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Abstract The Arctic is experiencing rapid climate change in response to changes in greenhouse gases,
aerosols, and other climate drivers. Emission changes in general, as well as geographical shifts in
emissions and transport pathways of short‐lived climate forcers, make it necessary to understand the
influence of each climate driver on the Arctic. In the Precipitation Driver Response Model Intercomparison
Project, 10 global climate models perturbed five different climate drivers separately (CO2, CH4, the solar
constant, black carbon, and SO4). We show that the annual mean Arctic amplification (defined as the ratio
between Arctic and the global mean temperature change) at the surface is similar between climate drivers,
ranging from 1.9 (± an intermodel standard deviation of 0.4) for the solar to 2.3 (±0.6) for the SO4

perturbations, with minimum amplification in the summer for all drivers. The vertical and seasonal
temperature response patterns indicate that the Arctic is warmed through similar mechanisms for all
climate drivers except black carbon. For all drivers, the precipitation change per degree global temperature
change is positive in the Arctic, with a seasonality following that of the Arctic amplification. We find
indications that SO4 perturbations produce a slightly stronger precipitation response than the other drivers,
particularly compared to CO2.

1. Introduction

Both observations and climate models indicate that the temperature increase in the Arctic has been
substantially larger than the globally averaged warming since preindustrial times (Cowtan & Way, 2014;
Hartmann et al., 2013; Holland & Bitz, 2003). This phenomenon is known as Arctic amplification (AA).
Locally, the AA involves pronounced reductions in sea ice cover (AMAP, 2017; Kay et al., 2011; Notz &
Stroeve, 2016), increasing Arctic methane emissions from permafrost degradation (Anthony et al., 2016),
changes to the mass balance of glaciers and ice sheets (Shepherd et al., 2012), and detrimental influences
on Arctic ecosystems (Hinzman et al., 2013) and indigenous peoples (IPCC, 2014). Future changes in
shipping and other anthropogenic activities within the Arctic (Peters et al., 2011) can induce further climate
change and health impacts in this sensitive region. The strong Arctic warming can also have far‐reaching
global implications (Zappa et al., 2018). For instance, there are signs that enhanced melting of Arctic sea
ice and glaciers influences the Atlantic overturning circulation (Caesar et al., 2018; Yang et al., 2016).
Cohen et al. (2014) and Coumou et al. (2018) point out that the AA can influence midlatitude weather via
changes in storm tracks, the jet stream, and planetary waves and their associated energy propagation.
Similarly, teleconnections between the Arctic and the Asian continent have been demonstrated through
influences on the winter monsoon (Gong et al., 2001) and on the frequency of unusually hard winters
(Kug et al., 2015) in East Asia.
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The AA is caused by local forcings and feedbacks as well as by remote forcing, but the relative importance of
these impacts is still debated. While previous investigations commonly attributed the main cause of AA to
the snow and ice albedo feedbacks (Hall, 2004; Manabe & Stouffer, 1980), an idealized model experiment
by Alexeev et al. (2005), in which the surface albedo was fixed, demonstrated that poleward energy transport
from lower latitudes alone could create an AA. The importance of lower‐latitude impacts on the Arctic
through transport of heat and moisture has been stressed by many studies (Graversen & Wang, 2009;
Screen et al., 2012; Yoshimori et al., 2017), and a recent analysis by Yoshimori et al. (2017) found that the
effect of remote forcing is predominant in the Arctic warming. Other studies report that the AA is dominated
by local forcings and feedbacks (Stuecker et al., 2018) and point to the importance of processes such as the
water vapor and cloud feedbacks (Graversen & Wang, 2009) or the lapse‐rate and Planck feedbacks (Pithan
& Mauritsen, 2014), in addition to the ice albedo feedback (Laîné et al., 2016; Screen & Simmonds, 2010).
Whether or not local processes dominate, the possibility of an influence from forcing at lower latitudes
remains. This makes the origin of this forcing relevant, as homogeneously distributed greenhouse gases
and highly regional aerosols may influence the AA differently.

While several multimodel studies based on Coupled Model Intercomparison Project Phase 5 (CMIP5) mod-
els have focused on the Arctic (Barnes & Polvani, 2015; Clara &Dirk, 2017; Franzke et al., 2017; Huang et al.,
2017), none have, to our knowledge, looked at different drivers independently. The Precipitation Driver
Response Model Intercomparison Project (PDRMIP) (Myhre et al., 2017) provides a unique data set that
allows for investigations into climate responses to separate and clearly defined climate drivers, such as
greenhouse gases or aerosols, in a multimodel framework. This has led the way for several studies that have
investigated various aspects of climate driver‐response relationships from a global perspective (Liu et al.,
2018; Samset et al., 2016; Samset et al., 2018; Stjern et al., 2017). Here we use the PDRMIP data set to analyze
the climate response in the Arctic (defined as the region north of 60°N). Our main objective is to see whether
clear differences exist with respect to how different climate drivers influence the Arctic. We do this by pro-
viding descriptive accounts of how changes to precipitation and the AA vary between the drivers. Our main
focus is on experiments where the drivers are perturbed globally, but we also examine the response to iso-
lated perturbations of aerosols in two different source regions. For aerosols and other short‐lived climate dri-
vers, the location of emissions can be important to the subsequent impact on global and regional climate
(Lund et al., 2014; Sand et al., 2013; Sand et al., 2016; Screen et al., 2012; Shindell et al., 2008; Yang et al.,
2018). Wobus et al. (2016) find that different future emission scenarios produce large variations in the result-
ing Arctic temperature change. Hence, as future changes in emissions and transport pathways (Jiao &
Flanner, 2016) may shift the role of drivers, and their sources, in Arctic climate change, quantifying regional
dependence of the forcing and response relationship is important. Combined, this will improve our under-
standing of the processes governing Arctic climate change today and allow us to make more informed pre-
dictions for future changes under various emission pathway scenarios.

The next section gives an account of the data and methodology used in the present analyses. Section 3 shows
spatially and temporally resolved Arctic temperature responses to global perturbations of five climate dri-
vers, including a quantification of the slow temperature‐driven feedback response. A similar account of pre-
cipitation responses is given in section 4, including an energy budget analysis of differences between drivers.
A separate analysis of Arctic responses to regional aerosol perturbations is presented in section 5. Results are
discussed in section 6 and summarized in section 7.

