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encapsulation of Lactobacillus 
fermentum K73 by Refractance 
Window drying
Stephania Aragón-Rojas1, María Ximena Quintanilla-Carvajal2, Humberto Hernández-
Sánchez  3, Alan Javier Hernández-Álvarez4 & Fabian Leonardo Moreno  2

The purpose of this work was to model the survival of the microorganism and the kinetics of drying 
during the encapsulation of Lactobacillus fermentum K73 by Refractance Window drying. A whey 
culture medium with and without addition of maltodextrin were used as encapsulation matrices. The 
microorganism with the encapsulation matrices was dried at three water temperatures (333, 343 and 
353 K) until reaching balanced moisture. Microorganism survival and thin layer drying kinetics were 
studied by using mathematical models. Results showed that modified Gompertz model and Midilli 
model described the survival of the microorganism and the drying kinetics, respectively. The most 
favorable process conditions found with the mathematical modelling were a drying time of 2460 s, at 
a temperature of 353 K. At these conditions, a product with 9.1 Log CFU/g and a final humidity of 10% 
[wet basis] using the culture medium as encapsulation matrix was obtained. The result shows that 
Refractance Window can be applied to encapsulate the microorganism probiotic with a proper survival 
of the microorganism.

Probiotics have been defined by the FAO/WHO as “live microorganisms which when administered in adequate 
amounts confer a health benefit on the host”1. Evidence of the effect of probiotics on consumer health2–4 has 
driven the development of strategies to include them in food matrices and to generate non-traditional dairy func-
tional foods, such as Oaxaca cheese5 or ice cream6 and non-dairy products such as bread7, fermented sausages8, 
carrot juice9, among others; these food products represent 60–70% of the functional food market10, this being an 
opportunity for the development of new products.

Until now, different species of probiotic microorganisms have been selected according to their character-
istics. Strains such as Lactobacillus fermentum K73, isolated from suero costeño (typical fermented food from 
the Colombian Atlantic coast) have shown to have a hypocholesterolemic effect to adsorb cholesterol on its cell 
membrane and for the activity of the bile salt hydrolase enzyme11. Due to the studied potential of this strain, it is 
possible to include it in a functional food.

Functional foods enriched with probiotic microorganisms should declare a minimum concentration of 106 
per gram or milliliter at the time of consumption12. Encapsulation is an alternative to improve the probiotics 
survival during its inclusion in food, storage and to protect it from gastrointestinal stress; it has been defined as a 
technology for packaging a bioactive compound that can be in a solid, liquid or gaseous state within a matrix13.

Different matrices to encapsulate probiotics have been used to preserve its functionality sush as: whey pro-
teins14, maltodextrin15, gum arabic16, among others. Whey proteins have been studied in the food industry due to 
their structural and physicochemical properties and its acting as a “natural delivery system” at the gastrointestinal 
tract level17,18.

The encapsulation of probiotics has been done through the use of emulsions19, extrusions20 and through the 
use of different drying technologies21; the selection of these techniques depends on the food product where the 
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probiotic will be added. Additionally, the technique must guarantee the survival of the probiotic and a low mois-
ture content for the stability of the product22. An alternative in drying technologies that has not yet been explored 
for probiotic encapsulation is the Refractance Window drying (RW). The RW is a technique used for concentrat-
ing and drying solutions and purées that allows obtaining a product in the form of a flake or a film23. In the RW 
drying, the solution or purée is placed on a transparent polyester film, known as Mylar® (DuPont Polyester Film 
Enterprise, Wilmington, DE), which is in contact with hot water (95–98 °C). The Mylar film creates a “window” 
that allows infrared radiation transmission, from the thermal energy of the water to the product, at wavelengths 
that corresponds with the absorption spectra of the water molecules in the solution or purée24. Radiation allows 
the product to dry quickly due to low resistance to the thermal conductivity of the film, which makes drying by 
RW an alternative for thermosensitive products such as probiotics. RW has been used successfully in mango25, 
pumpkin26, asparagus27, among others. Studies have reported that it retains color28, ascorbic acid, antioxidant 
activity27, carotenoids and capsaicinoids29 preserving the quality of the physicochemical properties as well as the 
bioactive compounds in food in a similar way to that obtained by lyophilization and better than that achieved by 
spray drying25.

Nevertheless, the potential of RW drying applied to encapsulation processes has been little explored. The 
encapsulation of orange oil by Refractance Window and spray drying was made by Cadwallader et al. (2010). 
Greater retention of orange oil was observed when using RW (75.7%) compared to spray drying (56.9%), and 
less formation of undesirable products such as “limonene oxide” was observed30. It is necessary to evaluate the 
potential of the Refractance Window drying as an encapsulation technology and to find the operational con-
ditions in which probiotic survival and a low moisture content are achieved. For this purpose, mathematical 
modeling is a commonly used tool31. Modified Gompertz32, Buchanan33 and Whiting-Buchanan models34 have 
been used to predict microbial thermal inactivation in isothermal conditions. Thin-layer models such as Lewis35, 
Logaritmic36 and Midilli37, among others, have been used to study drying kinetics and to estimate the drying time 
of a product31.

