state versus maximally
entangled states, as well as with the number of players. One should also add to that the errors that
might arise during the Bell-state measurements. In the end, if the error caused by imperfections in the
system is too high, the protocol will abort during its verification stage.
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One final note is about the number of Bell states that are needed for attack detection in our
protocol. Here, in principle, we are using similar ideas as those used in quantum key distribution
(QKD) for detecting eavesdroppers. But, unlike QKD, the ratio L/R, in our case, should be very low to
keep the protocol secure. The main reason behind this is that in any quantum summation protocol,
the protocol fails even if only one of the private bits gets revealed. That is, we have no chance to
remove the information that has leaked to an eavesdropper once it has happened, whereas, in QKD,
one can use privacy amplification to reduced the amount of leaked information about the final key.
This seems to be a common issue in all quantum summation protocols and is not specific to our case.

6. Conclusions

We proposed a secure multi-party quantum summation protocol based on quantum teleportation,
in which a TP, who could be malicious but non-collusive, was involved. The correctness and the
security of the protocol were analyzed in detail. Our protocol did not require multi-partite entangled
states. Only bipartite states (Bell states), Pauli operators and Bell measurement were needed in our
protocol. The latter were all required in any teleportation protocol, which would be implicitly used in
all other quantum summation protocols as well. By reducing the required resources to those needed for
teleportation, we, in effect, proposed the most feasible quantum summation protocol, which could, in
principle, be demonstrated, at small scales, using current quantum technologies. A more detailed error
analysis is needed to account for the effect of imperfect entanglement distribution and/or operation
errors. We will consider these imperfections in our future work.
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Appendix A. Analysis of the Multi-Party Quantum Summation

Appendix A.1. Correctness Analysis

We assume that all participants provide correct private bit strings. For the convenience of
analyzing the correctness of our protocol, we define the relationship between quantum states
{|0〉, |1〉, |+〉, |−〉} and classical bits as follows:

E(|ϕ〉) =
{

0, i f |ϕ〉 ∈ {|0〉, |+〉},
1, i f |ϕ〉 ∈ {|1〉, |−〉}.

(A1)

Furthermore, if
|ϕ′〉 = Um|ϕ〉, (A2)

where m ∈ {0, 1}, |ϕ〉 ∈ {|0〉, |1〉, |+〉, |−〉}, U = ZX and a global phase is ignored, then

E(|ϕ′〉) = E(|ϕ〉)⊕m. (A3)

In (Step 3) of the protocol, Vi
2i and Vi

2i+1 (i = 0, 1, . . . , n) form L ordered Bell states. V0
0 and Vn

2n+1
are held by P0 and Vi−1

2i−1 and Vi
2i (i = 1, 2, . . . , n) are in Pi’s hands. For the j-th (j = 1, 2, . . . , L) Bell state

between Vi
2i and Vi

2i+1(i = 0, 1, . . . , n), combining with the j-th state in quantum memory G0
T , the initial

state is



Entropy 2019, 21, 719 12 of 16

|ζ0
j 〉 = |ϕj〉T ⊗ |ψ′

0
j 〉01 ⊗ |ψ′

1
j 〉23 ⊗ . . .⊗ |ψ′nj 〉(2n)(2n+1). (A4)

Suppose that

|ψ′0j 〉01 = |Ba0b0〉
j
01, (A5)

|ψ′1j 〉23 = |Ba1b1〉
j
23, (A6)

. . . , (A7)

|ψ′nj 〉(2n)(2n+1) = |Banbn〉
j
(2n)(2n+1), (A8)

and Pi (i = 1, 2, . . . , n) performs U
mij
i (Ui = U = ZX) on the j-th state of Vi−1

2i−1, the state becomes

|ζ1
j 〉 = 1

2n+1 ∑x0j∈{0,1} ∑
y0j∈{0,1}

∑
x1j∈{0,1}

∑
y1j∈{0,1}

. . . ∑
xnj∈{0,1}

∑
ynj∈{0,1}

(−1)Σn
i=0xij ·bi |Bx0jy0j〉

j
T0 ⊗ |Bx1jy1j〉

j
12 ⊗ . . .⊗ |Bxnjynj〉

j
(2n−1)(2n)

⊗Z⊕Σn
i=0bi⊕yij X⊕Σn

i=0ai⊕xij U⊕Σn
i=1mij |ϕj〉2n+1, (A9)

according to Equations (3)–(8), and a global phase of the state of quantum memory (2n + 1) is ignored.
After Pi (i = 0, 1, . . . , n) measures the corresponding states in the Bell basis, obtaining the

measurement outcome xijyij (j = 1, 2, . . . , L), the state of quantum memory (2n + 1) collapses to

Z⊕Σn
i=0bi⊕yij X⊕Σn

i=0ai⊕xij U⊕Σn
i=1mij |ϕj〉2n+1. (A10)

With the announcement of xijyij (i = 1, 2, . . . , n) provided by Pi, P0 knowing the initial Bell states
can calculate

⊕∑n
i=0 ai ⊕ xij, (A11)

⊕∑n
i=0 bi ⊕ yij. (A12)

Later, X⊕Σn
i=0ai⊕xij Z⊕Σn

i=0bi⊕yij is performed on quantum memory (2n + 1). Consequently, the state
of quantum memory (2n + 1) turns into

|ϕ′j〉2n+1 = U⊕Σn
i=1mij |ϕj〉2n+1. (A13)

After the measurement of quantum memory (2n + 1) in the same basis as that of quantum
memory T, P0 gains

E(|ϕj〉T)⊕ (⊕Σn
i=1mij) = E(|ϕ′ j〉2n+1), (A14)

and therefore obtains the result

⊕ Σn
i=1mij = E(|ϕj〉T)⊕ E(|ϕ′j〉2n+1), (A15)

for the j-th bit of the sum modulo 2 of participants’ private bit strings, by using Equations (A1)–(A3).
In the end, P0 is able to learn about the sum modulo 2 of participants’ private bit strings.

