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Abstract

The increased maturity level of technological achievements towards the real-

ization of the Internet of Things (IoT) vision allowed sophisticated solutions

to emerge, offering reliable monitoring in highly dynamic environments that

lack well-defined and well-designed infrastructures. In this paper, we use a

bio-inspired IoT architecture, which allows flexible creation and discovery of

sensor-based services offering self-organization and self-optimization properties

to the dynamic network, in order to make the required monitoring informa-

tion available. The main contribution of the paper is the introduction of a

new algorithm for following mobile monitored targets/individuals in the con-

text of an IoT system, especially a dynamic one as the aforementioned. The

devised technique, called Hot-Cold, is able to ensure proximity maintenance by

the tracking robotic device solely based on the strength of the RF signal broad-

casted by the target to communicate its sensors’ data. Complete geometrical,

numerical, simulation, and convergence analyses of the proposed technique are

thoroughly presented, along with a detailed simulation-based evaluation that

reveals the higher following accuracy of Hot-Cold compared to the popular con-
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cept of trilateration-based tracking. Finally, a prototype of the full architecture

was implemented not only to demonstrate the applicability of the presented ap-

proach for monitoring in dynamic environments, but also the operability of the

introduced tracking technique.

Keywords: GPS-denied environments, infrastructureless localization, IoT

architectures, mobile tracking.

1. Introduction

It is a fact that the world frequently witnesses emergent situations which are

related with major problems in infrastructures due to natural causes or the result

of intentional or accidental human actions. Apart from their tremendous im-

pact they all shared another characteristic: they reduced communication among5

humans. Modern means of communication were significantly degraded which

rendered any rescue operations significantly harder. One of the main challenges

in emergency management is to perform efficient monitoring and coordination.

This aspect heavily relies on the communication between involved actors and

the availability of information by monitoring victims’ vital signs and also other10

environmental measurements. Traditional approaches in emergency scenarios

lean on some sort of centralized or well and in advance engineered solution.

However, as recent emergencies demonstrated, there is a need for communica-

tion mechanisms which do not rely on centralized systems and infrastructure.

Such alternative solutions can be used as a fall-back mechanism in the case that15

primary systems fail.

At the same time, a remarkable maturity in recent technological advance-

ments have led to the Internet of Things (IoT) as the most promising achieve-

ment towards smart solutions in a variety of applications. In this context,

there is an inevitable need for scalable IoT architectures that offer advanced20

positioning, localization and context awareness based services for sophisticated

applications enabling smart solutions (e.g., e-health, smart cities, smart emer-

gency management, etc.). Such solutions need to be available even in extremely

2



dynamic and GPS-denied environments, allowing the deployment of flexible and

autonomous sensor networks, especially in situations where well-defined infras-25

tructures do not exist or are not preferable.

In this sense and in order to enable effective management and communica-

tion, there is a need for monitoring security and rescue forces personnel, victims,

and other actors offering useful information in environments with no-well de-

signed or crippled infrastructures. A common problem in such scenarios is also30

tracking down continuously a target that transmits useful information aiming

to follow it maintaining proximity. At the same time, another critical point is

the need of using resource limited components in such an attempt and preserve

energy.

This work has been developed as part of an IoT architecture introduced in35

[1] that is capable of providing autonomous sensor-based distributed services.

This architecture is based on bio-inspired principles found in natural systems to

achieve the required robust behavior. In more detail, it is based on networked

autonomous software agents which are serving information collected by intercon-

nected IoT devices in weakly structured environments. The agents’ behaviour,40

such as service discovery and self-organization, is adapted to the patterns of

service consumers’ (i.e. users) requests. The considered system is described

in Section 3. However, it is noted that the scheme presented in this paper is

architecturally agnostic, which means that it can be applied either to the afore-

mentioned IoT architecture, or to any other IoT system, or as a standalone45

application.