Therefore, the purpose of this work was to study and mathematically model the survival of Lactobacillus 
fermentum K73 and drying kinetics with the use of two encapsulation matrices to select the process conditions 
that allows a high cell viability and a lower content of humidity, and thus, to explore the use of RW drying as a 
technology to encapsulate probiotics.

Results
Refractance Window drying as encapsulation technology and mathematical modelling of sur-
vival curves. Figure 1 shows the behavior of Lactobacillus fermentum K73 and the loss of moisture during 
the drying process by using RW at the three different temperatures evaluated: 333, 343 and 353 K. The culture 
medium as an encapsulating agent was evaluated (without carrier material). The viability of the microorganism 
was constant during the initial drying phase up to 2400 seconds for the three temperatures (Fig. 1A,C,E). Then, a 
rapid decrease in cell viability was observed at 343 and 353 K (Fig. 1C,E). During the drying process at 333 K, after 
the first 2400 s, there was a cellular decrease of 3 logarithmic units until 3600 seconds, and then an “intermittent 
lag phase” of 1200 s followed by a decrease in cell viability until 6600 seconds was observed (Fig. 1A).

The medium with an increase in solids of 32% with maltodextrin and whey (with carrier material) was eval-
uated. Results showed that at 333 K there was a change in the cellular concentration. The cellular concentration 
presented a “cyclic” behavior during the drying process. First, the cellular concentration decreased 1.7 logarith-
mic units from 4200 s to 5400 s; second, it had a minimum variation from 5400 s to 9000 s; third, the cellular con-
centration decreased 0.9 logarithmic units until 9600 s; fourth, the cellular concentration slowly decreased 1.62 
logarithmic units until 14400 s of the drying process, finally, the minimum value of the cell count allowed by the 
sensitivity of the technique was recorded (1 Log CFU/g) at 15000 s (Fig. 1B). When the drying process was carried 
out at 343 K, it was observed that the cellular decrease was similar to that presented at a temperature of 333 K 
but with shorter cycles; between 6600 and 8400 s there is a decrease of 6.12 logarithmic units (Fig. 1D). Drying 
kinetics carried out at 353 K, showed that after 2400 seconds and until 4800 seconds a decrease of 8.55 logarithm 
units was observed (Fig. 1F).

Table 1 shows the values of the lag phase (L), the cell inactivation rate (k) and the statistical parameters used 
to evaluate the settings of the model. The Gompertz and Whiting & Buchanan models showed high values of 
R2 and adjusted R2 (R2 > 0.916–0.827, R2adj > 0.909–0.811) compared to the Buchanan model (R2 > 0.721, 
R2adj > 0.695). However, when the criteria “Sum of squares” and “Root mean squared error” were used to eval-
uate the settings of the model, it was observed that the Gompertz model presented the lowest values among the 
three evaluated models. Bias (Bf) and Accuracy factor (Af) were also used as quantitative indicators to measure 
the settings of the models. The Gompertz model and the Buchanan model showed results closer to 1 for bias and 
accuracy factor than the Whiting & Buchanan model.

The samples without carrier material dryed at 343 K and 353 K obtained Bf values from 0.554 to 1.622 and Af 
values from 1.056 to 2.105 for the Gompertz and the Buchanan models. On the other hand, the Bf values were 
0.091–1.0 and the Af velues 1–11.314 for the Whiting and Buchanan model on samples with carrier material 
dryed at 343 and 353 K. Bf and Af indicate a perfect “match” between the experimental and predicted data by the 
model when their values are 138. When the Bf values are above 1 or below 1, the predicted values can be overesti-
mated or underestimated39. Af must always be greater than or equal to 1, and the higher this value is the precision 
of the model is lost38. Consequently, the Gompertz model showed the closest values to 1 for Bf and Af in most of 
the evaluated conditions.

According to the results obtained from SS, RSME, R2, R2adj, Bf and Af, the Gompertz model was selected to 
study the behavior of L. fermentum K73 during the RW drying process. Figure 2 shows the experimental data 
settings (symbols) vs. the predicted data (solid line) by the model. As the process temperature increases, the cel-
lular inactivation rate (k) increases and the lag (L) phase decreases, which indicates the effect of temperature on 
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the viability of the microorganism. In contrast, k is greater and L is lower when the culture medium is used as an 
encapsulating agent in comparison with the maltodextrin—whey matrix. The above shows the protective effect of 
the carrier materials during the drying process as stated above.