2. Methods

The PDRMIP data set is described in detail by Myhre et al. (2017). Briefly, 10 global climate models per-
formed experiments where five different climate drivers were perturbed separately. Relative to a baseline,
the perturbations involved a doubling of CO2 concentrations (CO2x2), a tripling of CH4 concentrations
(CH4x3), a 2% increase in the solar constant (SOL), a 10‐fold increase in black carbon (BC) concentrations
or emissions (BCx10), and a fivefold increase in SO4 concentrations or emissions (SO4x5), respectively. In
addition, seven of the models (see Table S1 in the supporting information) performed three regional experi-
ments, which simulated the effects of a 10‐fold increase in BC over Asia (BCx10asia) and in SO4 over Asia
and Europe (SO4x10asia and SO4x10europe). Here, Asia was defined as 10–50°N and 60–140°E and
Europe as 35–70°N and 10–40°E. These results will be described in section 5.
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All perturbations were instantaneous, and simulations were performed in two modes for both the baseline
and perturbed states:

1. A fully coupled mode, for which equilibrium simulations were run for 100 years. Years 51–100 were used
in our analyses. These simulations give the total climate response.

2. A setup with fixed sea surface temperatures (fixed‐SST), which were run for 15 years. Years 6 to 15 were
used in the analyses. These simulations give the fast (on the order of days to months) climate response.

The baseline represents present‐day conditions focused at the beginning of this century (except HadGEM2‐
ES, which used preindustrial conditions), but the exact year and emission data set used varies slightly
between models (see Table S1). For the aerosol experiments, five of the models (Table S1) performed
concentration‐driven simulations using identical aerosol concentrations based on the year 2000 monthly
multimodel mean of the models in AeroCom Phase II (Myhre et al., 2013; Samset et al., 2013) as a baseline.
Of the remaining models, one was not able to perform aerosol perturbations at all, while four used present‐
day aerosol emissions as a baseline. In the emission‐driven models, responses to the increase in aerosols
(e.g., increased precipitation) can feedback on the aerosol concentrations (e.g., increased wet removal of
the aerosols) and potentially dampen or amplify the change. Sand et al. (2015) found in a comparison of
emission‐driven and concentration‐driven BC perturbation experiments that Arctic responses were stronger
in the emission‐driven simulations. These model differences will therefore be kept in mind in the
subsequent analyses.

The 10 models represent a selection of Earth system models with a broad variation in schemes and formula-
tions. Three of the models include a representation of the radiative impact of BC on snow (Table S1).
Furthermore, microphysical aerosol interactions with clouds (aerosol indirect effects) is accounted for in
eight models (three of these also include an indirect effect of BC).

The fixed‐SST simulations were utilized to calculate effective radiative forcing (ERF) as recommended in
Forster et al. (2016), that is, the change in net radiative longwave (LW) plus shortwave (SW) fluxes at the
top of atmosphere. As indicated above, the fixed‐SST simulations are also used to study the fast (on the order
of days to months) response of the climate system to the initial perturbation, also referred to as rapid adjust-
ments. The total climate response, often (but not always) dominated by the surface‐temperature change, is
derived from the coupled simulations. These two sets of simulations then allow us also to extract the pure
surface temperature‐driven feedback response (also referred to as the slow response) as the total response
minus the fast response.

3. Arctic Temperature Responses to Global perturbations

In this section, we document and discuss the Arctic temperature responses to the global perturbations. We
cover annual mean and seasonally resolved surface responses, the separation between rapid responses and
global surface temperature driven changes, and the vertical structure of the temperature response. We then
conclude the section with a discussion on intermodel differences due to the inclusion of radiative effects of
BC on snow in some of the models.

3.1. Annually and Seasonally Resolved Temperature Responses

As shown in previous PDRMIP studies (Myhre et al., 2017; Samset et al., 2016; Stjern et al., 2017), the differ-
ent perturbations cause very dissimilar responses in global mean temperature and ERF, with model mean
warming (and ERF) varying from 2.45 (3.78 W/m2) for CO2x2 to 0.61 K (0.66 W/m2) for BCx10. To facilitate
comparison between the different climate drivers, Figure 1 shows changes per degree global temperature
change in Arctic surface temperature (the AA) and precipitation for each given model and experiment.
Hatched bars indicate the regional aerosol perturbation experiments, which will be discussed in section 5.
For absolute changes for individual models, the reader is referred to Figure S1. Note here and throughout
the paper that an increase in SO4 gives a positive normalized temperature (and precipitation) change since
the negative response it causes in the Arctic is normalized by a negative global temperature change. The hor-
izontal grey line shows the average AA of the five global perturbations.

We find that the AA is not significantly different (at the 95 % confidence level, by using a Student's t‐test)
between any of the global experiments. The multi‐model median AA ranges from 1.9 (SOL; ± an inter‐
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model standard deviation of 0.4) to 2.3 (SO4x5; ± 0.6) between the drivers. The horizontal grey line shows
the average AA of the five global perturbations, and none of the solid bars deviate much from this line.
Note, however, that the inter‐model spread is substantially larger than the differences in model median
AA between experiments. This inter‐model range is partly due to the large spread in Arctic responses, but
also due to large model differences in the global response. For instance, the outlier in the upper panel of
Figure 1 is CESM‐CAM5, for which a very small global response to the BCx10 experiment produces an
anomalously high AA. CESM‐CAM5's weak temperature response is linked to the model's short BC
lifetime for the BCx10 experiment (Stjern et al., 2017). With a few exceptions, we find that models with an
above‐average AA for one driver tend to have high values for all drivers (and vice versa). This means that
the tendency of similar AA regardless of driver is found both for the multimodel medians and for
individual models.