The main contribution of this paper is the introduction of a new scheme that

allows a robotic device to efficiently follow a monitored target solely based on the

RF signal the latter broadcasts for communicating its sensors’ data. The respec-

tive algorithm is called ”Hot-Cold” and is thoroughly described, analyzed, and50

evaluated. A distinctive characteristic of the proposed solution which enhances

robustness is the ability to maintain proximity without the necessity of identify-

ing target’s position. This tracking scheme is realized as a significant component

of an original IoT system, which enables agile services creation and discovery

3



for the provision of flexible access to real-time monitoring information in dy-55

namic environments. System feasibility and effectiveness is ensured through the

implementation and testing of a complete prototype. The conducted evaluation

shows the efficiency of the proposed technique in following a radio-emitting IoT

device solely based on the strength of its communication signal, outperforming

the well-known trilateration-based tracking in realistic shadowing conditions.60

The rest of the paper is structured as follows. The next section presents

background approaches in the field of location based services in IoT, emphasizing

on related work on target tracking. Section III presents the adopted IoT system

architecture, describing all main components. The proposed Hot-Cold algorithm

is detailed and analyzed in Section IV. The following section documents the65

evaluation of the tracking scheme, discusses simulation results, and presents the

system prototype. Finally, Section VI concludes the paper and provides insights

for future work.

2. Background and Related Work

In this section we review the main concepts of this work and we focus on70

target tracking approaches.

2.1. Internet of Things and Location-based Services

Internet of Things (IoT) is a global collection of physical and virtual devices,

and all related infrastructure, exchanging information and providing services to

each other and to the people who use it [2]. Many services provided are Loca-75

tion Based Services (LBS). Depending on the prospective one can see it, LBS

involves the use of location information of the target or the provider of the ser-

vice [3]. Location Service (LS) is the process of defining the location of an asset,

and is a crucial part of any LBS, and is usually done by GPS or other sensor

embedded in the device. These sensors can provide a very accurate location, but80

are costly in power consumption. This can become an issue when non-accurate

location information will suffice, but there are power consumption limitations.
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With each device added to the IoT, global processing power is increased lin-

early, but communication channels between devices is following a much higher

progression. Whatever the case, the communication technology is some form of85

wireless communication [2]. This means that information transmission between

the involved devices takes place by default anyway, hence, the transmission itself

can be exploited to provide an inexpensive means of LS.

2.2. Localization Techniques Overview

Localization is a topic that has predominated mobile robotics for a very90

long time. According to [4], localization is the problem of defining the spacial

information (location, velocity and orientation) of a mobile robot in space.

By far the simplest technique is that of odometry. This involves measuring

the movement of the robot (using rotational sensors on the wheels, or inertial

sensors) to determine the change in position on regular intervals. However, as95

this approach is open-loop, it requires validation regularly as errors in measure-

ments soon accumulate.

Another technique is based on using beacons. Beacon systems can be used to

actively or passively determine the location of the robot, through triangulation

or trilateration. The active or passive component is determined by whether100

the transmitting beacons are located on fixed known locations with the receiver

on the robot or vice versa. Triangulation uses the estimated angles between

the robot and the beacons to calculate accurately the location of the robot.

Trilateration is using the estimated distances from the robot to the beacons to

achieve the same goal. In both cases, complex mathematical equations have105

to be solved, a process that can become computationally heavy especially if

repeated often.

Other, more advanced localization techniques require visual recognition of

artificial landmarks, or visual tracking of the robot itself through cameras on

the ceiling. Both techniques require image processing, thus vision equipment110

and visual line of sight, and therefore are outside the scope of this paper. For a

full review of these techniques and more, see [5].
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Finally, WiFi Positioning Systems (WPS) use geo-references radio maps of

areas, to provide positioning information [6]. The accuracy of this approach,

however, has a heavy cost as it is limited within a predefined area, and the115

process of building in advance the radio map is required [7].

2.3. Tracking Strategies Overview

Tracking involves knowing the location of a target, and navigating towards

it. This could involve the avoidance of obstacles or path making. Control laws

for tracking a target can be formulated with estimations of distance from the120

target [8, 9, 10, 11, 12, 13]. In [8], a tracking strategy is presented, where

the distance from the target is estimated over time, by using the strength of

a received signal. Consecutive distance estimations are then used to define a

control law that defines the motion of the tracking agent to follow the target

object. Another strategy that uses distance measurements between target and125

tracker can be based on the trilateration method, we discussed at the previous

subsection. According to [9], by using this strategy it is possible for the tracker

to locate a moving target in a bounded time, given that the target’s speed is

up to half the speed of the tracker. A similar approach is followed in [10], but

there the problem is solved using orientation and distance information from130

the target, while in [12] and [13], the problem is solved without knowledge of

the orientation of the target, but only the estimated distance from it and its

derivative.