Effect of temperature on the behavior of Lactobacillus fermentum K73. Table 2 shows the kinetic 
parameters, model parameters and the results of the linear regression analysis of the Gompertz-Arrhenius model. 
The lowest values of R2 and R2adj were observed when the model was applied to the drying kinetics of the micro-
organism (With carrier material: R2: 0.85, R2 adj: 0.848; Without carrier material: R2: 0.914, R2 adj: 0.912), which 
means that only 85% and 91% of the total variation can be explained by the model according to the type of 
carrier material. Additionally, the value obtained by Af was greater than 1 (Af = 1.319), which indicates that 
some experimental data differ from the predicted data (Liao et al.34). The lack of adjustment of the model can be 
explained by the difference of times of the lag phase, especially for the lowest assumed temperature (333 K). The 
lack of adjustment of this model, Gompertz-Arrhenius, was observed by Gil et al., when they were evaluating 
non-isothermal conditions with a slow heating treatment; they suggested improving the settings of the model by 
changing the sampling times, decreasing them in the initial phase and increasing them in the period of maximum 
inactivation rate40.

The values of the temperature-dependent parameters, k and L were calculated from equations 5 and 6 by using 
the values of the model parameters (Table 2). In contrast, Fig. 3 shows the effect of temperature on the behavior 
of L. fermentum K73 during the drying process.

Thin-layer mathematical modelling. The humidity rate data obtained from the drying process at 333 K, 
343 K and 353 K per RW of the matrices with and without carrier material were adjusted to eight thin-layer drying 
models. By means of the linear regression analysis, the parameters of each model and the statistical parameters 
(SS, RSME, R2 and R2adj) were determined and presented in Table 3. According to the results of the statistical 
parameters of all the thin-layer models for the evaluated conditions, the Midilli model showed the lowest values 

Figure 1. Refractance window drying of Lactobacillus fermentum K73 without carrier material (A,C,E) and 
with carrier material (B,D,F) at 333.15, 343.15 and 353.15 Kelvin.
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Model Temperature
Carrier 
material Parameter SS RMSE Bf Af R2 Adj R2

Gompertz model

333 K
With

k = 0.000596
1.907 0.595 1.039 1.137 0.934 0.931

L = 4278.217

Without
k = 0.00216

0.411 0.988 1.024 1.196 0.916 0.909
L = 2964.1

343 K
With

k = 0.00127
1.976 0.808 1.12 1.23 0.921 0.838

L = 3249.2

Without
k = 0.016335

10.545 0.572 0.554 1.88 0.996 0.996
L = 2937.045

353 K
With

k = 0.003608
15.754 3.176 0.799 2.105 0.984 0.982

L = 2710.274

Without
k = 0.018283

0.024 0.769 1.006 1.056 0.966 0.957
L = 2374.917

Buchanan model

333 K

With
D = 2426.7

5.491 0.731 1.118 1.428 0.942 0.94k = 0.000949
L = 1745.5

Without
D = 902

0.817 1.151 1.044 1.172 0.861 0.848k = 0.002553
L = 1296.2

343 K

With
D = 1189.5

1.036 1.136 1.137 1.248 0.904 0.898k = 0.001936
L = 1467.2

Without
D = 667

2.242 1.934 0.986 1.267 0.769 0.748k = 0.003452
L = 924.8

353 K

With
D = 679.3

11.87 1.248 1.622 1.801 0.882 0.871k = 0.00339
L = 1050.8

Without
D = 535

0.782 2.398 1.014 1.179 0.721 0.695k = 0.004304
L = 400.6

Whiting and 
Buchanan Model

333 K

With

F = 0.681749

0.057 0.189 0.98 1.144 0.989 0.988
b = 0.0590093
L = 3151.0998
c = 0.000986

Without

F = 0.6065192

1 0.623 0.988 1.164 0.951 0.946
b = 0.0046736
L = 2991.5256
c = 0.1928

343 K

With

F = 0.0000

4.165 0.851 0.822 1.452 0.827 0.811
b = 0.011974
L = 2356.3677
c = 0.0021641

Without

F = 0.9957

0 0.085 1 1 0.999 0.999
b = 0.0266
L = 2923.0074
c = 0.096638

353 K

With

F = 0.0000

5.711 0.275 0.091 11.314 0.99 0.989
b = 0.0171974
L = 2720.4911
c = 0.0083191

Without

F = 0.9928

1032.908 0.672 0.999 1 0.976 0.971
b = 0.0262
L = 2280.8472
c = 0.0966

Table 1. Kinetics parameters calculated by Gompertz, Buchanan, and Whiting and Buchanan models for 
the behavior of Lactobacillus fermentum K73 during Refractance Window drying and regression analysis. 
k = Inactivation rate (s−1), L = Lag phase (s), D = decimal reduction time (s), F = initial proportion in the 
less resistant fraction, b and c = model parameters, SS = Sum of squares, RSME = Root mean squared error, 
Bf = Bias factor, Af = Accuracy factor, R2 = R-squared, Adj R2 = Adjusted R-squared.
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of SS (0.008–8.945) and RMSE (0.018–0.308), and the closest values to 1 for R2 (0.981–0.996) and R2Adj (0.978–
0.994) (Table 2).