The AA is smallest during summer for all the climate drivers (Figure 1, upper rightmost panel). That ampli-
fication is weakest during Arctic summer is well documented elsewhere: in studies based on realistic histor-
ical or future scenarios with emission changes in both greenhouse gases and aerosols (Acosta Navarro et al.,
2016; Laîné et al., 2016; Screen et al., 2012), in single‐perturbation experiments of, for example, SO4 (Yang
et al., 2018) or CO2 (Yoshimori et al., 2017), and in observations (Graversen et al., 2008). The positive ice
albedo feedback is strongest in spring and summer but is counteracted by strong energy uptake by the
Arctic ocean (Laîné et al., 2016), as well as by an increase in evaporation (Acosta Navarro et al., 2016;
Laîné et al., 2016) and potentially also cloud responses (Crook et al., 2011; Yoshimori et al., 2017). During
winter, conversely, the warming from heat release by the ocean is strengthened by positive cloud and lapse
rate feedbacks (Laîné et al., 2016; Sejas et al., 2014). The dominating mechanisms contributing to this seaso-
nal cycle differ between land and ocean surfaces, with the tendency for a stronger seasonal AA cycle over
oceans (Laîné et al., 2016). Here we confirm that this seasonality is not a greenhouse gas‐specific response
but is in fact climate driver independent. To study the land/ocean contrast in seasonality, we have

Figure 1. Responses in temperature and precipitation (normalized by the global mean temperature change) to perturbations in the five climate drivers, averaged
over the Arctic (all area north of 60°N). Bars show annual model median values, and individual model values are shown as circles. The mean of the model‐median
values for the global cases is shown as a thick grey line. Horizontal bars indicate ± one standard deviation, and triangles are used to indicate when standard
deviations are outside the range of the axes limits. Graphs show monthly mean changes (for the global experiments only).
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repeated the analysis behind Figure 1 for Arctic land‐only and ocean‐only responses. Figure S2 shows that
the annually averaged AA is consistently stronger over ocean than over land, supporting Laîné et al.
(2016). This is true for all drivers. We note that the land/ocean difference can partly be an effect of
latitude: the higher Arctic (where AA is found to be stronger; see Figure 2) consists mostly of oceans
while lower latitudes include much more land. Interestingly, over Arctic land surfaces, there seems to be
a secondary maximum in spring/early summer for BCx10. This is potentially related to the inclusion of

Figure 2. Multimodel median spatial patterns of (a) Arctic amplification and (b) precipitation changes normalized by global mean temperature change in the Arctic
region, for each of the global experiments.
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the radiative effect of BC on snow (which is strongest in this season) in some models—see section 3.4 for
further discussion.

3.2. Separating AA Into Rapid Responses and Feedbacks From Global Temperature Change

A key methodology in PDRMIP is to separate the climate response to an instantaneous perturbation into
rapid responses (diagnosed from fixed sea‐surface temperature simulations) and the slow feedback response
to a change in global mean surface temperature. In Figure S3, we perform this separation for the AA shown
in Figure 1.

Overall, we find weak rapid response contributions to AA. However, when removing the fast response to iso-
late the global mean temperature induced AA (the slow feedback response), the driver differences seen in
Figure 1 are reduced (Figure S3). While the standard deviation of the multimodel median AA between the
four warming Climate drivers (CO2, CH4, BC and SOL) is 0.16 for the total AA (Figure 1), the feedback
response has amuch smaller standard deviation of 0.03. SO4, conversely, which had a not significantly stron-
ger AA than the other drivers for the total response, has an AA feedback response that is 40% stronger than
the other drivers, and the difference is now statistically significant.

The only driver to show a rapid adjustment AA significantly different from zero is CO2. We interpret this to
be due to its atmospheric absorption, which will act to heat the atmospheric column. The other driver with
significant absorption, BC, has relatively little change in the Arctic, as discussed below.

Recently, Huneeus et al. (2014) compared climate effects of perturbations to CO2 and the solar constant.
They found that particularly for the feedback response, the similarity was remarkable, while rapid adjust-
ments introduced more dissimilar responses. Overall, our results are consistent with this finding.

3.3. Geographical Temperature Response Patterns

In Figure 2, we show the multimodel geographical pattern of AA. Overall the different drivers produce qua-
litatively similar patterns, with a maximum around the northernmost parts of the Barents Sea, correspond-
ing to the region where all climate drivers produce the greatest loss in sea ice (Figure S4). It should be noted
that the location of this maximum warming may—at least partly—be an artifact of the tendency for models
to have a low temperature bias in this region. For instance, Chapman and Walsh (2007) found that 12 out of
14 models have a cold temperature bias in the Barents Sea due to too extensive sea ice and that the same
models showed strongest projected temperature changes in this region. Still, the main point—that warming
patterns are similar between drivers—remains. Maps of ERF demonstrate that the radiative forcing for all
drivers is larger at the lower latitudes than in the Arctic, meaning that the regional ERF pattern is not an
important contribution to the AA (Figure 3). This is also true when we look at the pattern of ERF at the sur-
face (not shown), which might be more indicative of regional responses than the top‐of‐atmosphere forcing.
The similarity in AA patterns and the decoupling of the AA from the original forcing pattern further imply
that the AA is not driver specific.

3.4. Vertical Structure of the AA

In Figure 4, we show the vertical structure of the AA. Some studies have suggested that the vertical dimen-
sion can provide further insights into the processes driving surface heating in the Arctic region. Sea ice or sea
surface temperature changes are typically found to induce strongest response near the Arctic surface (Screen
et al., 2012), while changes driven by processes such as changes in poleward heat transport or concentrations
of water vapor or clouds will have a maximum response in the midtroposphere (Chung & Räisänen, 2011;
Graversen & Wang, 2009; Yang et al., 2010). Note, however, that local responses and feedbacks will compli-
cate such a clear interpretation.