Appendix A.2. Security Analysis

There exist two types of participant attacks, one from TP(P0) and the other from some dishonest
participants. We showed earlier how our protocol is secure against attacks by TP. Here we demonstrate
how our protocol can be kept secure in the presence of malicious participants. Note that n− 1 dishonest
participants can easily steal the honest participant’s private bit string if the summation is revealed in
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public. But if the summation is kept secret in TP’s hands, n− 1 dishonest participant cannot obtain
anything about the honest participant’s private input. Here, we show that our protocol is secure
against the collusive attack of n− 2 dishonest participants, which is the maximum possible in this case.

Attacks from (n− 2) dishonest participants (not including P0). If (n− 2) dishonest participants
wish to steal the other two honest participants’ private bit strings Mp and Mq (p < q), they may employ
the states in their hands to get useful information. We consider the j-th bit (j = 1, 2, . . . , L) in Mp and
Mq and the corresponding states.

For q 6= p + 1, we first show how dishonest participants try to learn about mpj, as shown in
Figure A1. In this case, Pp+1 does not apply unitary operation on quantum memory (2p + 1) and
Bell-state measurement on quantum memories (2p + 1) and (2p + 2). After the private input encoding
stage (Step 3), the state of quantum memory T and quantum memories 0 ∼ (2p + 1) will be

|ζ1
j 〉 = 1

2p ∑x0∈{0,1} ∑
y0∈{0,1}

∑
x1∈{0,1}

∑
y1∈{0,1}

. . . ∑
xp∈{0,1}

∑
yp∈{0,1}

(−1)Σp
k=0xk ·bk |Bx0y0〉

j
T0 ⊗ |Bx1y1〉

j
12 ⊗ . . .⊗ |Bxpyp〉

j
(2p−1)(2p)

⊗Z⊕Σp
k=0bk⊕yk X⊕Σp

k=0ak⊕xk U⊕Σp
k=1mkj |ϕj〉2p+1, (A16)

where the j-th state in quantum memory T is |ϕj〉T and the j-th Bell state shared between Ps and Ps+1

(s = 0, 1, . . . , p) is |Basbs〉
j
(2s)(2s+1). The dishonest participants try to get mpj from quantum memory

(2p + 1). However, they will fail.
From Equation (A16), we can see that if Pp+1 knows msj (s = 1, 2, . . . , p− 1) , the basis of |ϕj〉T

and (ar, br) (r = 0, 1, . . . , p) (the information about the initial Bell states), she can first apply the
right correction on quantum memory (2p + 1) and measure it in the right basis. According to msj
(s = 1, 2, . . . , p − 1), she can then obtain mpj. But she cannot do that. Even though Pp+1 knows
msj (s = 0, 1, . . . , p− 1) with the assistance of Ps and the measurement results (x0y0, x1y1, . . . , xpyp),
she knows nothing about the basis of |ϕj〉T and (ar, br) that are kept secret by P0. Thus, she cannot
perform the right correction on quantum memory (2p + 1) and measure it in the right basis. Finally,
she fails to obtain mpj, let alone Mp. Similarly, they cannot learn about Mq.

Figure A1. Attack by (n− 2) participants, where Pp and Pq are honest participants.
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For q = p + 1, they may use a similar method as in the above case to take Mp and Mq.
Namely, Pp+2 does nothing on quantum memory (2p + 3) and skips Bell-state measurement on
the corresponding state. In this case. the dishonest participants cannot even get the mpj ⊕ m(p+1)j.
Therefore, the privacy of Mp and Mq is preserved.

For any two Bell states |Bxy〉12 and |Bab〉34, if quantum memories 2 and 3 are measured in the Bell
basis and the measurement outcome |Bkm〉23 is obtained, the state of quantum memories 1 and 4 then
collapses to |Bxy⊕ab⊕km〉14 due to the Bell entanglement swapping property.

The dishonest participants may also start an attack based on the entanglement swapping
property. For the case of q 6= p + 1, as shown in the dash box in Figure A2, the j-th Bell state
shared between Pp−1 and Pp and that shared between Pp and Pp+1 are |Bap−1bp−1〉

j
(2p−2)(2p−1) and

|Bapbp〉
j
(2p)(2p+1), respectively. After Pp performs U

mpj
p (Up = ZX) on quantum memory (2p− 1) and

then measures quantum memories (2p − 1) and (2p) in the Bell basis, obtaining the measurement
outcome |Bxpyp〉

j
(2p−1)(2p), the state of quantum memories (2p− 2) and (2p + 1) becomes

(I ⊗U
mpj
p )|B(ap−1bp−1)⊕(apbp)⊕(xpyp)〉

j
(2p−2)(2p+1), (A17)

due to the property of entanglement swapping. Pp+1 skips the private input encoding stage, instead
she can collaborate with Pp−1 to measure quantum memories (2p− 2) and (2p + 1) in the Bell basis.

Can the dishonest participants find out U
mpj
p performed by Pp to steal mpj? The answer is no. Although

Pp−1 and Pp+1 can measure quantum memories (2p− 2) and (2p + 1) in the Bell basis and get xpyp

after Pp’s announcement, they have to know ap−1bp−1 and apbp to derive U
mpj
p , but this information

is unknown to them. For the case of q = p + 1, the analysis is similar. Therefore, this attack is also
invalid to our protocol.

Figure A2. Entanglement swapping attack by (n− 2) participants, where Pp and Pq are honest participants.
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