Figure 4 shows the evolution of the humidity rate as a function of the drying time at the three evaluated tem-
peratures, with and without carrier material. The drying time to reach balanced moisture content was 13800 s, 
9000 s and 7200 s at 333, 343 and 353 K for samples with carrier material (Fig. 4A); and for samples without carrier 
material 6000 s, 5400 s and 4800 s at 333, 343 and 353 K, respectively (Fig. 4B). In both types of samples, as the 
temperature of the water bath increases, the drying process is accelerated, decreasing the residence time of the 
mixture on the Mylar film sheet41. Moreover, it is observed an increase in drying times of 2.3 times, 1.66 times and 
1.50 times at 333, 343 and 353 K, respectively when using the mixture with maltodextrin and whey (with carrier 

Figure 2. Lactobacillus fermentum K73 kinetics during Refractance Window drying with carrier material (A) 
and without carrier material (B) at 333.15 °K (■), 343.15 °K (◆) and 353.15 °K (●) using Gompertz Model. 
Comparison between experimental (symbols) and predicted (lines) values. N = cell density at any time, 
N0 = initial cell density.

Carrier material
Temperature Dependent 
parameters Model parameters SS RMSE Bf Af R2 Adj R2

With

333 K
k = 0.203 a = 1553827.348

10.21 1.127 1.095 1.319 0.850 0.848
L = 7612.7 b = 11346.132

343 K
k = 0.4545 c = 0.0005

L = 2821.68 d = 313

353 K
k = 0.8060

L = 1106.34

Without

333 K
k = 0.0003 a = 47631.089

5.787 1.303 1.137 1.266 0.914 0.912
L = 3979.48 b = 5295.4891

343 K
k = 0.1856 c = 0.002

L = 2504.12 d = 332.7

353 K
k = 0.711

L = 1617.62

Table 2. Kinetics parameters and regression analysis results calculated by Gompertz-Arrhenius model, for the 
behavior of Lactobacillus fermentum K73 during Refractance Window drying process under non-isothermal 
conditions. k = Inactivation rate (s−1), L = Lag phase (s), SS = Sum of squares, RSME = Root mean squared 
error, Bf = Bias factor, Af = Accuracy factor, R2 = R-squared, Adj R2 = Adjusted R-squared.
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material) compared to the culture medium as carrier material, showing the effect of the solids concentration of 
the mixtures regarding the time and the drying rate.

The equation describing the Midilli model is shown in Table 3. Where kd is the constant of the drying rate 
(s−1), t is the time (s), and a, n and b are the shape parameters of the model. The value of the drying constant, k, 
is greater in the mixture with carrier material than in the mixture without carrier material, and increases with 
higher water bath temperature (Table 3), which is consistent with the drying kinetics (Fig. 4).

Discussion
The present work studied the RW drying technology as an alternative for the encapsulation process of probi-
otics with promising results using the survival matematically models and thin layer models to find the optimal 
conditions. Survival of the microorganism Lactobacillus fermentum K73 after the drying process is essential to 
obtain a product able to be used as a probiotic. The probiotic potential of the Lactobacillus fermentum K73 has 
been demonstrated by Cueto et al.42 In addition, this microorganism has a hypocholesterolemic effect to adsorb 
cholesterol on its cell membrane and for the activity of the bile salt hydrolase enzyme11

The survival curves of the L. fermentum K73 had a cyclic behavior. This type of “cyclic” behavior that occurred 
in the kinetics of drying with and without carrier material is called “intermittent lag phase”, and has been reported 
by different authors when studying non-isothermal conditions during cell growth43–45. The intermittent lag phase 
is related to an immediate adjustment of the microbial population to a new processing temperature45. Zotarelli et 
al.23 demonstrated, through a thermographic study, that a temperature gradient in the food matrix occurs when 
dried by RW at 368 K (water bath temperature). When placing the food matrix on the Mylar film, the temperature 
of the product rises to 346.35 K in the first 300 s of drying and to 361.65 K after 900 s of the drying process23.

Zotarelli et al.23 showed a drying process with similar conditions as the reported on this study (12°Brix, food 
matrix thickness of the 3 mm, and Mylar film thickness of the 0.33 mm) with a difference in the composition 
of the products to be dried. Consequently, if it is considered that during the drying process there is a gradual 
increase in temperature, the following four events could be generated in co-occurrence or in a combination of 
them. First, during the drying process at 333 K the increase in temperature in the encapsulation matrix could be 
slower than at 343 and 353 K, allowing the microorganism to adapt for short periods of time to the increase in 
temperature, generating the intermittent lag phase46,47. Second, the encapsulation matrix with carrier material 
had a protective effect during the drying process independently of the processing temperature. The hydrophilic 
groups of the denatured whey proteins from the culture medium (sterilized at 394 K for 900 s) could interact with 