As seen from Figure 4a, increases in CO2, CH4, the solar constant, and SO4 cause very similar vertical pat-
terns in the Arctic, with a strong surface AA and an upper‐level (around 200 hPa) negative AA, visible as
areas over Arctic latitudes with blue shades in the figure. This upper tropospheric cooling is a typical sign
of a warming climate and an associated lifting of the tropopause, which causes temperatures to drop at pres-
sure levels that used to be a part of the warmer stratosphere in the baseline simulations, but are included in
the (colder) upper troposphere in the perturbed climate (see, e.g., Gillett et al., 2003). This is not to be con-
fused with the well‐known stratospheric cooling following increased CO2 (Ramanathan &Dickinson, 1979),
which is also visible in Figure 2a for CO2x2, but at higher altitudes. The upper tropospheric cooling is not
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visible for BC in the annual mean, but in Figure 4b, where we show monthly mean Arctic changes, we find
that BC causes a similar upper tropospheric cooling as the other climate drivers during January through
March. For the rest of the year, however, the warming from BC extends throughout the atmospheric
column. BC is known to induce efficient local heating of the atmosphere and has an absorption efficiency
that increases with height (Samset & Myhre, 2011). In the Arctic, the atmospheric warming from BC
absorption is particularly strong due to the high surface albedo. The warming pattern is therefore linked
to the spatiotemporal distribution of BC concentrations. Figure S5a shows the BCx10 mass mixing ratio
that the concentration‐based models use as input. The largest BC concentration changes occur, as
expected, at the surface around 40°N, where emissions are largest. At these latitudes, air masses are
effectively lifted by convection, resulting in elevated concentrations also at higher altitudes, where
aerosols are transported northward. This transport is most effective during summer and fall, as seen from
the Arctic BC concentration changes in Figure S5b and the corresponding warming in Figure 4b. The
strong decline in available SW radiation toward fall and winter also means that the radiative effect of
increasing concentrations (i.e., absorption of SW and consequent atmospheric warming) will be highest in
the summer. At lower altitudes, the polar dome limits the meridional transport into the Arctic, in
particular during winter (Stohl, 2006). In addition, the aerosols that are lofted at lower latitudes give
strong high‐altitude warming, as illustrated in Figure S5c, where the seasonal warming averaged over
East Asia, the major source region (Figure S5a), for the global BCx10 experiment is shown. This heat (and
the associated increase in water vapor) therefore does not need to be elevated from the surface through con-
vection but can be transported directly poleward.

Comparing the AA profile patterns between 0 and 90°N for winter and summer months separately (Figure
S6, we find that the warming pattern for BCx10 has a much stronger poleward extension in summer, consis-
tently with the strong within‐Arctic summertime warming around 500 hPa. Graversen et al. (2008) found a
similar upper‐level summertime amplification in reanalysis data. They pointed out that the source of this
high‐altitude AA could not be surface driven (i.e., snow and ice feedbacks) and attributed it instead to sum-
mertime changes in the northward energy transport. This upper‐level AA is however not visible in all rea-
nalysis data sets (Bitz & Fu, 2008; Grant et al., 2008). While most pronounced for BC, the pattern of
upper‐level summertime warming is present for all climate drivers in our simulations. Dedicated studies
are needed to further quantify the role of northward heat transport to the consistent heating around 500 hPa.

Figure 3. Multimodel median change in effective radiative forcing (ERF), normalized by the global mean temperature change, for the global experiments.
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For all drivers, the surface AA is lowest in summer. Previous studies have found that one reason for this is
that (surface) warming from the ice albedo effect can be partially cancelled by an increase in summertime
cloud cover (Crook et al., 2011). However, while an increase in summertime cloud cover is an expected
response to the reduced sea ice cover in climate models (Vavrus, 2004; Yoshimori et al., 2014), observations
indicate that the summer is the only season that lacks a cloud‐response to sea ice changes (Morrison et al.,
2018) and that the cloud response tends to be strongest in fall (Kay & Gettelman, 2009). Here we find that
while the sea ice reductions are similar between the drivers (Figure S4), changes in cloud amounts vary
(Figure 5), with no general tendency of a summertime increase for any of the drivers except BC. BCx10
causes a 5% increase in summertime low cloud cover (defined as the vertical average of cloud fractions
between the surface and 680 hPa), contrasting a very weak increase or (for CO2x2) a reduction for the other
climate drivers. The BC‐induced increase in low level clouds would act both to dampen the summertime sur-
face warming and (by reflecting incoming SW back toward the aerosol layer and adding to the amount of SW

Figure 4. Multimodel median vertically resolved change in Arctic amplification for (a) the annual mean for latitudes 0 to 90°N and for (b) the Arctic (60 to 90°N)
average for each month of the year. Hatching indicates where fewer than 75% of the models agree on the sign of the change.
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available for absorption) enhance the strong upper‐level warming. Note also that around 500 hPa, all climate
drivers cause a reduction in clouds, consistent with the upper‐level summertime warming (Figure 4b). This
response is strongest for BC, for which the warming is greatest.

In the wintertime, there is an upward shift of the lowermost clouds in response to all drivers, conceivably
associated with an increase in specific humidity and therefore the lifting condensation level, as the atmo-
sphere warms. A similar Arctic cloud response was found in a modeling study by Gillett et al. (2003) as a
response to CO2 doubling. Li et al. (2014) noted a link between reduced Arctic boundary layer stability
and a deepening of the boundary layer in satellite data. The same features are found in our results during
winter, seen as a thickening of the low‐level cloud layer. This change in low‐level wintertime cloud is impor-
tant as it will primarily act to enhance the surface warming through their longwave warming effect in the
absence of incoming solar radiation.

3.5. Model Differences in BC‐Induced AA

Light‐absorbing particles, such as BC, deposited on snow and ice may reduce the albedo and enhance melt-
ing, with potentially large impacts on the radiative budget. Of the 10 PDRMIP models, three include the
radiative effect of BC on snow. Figure 6 shows AA responses to the BCx10 experiment from individual mod-
els. Model names are marked with [S] if they include BC on snow and are shown as solid lines in the right‐
hand panel. We focus on land‐average AA, where BC snow‐albedo effects are expected to be largest
(Goldenson et al., 2012). Note that the CESM‐CAM5model has a particularly strong annual mean AA partly
due to its very small global warming.

There does not seem to be a systematic difference in the seasonal AA cycle between the models with and
without BC‐on‐snow treatment, except for a general tendency for higher AA in late fall/early winter. The

Figure 5. Multimodel mean vertically resolved cloud cover change (%) for the Arctic (60 to 90°N) average for each month of the year, normalized by global mean
temperature change.
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exception is CESM‐CAM5, which has a very strong BC‐induced amplification in spring/summer. This is
consistent with Qian et al. (2014), who found that the Arctic forcing from BC on snow in the CAM5
model is substantial and is at its maximum around midsummer. There is a similar although weaker
summertime maximum in NorESM1, but no such feature is discernible in MIROC‐SPRINTARS. However,
due to the wide variety of parameterizations and limited number of available models, these results should
be interpreted with care. Further investigation of this effect requires a more dedicated study, where a
larger number of models perform sensitivity studies with and without the effect of BC on snow.