Figure 3. Effect of temperature on the behavior of L. fermentum K73 with (a) and without (b) carrier material, 
simulation of Gompertz-Arrhenius model (Eq. 7).
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Model and equation Temperature Carrier material Parameter SS RMSE R2 Adj R2

Lewis
333 K

With kd = 0.000397 20.485 0.811 0.682 0.670

MR = exp (−kd t)61 Without kd = 0.0204 25.000 0.699 0.884 0.873

343 K
With kd = 0.0224 6.011 0.056 0.975 0.973

Without kd = 0.0252 48.199 0.142 0.879 0.868

353 K
With kd = 0.0269 0.056 0.022 0.993 0.992

Without kd = 0.0332 53.135 0.141 0.909 0.901

Page

333 K

With
kd = 0.067

0.019 0.027 0.987 0.986
MR = exp (−kd tn)62 n = 0.740

Without
kd = 0.00257

23.458 0.727 0.899 0.889
n = 1.32

343 K

With
kd = 0.0746

0.169 0.018 0.992 0.992
n = 0.7013

Without
kd = 8.345E-
08 0.018 0.027 0.993 0.992
n = 4.3697

353 K

With
kd = 0.0207

0.106 0.018 0.993 0.993
n = 1.0684

Without
kd = 0.00257

1.968 0.405 0.757 0.735
n = 1.32

Henderson & Pabis

333 K

With
a = 0.905

6.204 0.042 0.971 0.970
MR = a exp(−kd t)63 kd = 0.0213

Without
a = 1.2122

0.053 0.305 0.866 0.854
kd = 0.0241

343 K

With
a = 0.8958

2.915 0.041 0.966 0.964
kd = 0.0197

Without
a = 1.1973

43.453 0.110 0.867 0.854
kd = 0.029

353 K

With
a = 1.0188

0.053 0.018 0.993 0.992
kd = 0.0272

Without
a = 1.1657

4.633 0.128 0.903 0.894
kd = 0.0373

Logaritmic

333 K

With

a = 0.9008

9.868 0.038 0.973 0.972MR = a exp (−kd t) + c64 kd = 0.0246

c = 0.0318

Without

a = 1.8749

2.617 0.305 0.898 0.889kd = 0.0101

c = −0.7257

343 K

With

a = 0.8659

0.391 0.029 0.982 0.981kd = 0.0303

c = 0.1004

Without

a = 1.4758

13.000 0.099 0.886 0.875kd = 0.0174

c = −0.321

353 K

With

a = 1.0242

0.063 0.018 0.993 0.992kd = 0.0267

c = −0.0078

Without

a = 1.2645

8.848 0.120 0.910 0.902kd = 0.0293

c = −0.1197

Two terms exponential

333 K

With
a = 0.2463

3.225 0.032 0.985 0.984MR = a exp (−kd t) + (1 − a) exp (−kd 
a t)65 kd = 0.0755

Without
a = 2.4621

26.000 0.866 0.946 0.941
kd = 0.0381

343 K

With
a = 0.2481

1.615 0.029 0.987 0.986
kd = 0.0699

Without
a = 2.4602

25.012 0.074 0.940 0.935
kd = 0.0455

Continued
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Model and equation Temperature Carrier material Parameter SS RMSE R2 Adj R2