4. Arctic Precipitation Responses to Global Perturbations

In this section, we discuss the Arctic precipitation response to the five global perturbations. As for tempera-
ture, we begin with the annual and seasonal mean responses and the impact of rapid adjustments. Then, we
discuss precipitation change through the application of energy and moisture balance analyses.

4.1. Annually and Seasonally Resolved Precipitation Responses

While the Arctic surface temperature amplification has been thoroughly investigated, less attention has been
given to changes in Arctic precipitation. Here we find that Arctic precipitation change per degree warming,
often termed the apparent hydrological sensitivity, is similar (6–8%/K) for all the global perturbations
(Figure 1). Samset et al. (2016) analyzed the globally averaged precipitation change for the PDRMIP data
set and found a stronger apparent hydrological sensitivity for changes in aerosols and solar insolation
(around 3%/K) than for greenhouse gas perturbations (around 2%/K). It was also found that the global aver-
age response to BCx10 was negative (i.e., a decrease). The Arctic hydrological sensitivity is thus found to be
stronger than the global averages, consistent with previous findings from simulations using the RCP4.5 and
RCP8.5 emission scenarios for a range of CMIP5 models (Bintanja & Selten, 2014). Here we are able to con-
clude that this is a robust feature among all drivers. Testing the 10 annual mean model values of SO4‐

induced precipitation change against the other drivers using Student's t test, we find that SO4 is associated
with a slightly higher precipitation change, which is significantly (at the 95% level) different from the three
other non‐aerosol drivers.

As trends in Arctic precipitation follows the Arctic warming (Bintanja & Selten, 2014), the seasonal variation
in the change generally resembles that of the AA, with a maximum in winter and smallest change during
summer. Deser et al. (2010) performed idealizedmodel experiments isolating the impact of future sea ice loss
and found the same seasonality in sea ice and precipitation changes, indicating a close link. Our results also
show the strongest precipitation changes coincident with the regions of strongest warming (Figure 2) and
loss in sea ice (Figure S4), and we find that this also is where surface evaporation increases the most (not
shown). The seasonal cycle in precipitation changes is most similar between the non‐aerosol drivers
(CO2x2, CH4x3, and SOL). For BCx10, the changes are stronger in late winter/spring than in
November/December. For SO4x5 there is no clear summer minimum, and SO4‐induced precipitation

Figure 6. Annual mean (bars) and monthly mean (graphs) changes in land surface (normalized by global mean tempera-
ture change) Arctic amplification for the BCx10 experiment, for all contributing models. [S] indicates models with effect of
black carbon (BC) on snow/ice. These are marked with solid lines, while dashed lines show models without the effect of
BC on snow. See table S1 for futher model descriptions.
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changes in April through October are the highest of all drivers. All drivers have a strong relative increase in
summertime convective precipitation (not shown), particularly over land, except for BC, which causes a
strong reduction due to increased stabilization connected with the strong upper‐level warming shown in
Figure 4b. However, the Arctic summertime precipitation is dominated by stratiform precipitation forma-
tion, so changes in convective clouds play a smaller role in the seasonal cycle of total precipitation.
Instead, the seasonality can likely be attributed to seasonal variation in surface evaporation or
moisture transport.

4.2. Separating Arctic Precipitation Amplification Into Rapid Responses and Feedbacks From
Global Temperature Change

Like for temperature, we can separate the precipitation response into rapid adjustments and a slow change
that scales with global mean surface temperature change, see Figure S3. Here the BC perturbation produces
precipitation response in the Arctic of opposite sign from the global response (Samset et al., 2016; Stjern
et al., 2017). Globally, the BC‐induced drying has been shown to originate from the strong atmospheric
absorption by the aerosols, which produces a very strong negative rapid adjustment that outweighs the final
surface‐temperature‐driven increase (Andrews et al., 2010; Kvalevåg et al., 2013; Samset et al., 2016).
However, Samset et al. (2016) demonstrated a regional dependency on the distribution between slow and
fast changes, with a dominance of the slow response (increasing precipitation) in the Arctic region. This
characteristic is confirmed in Figure S3, where the rapid precipitation response for BCx10 is close to zero.

4.3. Arctic Precipitation Changes Through an Energy Balance Perspective

To understand the mechanisms behind the Arctic precipitation changes for individual drivers, we utilize the
energy budget approach (O'Gorman et al., 2011; Richardson et al., 2016). Whenwe calculate the atmospheric
energy budget, contributions to the total precipitation change can be subdivided into changes in longwave
atmospheric cooling LWC, shortwave atmospheric heating SWH, the net upward sensible heat at the sur-
face, SH, and the dry static energy flux divergence Hdry:

LdP ¼ dLWC−dSWH−dSH þ dHdry (1)

Above, L is the latent heat of condensation of water vapor and P is the surface precipitation. The column‐
integrated dry static energy flux divergence change dHdry is calculated as the residual between the precipita-
tion change LdP and the other terms and contributes positively to precipitation change if more dry static
energy is transported out of the Arctic atmospheric column in the perturbed climate. Alternatively, we
may use a simplified moisture budget, following Bintanja and Selten (2014):

LdP¼dEþdFmoisture (2)

Here E denotes the evaporation from the surface, and the transport of moisture into the Arctic (dFmoisture) is
calculated as the difference between LdP and ds.

The energy and moisture budget analyses of total Arctic precipitation changes are shown in Figure 7a, again
normalized by the global mean temperature change. Note that LdP indicates the total Arctic precipitation
change per global warming, but in contrast to Figure 1, it shows model means (as opposed to model med-
ians) and absolute changes (as opposed to relative changes). This is necessary to produce meaningful energy
budgets and calculate residuals but gives rise to some differences between this figure and Figure 1.
Immediately apparent from Figure 7a is how different the energy budget components are for the global
BC perturbation compared to the other drivers. Even so, the total precipitation change is similar between
BC and the other drivers, as in Figure 1.