353 K

With
a = 1.4949

0.008 0.018 0.993 0.992
kd = 0.0317

Without
a = 2.5047

1.545 0.070 0.971 0.968
kd = 0.061

Diffusion approximation

333 K

With

a = −0.0267

19.713 0.053 0.971 0.970MR = a exp(−kd t) + (1 − a)exp (−K b t)66 kd = 0.0068

b = 3.0378

Without

a = 1.2767

40.000 0.866 0.889 0.879kd = 0.0185

b = 0.9013

343 K

With

a = 0.5237

0.113 0.016 0.993 0.994kd = 0.0121

b = 5.343

Without

a = 0

0.382 0.121 0.879 0.868kd = 0.0219

b = 1.1534

353 K

With

a = 0

0.009 0.019 0.993 0.992kd = 0.0226

b = 1.1859

Without

a = 0.000

0.238 0.309 0.909 0.901kd = 0.02512

b = 1.3215

Midilli

333 K

With

a = 0.999

0.019 0.027 0.987 0.986
MR = a exp(−kd tn) + bt67 kd = 0.0215

n = 0.741

b = 0.000

Without

a = 1.016

8.945 0.058 0.981 0.978
kd = 1.4169E-
7

n = 3.141

b = 0.0001

343 K

With

a = 1.00519

0.166 0.018 0.992 0.992
kd = 0.067

n = 0.6978

b = 0

Without

a = 0.9715

0.017 0.026 0.992 0.991
kd = 5.33E-06

n = 4.2102

b = 4.1595E-
14

353 K

With

a = 1.0069

0.008 0.018 0.993 0.993
kd = 0.07609

n = 1.0598

b = 0.000

Without

a = 0.997

0.070 0.308 0.996 0.994
kd = 7.144E-
06

n = 3.4433

b = 0.000107

Verma

333 K

With

a = 0.604

0.017 0.025 0.989 0.988MR = a exp (−kd 0 t) + (1 − a) exp (−kd 

1 t)68 kd 0 = 0.0149

kd 1 = 0.0789

Without

a = 4.823

1.075 0.866 0.878 0.867kd 0 = 0.00295

kd 1 = 0.0016

Continued
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the other components of the carrier material (maltodextrin and whey) resulting in the formation of a “gel-like” 
thin layer, which protects the microorganism from the migration of intracellular water to the environment48,49. 
Third, during the RW drying, the energy transfer is carried out by conduction, radiation and, to a lesser extent, 
convection50. The energy transfer by conduction increases the temperature in the sample (Zotarelli et al.23) and 
it could generate an increase in the cell inactivation rate (Table 2-Gompertz Model), decreasing the time of the 
initial lag phase (Table 2-Gompertz Model) and loss of moisture content in the sample (Figs 1 and 4). In con-
trast, the transfer of energy by radiation from the plastic to the Mylar film is easier, when the refraction between 
film-sample interfaces is reduced (sample with high moisture content, 92.4 ± 0.001% (wet basis)), cell viabil-
ity decreases rapidly, especially in samples without carrier material24. Finally, cell death can be generated by an 

Model and equation Temperature Carrier material Parameter SS RMSE R2 Adj R2

343 K

With

a = 0

43.971 0.536 0.775 0.761kd 0 = 0.00295

kd 1 = 0.0016

Without

a = 8.0139

0.283 0.104 0.885 0.874kd 0 = 0.0094

kd 

1 = 0.008007

353 K

With

a = 1.9784

0.008 0.018 0.993 0.992kd 0 = 0.0212

kd 1 = 0.0168

Without

a = 14.6764

0.859 0.309 0.911 0.903
kd 0 = 0.01654

kd 1 = 0.01570

kd 2 = 0.037

Table 3. Parameters and statistical results of thin-layer mathematical models for the moisture rate of the 
Refractance Window drying process. SS = Sum of squares, RSME = Root mean squared error, R2 = R-squared, 
Adj R2 = Adjusted R-squared.

Figure 4. Thin layer Refractance Window drying curves of L. fermentum K73 with (A) and without (B) carrier 
material. Comparison between experimental (symbols) and predicted (lines) values of moisture ratio using the 
Midilli model for 333.15 K (■), 343.15 K (◆) and 353.15 K (●).
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increased in the destabilization of the cell membrane, induction of “lyotropic membrane transition” from a crys-
talline liquid phase to a gel phase (permeabilization of the cell membrane) and increased contact with the oxygen 
molecules in the environment, creating reactive oxygen species at intracellular level51,52.

The Gompertz, Buchanan and Whiting & Buchanan models were used to study the behavior of the micro-
organism during the drying process. The Gomperzt-Arrhenius model (Equation 7) presented in this study cor-
responds to the derivation and simplification of the model developed by Gil et al.40, which has been reported 
to describe microbial inactivation as a function of temperature and time40. The model was applied under the 
assumption that cell growth or regeneration does not occur during the drying process. Results showed that by 
increasing the temperature and drying time, cell viability decreased. It was also observed that the addition of 
carrier materials favored the survival of the microorganism within the range of the evaluated temperatures. These 
results being consistent with the analysis of the Gompertz model under isothermal conditions, aforementioned. 
On the other hand, when increasing the temperature, there was an increase in the cell inactivation rate (k) and 
a decrease in the lag phase (L) independent of the use or not of the carrier material. However, when no car-
rier material was used, the rapid increase in k and the decrease in L generated a steep cell survival curve that 
resembles a straight line. This correlation of the kinetic parameters with the shape of the curve was similar to 
that reported by Corradini et al. (2007) who modeled heat inactivation under non-isothermal conditions for 
Salmonella enteritidis47.

The thin layer models were evalued to study the drying kinetics. The Midilli model was selected as the suitable 
thin-layer model to predict the characteristics of the drying process of the mixtures with and without carrier 
material in the encapsulation process of Lactobacillus fermentum K73 through RW. The aforementioned shows 
the effect of the solids concentration on the drying process. The total solids of the culture medium (8%) increased 
with maltodextrin and whey (40%), decreasing the initial moisture content and prolonging the drying times53.