Shortwave heating is shown with a negative prefix in Figure 7a, since a reduction in shortwave heating con-
tributes to increased precipitation. For all drivers, this budget term is negative, indicating increases in short-
wave atmospheric heating. In general, shortwave heating is driven by elevated atmospheric water vapor
concentrations in the warmer climate (recall that the sign of the SO4 responses are turned in the normaliza-
tion by the global mean temperature change). However, due to the strong additional absorption by atmo-
spheric BC particles, this term is by far strongest for BC. It is also stronger over land than over oceans
(not shown) where BC concentrations are highest. Changes in longwave cooling are positive for all
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drivers, again as a general response to the warming climate. The longwave cooling is strongest for BC since
longwave radiation is re‐emitted from high‐altitude BC particles after their absorption of solar radiation. The
smaller longwave cooling of CO2x2 than SO4x4 is because in the Arctic, as opposed to in the global average,
the rapid response to an increase in CO2 is a reduction in longwave cooling, which lowers its total increase.
The sensible heat flux is affected by changes in the temperature difference between the surface and the
overlaying air, as well as by changes in turbulence and convection. Globally, the change in this quantity is
minor for all drivers but BC, as shown in a previous PDRMIP study (Myhre et al., 2018). We find that this
is true also in the Arctic. The strong atmospheric warming caused by BC (Figure 4) leads to a marked
reduction in the sensible heat flux, which is stronger over land than over oceans. Finally, all drivers cause
an increase in the dry static energy flux divergence. This term is negative (indicating energy transport into
the Arctic) in the baseline climate but slightly less negative in the perturbed climate, meaning that the
poleward energy transport is reduced. This is a natural consequence of the AA, by which the high
latitudes warm more than the lower latitudes and the meridional temperature gradient is reduced. For all
drivers, but especially for BC, the reduced dry static energy flux divergence is strongest in the summer
season (not shown).

Figure 7. (a) Model mean atmospheric energy budget and moisture budget analysis for the Arctic, normalized by global
mean temperature change. The sign convention is such that positive values indicate that the term contributes to increased
precipitation. LdP is the total precipitation change. Components of the energy budget are shown in between the two
vertical lines, where dLWC is the change in longwave atmospheric cooling, dSWH is the change in shortwave atmo-
spheric heating, dSH is the change in sensible heat at the surface, and dHdry is the change in dry static energy flux
divergence. Components of the moisture budget are at the rightmost side, where dE is change in surface evaporation and
dFmoisture is moisture transport into the Arctic. Vertical lines show the intermodel standard deviation. (b) Contribution of
the moisture budget terms to the absolute monthly precipitation change.
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Previous studies highlight the role of moisture transport from lower latitudes to Arctic precipitation changes
(Bengtsson et al., 2011; Kug et al., 2010). Still, indications from both observations (Kattsov & Walsh, 2000)
and model simulations (Bintanja & Selten, 2014) are that the dominating cause of the precipitation change
may be the strong intensification of local surface evaporation. Here we find that the change in moisture
transport (dFmoisture) is of similar magnitude as increased evaporation (dE) for CO2x2, CH4x3, and SOL.
For SO4, contribution from evaporation is higher than that from moisture transport, and for BC, there is a
statistically significant higher impact from the latter, whereas the evaporation change is negligible. This
means that the dominating processes behind Arctic precipitation changes may shift depending on what cli-
mate driver has the dominating impact in the Arctic.

We next examine the seasonal variations in the dFmoisture and dE terms and their contribution to the total
precipitation change. In Figure 7b the seasonal absolute change in precipitation is shown as a solid black
line, and the monthly contribution of evaporation and moisture transport changes to this precipitation
change is indicated by the bars. For CO2x2, CH4x3, SOL, and SO4x5, the increase in surface evaporation
is greatest in June, with a secondary maximum in late fall/early winter. BC, conversely, causes a small
increase in evaporation in all seasons except summer, when there is a notable reduction. This is when avail-
able incoming solar radiation and enhanced BC concentrations combine to produce the seasonally strongest
reduction in the amount of shortwave radiation that reaches the surface, an effect known as solar dimming.
For BC, the moisture transport term is much larger than for the other drivers, and it is the dominant cause of
the BC‐induced Arctic precipitation changes. During winter, the relative importance of evaporation and
moisture transport changes for SO4 is comparable to the other (non‐BC) drivers, while evaporation changes
dominate in the summer. Recall, however, that the sign is turned by the normalization by a negative global
mean temperature change. In reality, increased concentrations of SO4 causes reduced moisture transport
and evaporation throughout the year, but like for BC, there is a particularly strong reduction in evaporation
in the summer months due to enhanced solar dimming. Conversely, CO2 induces the weakest evaporation
change of all the drivers in this season due to a negative rapid response (not shown) that lowers the total
positive change. These differences explain the stronger precipitation response to SO4 than to the other non-
aerosol drivers, as shown in Figure 1.

For all drivers we find a maximum change in poleward moisture transport around August through October.
This summer/autumn maximum is likely a contributing cause for the strong seasonal upper‐level warming
for BC, for which the moisture transport term is particularly strong. Moisture from lower latitudes can be a
source of heat within the Arctic, in the form of latent heat release, increased water vapor greenhouse effect,
or changes to clouds. Sedlar and Tjernström (2017) found a clear pattern of increased lower‐level and
decreased upper‐level clouds in months with particularly strong moisture advection into the Arctic, similar
to the cloud change pattern we see during summer for BCx10 (Figure 5).

We note for consistency that Bintanja and Selten (2014) found strongest late‐century increases in moisture
transport in summer/early autumn for a range of CMIP5models under the RCP4.5 and RCP8.5 emission sce-
narios. The later seasonal maximum in our data is related to our broad definition of the Arctic as all area
north of 60°N: using 70°N instead shifts the maximum transport change toward midsummer (see Figure S7).

5. Arctic Responses to Regional Perturbations

Seven of the 10 models performed additional simulations, where BC was perturbed in a subregion of Asia
and SO4 was perturbed in parts of Asia and Europe (see section 2 for detailed description of these regions).
Two of these models ran emission‐based simulations, leading to additional model differences due to differ-
ences in transport, wet removal, and other processes. The remaining five used concentration‐based set‐ups,
which diminishes the sources for model differences and allows for more focus on dynamical responses.
Given these differences, we have here chosen to present the concentration‐based and the emission‐based
results separately, even if the latter will only show the mean of twomodels. Figure 8 shows the equivalent of
Figure 1, where solid and hatched bars represent global and regional perturbations, respectively, but for the
subset of five concentration‐based models in Figure 8a and two emission‐based in Figure 8b.

Starting with the concentration‐driven models, we find that the Asian BC perturbation produces a stronger
AA, as well as a stronger precipitation response, than the global perturbation. This contrasts the response to
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the regional SO4 perturbations, which both cause an AA more like the global experiment. There is a
tendency for a stronger AA and stronger precipitation response from the European than from the Asian
SO4 perturbation, but the differences are not statistically significant. Figure 9a shows vertical AA profiles
by latitude north, similar to Figure 4a, for the concentration‐driven models. The warming pattern for

Figure 9. Multimodel median vertically resolved Arctic amplification for the annual mean for latitudes 0 to 90°N and for the model median on (a) five concentra-
tion‐based models and (b) two emission‐based models. Hatching indicates where fewer than 75% of the models agree on the sign of the change.

Figure 8. Responses in temperature and precipitation (normalized by the global mean temperature change) to global
(solid bars) versus regional (hatched bars) perturbations in black carbon and SO4, averaged over the Arctic, for (a) five
concentration‐based models (see Table S1) and (b) two emission‐based models. Bars show annual model median values,
and individual model values are shown as circles. Horizontal bars indicate ± one standard deviation, and triangles are
used to indicate when standard deviations are outside the range of the axes limits.
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BCx10asia is more focused around the latitudes of the regional emissions (around 40°N) but otherwise
resembles the global pattern. The AA signals from the regional SO4 perturbations have much clearer max-
ima over the emission latitudes than the global signal, but as opposed to the regional BC perturbation, they
do not show the same clear poleward extension of the AA.

The two emission‐driven models (Figure 8b) have stronger AA than the concentration‐driven models, both
for the global and the regional experiments. As mentioned in section 2, emission‐driven models have the
potential for an amplified or dampened response since the model's climate response may feedback on the
BC concentrations, as found in Sand et al. (2015). Notably, while regional BC perturbations caused stronger
AA than global for the concentration‐driven models, the opposite is true for the emission‐driven, due to a
very strong AA for the global perturbation. However, this includes results from NCAR‐CAM5, which was
seen to be an outlier (Figure 1). With the exception of the BCx10 experiment, the AA responses of the two
individual emission‐driven models are very similar (note the circles in the figure, indicating individual
model values).

While the concentration‐driven models had no discernible AA difference between the two regional SO4 per-
turbations, the 10‐fold increase in SO4 in Europe causes a significantly stronger AA than a 10‐fold increase in
Asia for the emission‐driven models. This difference is particularly clear in the summertime, while winter-
time responses are more similar (not shown). The similarity in wintertime responses can be explained by
that fact that during winter, Europe and Eurasia are both located within the polar dome (i.e., the surfaces
of constant potential temperature). This, and the fact that parts of these regions are covered in snow in win-
ter, which cools the near‐surface air and eases transport into the polar dome, allows air masses from both
these regions to reach the Arctic through low‐level transport (Stohl, 2006). Air masses that are too warm
(i.e., air originating from lower latitudes in summer) for isentropic transport reach the Arctic through lifting
outside the polar dome and may subsequently slowly descend within. Indeed, comparing seasonal vertical
warming patterns between the European and the Asian SO4 perturbations in Figure S6, we see that while
the summertime Arctic response to SO4 perturbations in the (warmer, more remote, and with more effective
convective lifting) Asian region is mostly confined to the midtroposphere, the impact from European SO4

extends all the way to the surface. This produces notable differences in surface AA (Figure 8b) between
the two experiments. A wintertime warming, conversely, is visible at the Arctic surface in both the
European and the Asian SO4 perturbation experiments. The Europe‐only perturbation also yields a higher
precipitation response than the Asian‐only perturbation.

Our findings for the emission‐driven models, that Arctic temperature and precipitation responses are signif-
icantly stronger for the European than for Asian perturbations, are in line with previous findings (Aamaas
et al., 2016; Bellouin et al., 2016; Sand et al., 2016; Stjern et al., 2016; Yu et al., 2013). For instance, Sand et al.
(2016) shows that Europe and Russia are the regions that influence Arctic temperatures themost per unit BC
emissions, and the large sulfate emission change in Europe over the past decades have been linked to
changes in Arctic sea ice cover (Acosta Navarro et al., 2016; Gagné et al., 2017; Mueller et al., 2018). The
greater impact of European emissions is likely due to factors connected with the nearer proximity of
Europe to the Arctic but may also be related to a saturation of aerosol‐cloud interactions over East Asia,
as well as a greater climatological cloud cover, which could mask the direct aerosol forcing in that region
(Kasoar et al., 2018). In another PDRMIP analysis, Liu et al. (2018) also found that the forcing from
European SO4 increases had a stronger efficacy in terms of global temperatures and precipitation effects than
that from the Asian region. In the present study, we find that the concentration‐based models do not show
this difference, at least in the Arctic. However, the regional PDRMIP simulations are limited in terms of
number of regions, making it difficult to confidently conclude on regional impacts on Arctic climate.

6. Discussion

Common for the Arctic impact studies mentioned in the previous section is that they focus on responses per
unit emissions. In reality, SO2 emissions in Europe are relatively low today, while SO2 emissions in India are
currently increasing strongly (Li et al., 2017). Sand et al. (2016) stress that due to the large absolute emissions
of Short‐lived climate forcers (SLCF) (particularly BC) from the Asian continent, this is presently the largest
source of SLCF‐driven Arctic warming—both due to long‐range transport and due to localized radiative
impact and subsequent transport of heat and moisture. However, large emission changes in this region
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are ongoing (van der A. et al., 2017). Recent studies suggest that emissions of sulfur dioxide in China have
decreased by 75% over the past decade and that India is taking over as the largest single‐region emitter (Li
et al., 2017). In contrast, emissions of BC and CO2 have continued to increase in both regions (e.g., Hoesly
et al., 2017). Persad and Caldeira (2018) looked at impacts from anthropogenic aerosol (including both
SO4 and BC) changes in a range of regions, using the NCAR‐CAM5 model, and found substantial variations
in how emissions from different regions influence the global temperature. They found that regions that his-
torically or presently account for the majority of anthropogenic aerosol emissions have the largest impacts
on temperature, while regions where emissions currently have or are projected to have strong trends (i.e.,
India or East Africa) have smaller temperature impacts. This suggests that, globally averaged, the future dis-
tribution of main emission regions may have a smaller cooling potential than historically. Importantly, how-
ever, one reason for the small global temperature impact of Indian emissions was a regionally heterogeneous
pattern of both positive and negative temperature responses. And while increased aerosol emissions in gen-
eral cause a cooling, the Arctic response to Indian emission changes in this study was a warming.