According to the drying kinetics, it can be observed that the difference in drying is more noticeable during 
the initial stages of the process when the greater amount of water in the product is removed. During the drying 
process, the interaction between the denatured whey (from the culture medium) with the maltodextrin and the 
whey (present in the samples with carrier material), form a pseudo-viscous layer that obstructs the migration of 
water from inside the sample with carrier material to the surrounding environment, which increases the drying 
times. In addition, it is observed how the increase in temperature favors the migration of water from the product 
by transferring heat from the circulating water54, the aforementioned is observed in the increase of kd as tempera-
ture increases. The use of the modified Midilli and Gompertz model allowed observing that there is a correlation 
between the drying rate (kd) and the cellular inactivation rate (k). When the drying temperature increases, kd and 
k increase, which indicates that the faster the moisture in the product is lost, the faster the cell death rate increases 
in the product. The above is consistent with the phenomena aforementioned, where it is stated that cell death can 
be caused by the migration of water from the microorganism to the environment.

The selection of the drying condition that favored the encapsulation process was defined under the following 
criteria: (i) 6 Log CFU/g as the minimum cell concentration required for the consumption of a probiotic product 
(Pan et al. 2014) and (ii) moisture content less than 10%. The modified Gompertz model was used to calculate 
the time in which 6 Log CFU/g was obtained in both encapsulation matrices, then, the Midilli model was used 
to calculate the humidity at that time. Results showed that when using the culture medium without carrier mate-
rial a moisture content between 3.5% and 9.3% is acquired compared to the matrix with carrier material where 
the moisture content was between 11.9–16.3% for the three processing temperatures. Therefore, the use of the 
medium as an encapsulation matrix allows obtaining a product with a moisture content of less than 10%. In 
contrast, the Midilli model was used to determine the time in which the moisture content was 10% in the matrix 
without carrier material, and then the cell concentration was calculated with the Gompertz modified model at 
that specific time. Results showed that at a drying temperature of 353 K, it is obtained 9.1 Log CFU/g with a mois-
ture percentage of 10% at 2460 s of drying time, this being the condition that simultaneously meets the proposed 
criteria.

Finally, the viability of the microorganism was affected by the increase in drying temperature, the drying time 
and the encapsulation matrix. It was possible to determine the moment in which the concentration of the micro-
organism is ideal for obtaining a probiotic product with low moisture content (≤10% (wet basis)) and without the 
addition of carrier materials, which is represented in the low costs of preparation and processing of the product. 
The modified Gompertz model and the Gompertz-Arrhenius model were used as a tool to study the behavior of 
the microorganism during the drying process. The models were consistent in predicting that the cell inactivation 
rate increases and the Lag phase decreases as the drying temperature increases, independently of the use or not 
of carrier material. In contrast, the use of the Midilli model allowed to model the drying kinetics of both types 
of products; the drying and the cellular inactivation constant, respectively, showed to have a relation regarding 
the moisture loss speed with respect to the cell death speed. The process parameters determined for a successful 
encapsulation process were: 353 K, without carrier material and 2460 seconds of drying time. To this condition 
a product with 9.1 Log CFU/g and moisture content of 10% is obtained. With this result, it is proved that the 
Refractance Window drying can be a technically viable technology for the encapsulation of probiotics.

Methods
Materials. Agar and broth MRS (Man, Rogosa, Sharpe) and peptone water were obtained from Sharlau 
Microbiology (Barcelona, Spain). Yeast extract and maltodextrin were purchased from Oxoid Limited (England) 
and Shandong WNN Industrial Company Ltd (Shandong, China), respectively. Sweet whey was composed by: 
protein 11.67% (w/w), lipids 2.0% (w/w), carbohydrates 51.64% (w/w), ashes 10.9% (w/w) and was acquired from 
a local diary company (Cundinamarca, Colombia).
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Strain and culture conditions. Lactobacillus fermentum K73 (GenBank KP784433) was isolated from 
suero costeño (typical Colombian food) and characterized as a potential probiotic11,42. The strain was stored at 
−80 °C with 20% sterilized glycerol as crioprotectant in MRS broth42. L. fermentum K73 was propagated two 
times in MRS broth at 37 °C for 24 hours before the experiment was carried out.

The culture medium was prepared with 8% sweet whey and 0.22% yeast, and it was adjusted to pH 5.5 and 
sterilized at 121 °C for 15 min. The fermentation process was carried out in 1 L bioreactor with a workload of 
800 mL at 37 °C and agitation at 100 rpm for 10 h. L. fermentum K73 was inoculated at 10% (v/v). The cell count 
was done after the fermentation process as shown in section Microbiological analysis.

Encapsulation matrices. The drying process was carried out with the culture medium with and without 
carrier material.

With carrier material. Powder mixture of maltodextrin and sweet whey (0.6:0.4) was hydrated with the culture 
medium with grown microorganisms. The final solids concentration was 40%. The carrier material was fixed 
according to the reported by Aragon-Rojas et al.55, where an optimization of the carrier material content was 
developed. The mixture was homogenized with magnetic stirrer during 30 minutes at 130 rpm. Cell count was 
done as described in section Microbiological analysis after the homogenization process. The final cell count was 
8.99 ± 0.145 Log CFU/g.