Energy and moisture transport from lower latitudes play an important role in the impact on Arctic climate.
Recent research has looked closer into how poleward energy transport contributes to current and future AA
and to how it will react to the reduced meridional temperature gradient following an AA (Graversen, 2006;
Jonas et al., 2016; Kapsch et al., 2013). They find that it is the transport of latent heat, and not of dry‐static
energy, that dominates the contribution to AA. As for future changes in these energy transport terms, simu-
lations show that while models do not agree on the sign of the change in the total poleward heat transport,
they all predict a reduction in the dry static energy transport (as the faster Arctic warming reduces the tem-
perature gradient between high and low latitudes) and an increase in the latent heat transport (Hwang et al.,
2011). Here we find that the contribution from the dry‐static energy flux divergence to the Arctic precipita-
tion change differs between climate drivers but is particularly important for BC. It is however positive for all
drivers and all individual models, indicating a reduction in northward energy transport. We also find, for all
drivers, an increase in the northward transport of moisture, consistent with Hwang et al. (2011). We note
that the ocean has been shown to play an important role in the poleward heat transport (Nummelin et al.,
2017), but here, we have not looked at changes in this component. A separate study investigating how dif-
ferent climate drivers influence the various elements of the poleward energy transport could improve our
ability to predict how the Arctic would respond to future emission and climate changes.

Many of the processes involved when simulating climate responses in the Arctic are associated with high
levels of uncertainty. One example is the effect of BC aerosols on ice and snow, with estimates ranging from
relatively weak (Bond et al., 2013) to strong (Flanner et al., 2007) effects. Here three of the contributing mod-
els (NorESM1, CESM‐CAM5, and MIROC‐SPRINTARS) include estimates of the radiative effect of BC on
snow in their models, but in only one of these (CESM‐CAM5) do we see a clear signal from this effect in
the seasonal warming in the Arctic. Differences in how models treat processes such as BC on snow never-
theless contribute to be a source of uncertainty and deviations between models. Previous multimodel studies
have found that the spread in model responses is particularly large in the Arctic (Sand et al., 2017), and this is
also the case here: Table S3 shows that the intermodel standard deviation for both temperature and precipi-
tation is typically a factor three or more larger in the Arctic than globally.

7. Summary and Conclusion

The Arctic is influenced by both local and remote emissions (Acosta Navarro et al., 2016; Gagné et al., 2017).
Presently, global and regional trends in emissions are shifting rapidly. While global CO2 emissions are still
increasing (Le Quéré et al., 2018), there are significant regional differences in air pollutant trends (Hoesly
et al., 2017; Li et al., 2017). Combined with underlying climate change, potentially affecting transport path-
ways (Jiao & Flanner, 2016), this may shift the relative importance of individual climate drivers for Arctic
climate change. Moreover, aerosol emissions in individual regions may have a different impact on Arctic cli-
mate to global perturbations.

The present study analyzes the response of perturbations to five individual climate drivers (CO2, CH4, the
solar constant, SO4, and BC), investigating effects on Arctic temperature and precipitation. While some nota-
ble differences exist, particularly for BC, response patterns in the vertical temperature profile are broadly
similar between climate drivers. The AA in surface temperature ranges only from 1.9 [±0.4] (SOL) to 2.3
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[±0.6] (SO4x5) between drivers, and interdriver differences are not statistically significant. As indicated in
previous studies, the majority of the Arctic response seems to originate from a generalized dynamical
response to the climate warming. This is also reflected in the present analysis through the similar surface
AA pattern across all drivers and in the fact that all drivers cause the strongest surface warming in winter.
All drivers display a similar pattern of upper‐level (~400 hPa) AA in the summer and a reduction in cloud
cover in the same altitude and season. For BC, we see a much stronger upper‐level AA than for the other
climate drivers. This is likely connected to increased high‐level concentrations of BC in summer, as well
as a very strong BC‐induced summertime increase in poleward moisture transport, which may induce addi-
tional warming through shortwave absorption by BC particles and an added water vapor greenhouse effect.
This warming does not propagate down to the Arctic surface. A stronger increase in summertime low cloud
cover (which tends to cool the surface) for the BC perturbations may instead act as a buffering effect, so that
all climate drivers end up causing relatively similar surface AA, with maxima in winter and minima
in summer.

Global temperature change‐normalized precipitation responses are also relatively similar between drivers,
although less so than for temperature. SO4 causes significantly stronger (normalized) precipitation increases
than the other nonaerosol drivers, driven by a much stronger evaporation change. This difference is particu-
larly pronounced in the summer. An energy budget breakdown of the contribution of different processes to
the precipitation change shows that the BC response is substantially stronger than those of the other climate
drivers in in all these processes. In total, however, the different contributions cancel out to leave a precipita-
tion change similar to that from the other climate drivers. While changes in polewardmoisture transport and
changes in evaporation have similar contributions to the total precipitation change for CO2x2, CH4x3, and
SOL, the aerosol‐driven precipitation changes differ, with a dominance of moisture transport in the case of
BCx10 and a dominance of evaporation changes for SO4x4.

Our study presents a first, comprehensive overview of how Arctic temperature and precipitation responds to
individual climate drivers. While further analysis is needed to fully disentangle all the processes that act to
shape the Arctic climate response, we conclude that overall, responses are similar enough to provide confi-
dence in scenario‐based projections for Arctic climate change regardless of the detailed balance between
components of future emissions.
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