Without carrier material. The culture medium was dried with the purpose to evaluate the potential as carrier 
material. The final solids concentration was 8% and the final cell count was 9.19 ± 0.203 Log CFU/g.

Refractance Window drying. A Laboratory-scale Refractance Window dryer was used with the same prin-
ciple as industrial equipment24,56. The RW consists of a tray (0.9 m by 0.6 m) with the Mylar film (D type, DuPont, 
USA) at the top. Hot water (333 K, 343 K, 353 K) comes from the thermostatic bath and circulates to the con-
tainer. All samples were placed on the Mylar film as a thin layer of 3 mm. Samples were taken each 10 minutes for 
microbiological analysis (section Microbiological analysis) and moisture content determination (section Moisture 
content determination) until the drying process was completed.

Microbiological analysis. The plate count method was used to determine the number of viable probiotic. 
Serial 1:9 dilution in peptone water (0.1% w/v) and spread plating on MRS agar were performed57. The first 
dilution was homogenized by using a vortex during 10 min. The samples were incubated at 37 °C, during 24 h in 
aerobic conditions11. The result was expressed as colony forming units (CFU) per gram.

Moisture content determination. The initial moisture content and the moisture loss from samples during 
drying were determined by oven method at 105 °C until constant moisture58. Approximately 1 g was taken from 
the Mylar film with a spatula for each sample extraction.

Mathematical modelling of survival curves. Three models were chosen to evaluate the behavior of 
Lactobacillus fermentum K73 during the drying process: Gompertz, Buchanan, and Whiting and Buchanan 
model.

Gompertz model is used to describe log-linear kinetics as well as those containing shoulder and/or tailing 
effects32,40. The model is described by the equation 1 (Eq. 1):
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Where N represents the cell density at time (t) in seconds, N0 and Nf are the initial and final cell density respec-
tively, k the maximum inactivation rate constant and L is the parameter time (the shoulder).

Buchanan model is used to fit the data in a log-linear function with the presence of a shoulder as a lag time 
before to start the decline cell death59, the equation (Eq. 2) is the following:
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Where N(t) is the cell density at time (t, seconds), N0 is the initial cell density, t is the time in seconds, L is the 
duration of lag period prior to initiation of inactivation (seconds), and D is the D value or decimal reduction 
time59. D value was used to find k (death rate constant): k = ln(10)/D33.

Whiting and Buchanan model fit the sigmoidal curves with or without shoulder and tail, so it can be used to fit 
six different kinds of microbiological behavior33. Equation 3 describes the model:
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Where Nt is the cell density at time (t, seconds), N0 is the initial cell density, t is the time in seconds, L is the 
duration of lag period prior to initiation of inactivation (seconds), F is the initial proportion in the less resistant 
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fraction, (1 − F) is the more resistant fraction, b is the inactivation rate of the major population group and c is the 
inactivation rate of the minor population group.

Effect of temperature on the behavior of Lactobacillus fermentum K73. The modified Gompertz 
model40 was selected to describe the behavior of the microorganism in function of time varying temperature 
(Eq. 4).
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N0 and Nf represent the initial and final cell density respectively, L is the time parameter of the duration of lag 
period (seconds) and k is the maximum inactivation rate constant. The parameters L and k are dependent of the 
temperature. The Arrhenius – Type equation (Eq. 5) describes the effect of the temperature on L:
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T is the temperature in Kelvin, Tref is a fixed reference temperature, and a and b are parameters of the model.
Equation 6 is used to relate the inactivation rate constant with the temperature59, where c and d are parameters 

and T is the temperature in Kelvin:

= −k c T d( ) (6)2

The integration of equations 4, 5 and 6, result in a mathematical model (Gompertz and Arrhenius model) that 
allows describing the amount of the cell density through time in three different temperatures (Eq. 7):
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Mathematical modelling of thin-layer drying. The drying curves obtained were fitted with eight dif-
ferent thin-layer drying models shown in Table 3. The moisture ratio (MR) in these model equations (Eq. 8) were 
defined as follows:

=
−
−

MR M Me
Mo Me (8)

Where M, Mo and Me were instantaneous, initial and equilibrium moisture contents, respectively.

Statistical analysis. The experimental data from Refractance Windows experiments (Microbiological anal-
ysis and Moisture content determination) were fitted in the mathematical models showed in Table 1 and Table 2. 
The nonlinear regression analysis was conducted by SAS software version 2.0.4 (SAS Institute, Inc., Cary, North 
Carolina). Bias factor (Bf) (Eq. 9) and Accuracy factor (Af) (Eq. 10) were used to fit the mathematical models 
from Table 1 60.
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Sum of squares (SS), Root mean squared error (RSME), R-squared (R2), R-squared adjusted (R2adj) were used 
as criteria to assess the goodness-of-fit of microbial and thin-layer drying kinetic models to experimental data.
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