2.4. Target Tracking Techniques for Dynamic Networks

Recently, tracking of mobile devices in dynamic networks has attracted a135

lot of interest, due to the promising applications in various use cases. Such

dynamic networks include indoor tracking scenarios as well as outdoor tracking

in the context of a wireless sensor network deployment. A number of related

algorithms and solutions have been introduced, exploiting the properties of the

emitted electromagnetic signal.140
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A well-known tracking technique for such environments of dynamic signal

variations is based on Linear Least Squares (LLS). LLS is frequently adopted

in localization scenarios for the estimation of parameters which are initially

unknown, by adjusting the observed parameters. The specific technique is char-

acterized as linear or non-linear depending on the type of the derived system

of equations. In more detail, in a 2-dimension setup, the target location can

be estimated employing at least three lateral or angular measurements typically

taken by reference points or nodes of known coordinates within the network.

Authors in [14] have applied linear LLS to enhance trilateration. In such a case,

the location of the target is derived via the following formula:

x̂xx = (AAATAAA)−1AAAT bbb (1)

where x̂xx is the vector of the target coordinates’ estimated corrections, AAA is the

design matrix, and bbb is the vector with the residual observations. However, in a

highly dynamic environment where the target and the tracking device have high

relative speed, it becomes very challenging for LLS to make frequent and ac-

curate estimations, since too frequent observations tend to be highly correlated145

resulting in a singular AAATAAA.

Another approach for tracking in dynamic environments, where determinis-

tic modelling is very difficult, is the Particle Filter Localization (PFL) technique

[15]. According to the respective algorithm, a number of random samples (par-

ticles) are initially generated. The target’s state, as well as the particles’ state,150

is defined by a set of parameters, such as position and velocity. In an iterative

manner, observations are periodically collected and the particles’ states are ac-

cordingly updated in an effort to estimate target’s actual motion. Each particle

is associated with an adjustable normally distributed weight, which indicates

the probability to match the target’s actual state, resulting in particles which155

converge to that target’s state. In summary, PFL is a probabilistic algorithm

with promising performance when a high number of particles are considered,

which comes with the cost of increased computational requirements.

The use of Kalman Filtering (KF) for target tracking within sensor networks
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has risen as an attractive technique adopted by a number of related algorithms160

with different variations, such as Extended Kalman Filtering (EKF) and Dis-

tributed Kalman Filtering (DKF). A promising approach is introduced in [16],

where a message-passing version of the Kalman-Consensus Filtering (KCF) is

proposed to facilitate distributed tracking of a maneuvering target in a network

of sensors with limited range. The authors introduce a hierarchical architec-165

ture to collect and distribute the estimates of the micro Kalman filters in a

Peer-to-Peer (P2P) sensor network. The microfilters update the states based

on the received feedback and fuse their outputs as messages to other peers.

The resulted P2P/Hierarchical architecture is shown to achieve high tracking

performance, however, no sensors’ mobility is considered.170

A very interesting approach in dynamic target tracking, which is closely re-

lated with the scenarios considered in our work, is flocking control in mobile

sensor networks. In such dynamic networks, nodes are typically mobile robotic

devices equipped with various sensors. An adaptive flocking control algorithm is

introduced in [17], where a group of mobile sensors cooperate and adjust connec-175

tivity and topology formation to the current network environment. Moreover,

a multiple dynamic target tracking algorithm, called Seed Growing Graph Par-

tition (SGGP), is proposed to address the merging/splitting problem. Both

presented algorithms rely on graph network modelling and forces which either

attract or repel the nodes. The conducted experimental tests verify the effec-180

tiveness of the algorithms, however, the focus is on the group adaptation rather

than the explicit target tracking process.

Lastly, a promising target tracking solution for short range dynamic net-

works is based on Ultra-Wide Band (UWB) signals [18][19][20]. In principle, the

adopted tracking methods do not fundamentally differ from the ones employed185

in typical RF-based approaches, however, some special properties of UWB make

it an attractive and promising solution. UWB communications are composed

of very short pulses (shorter than 1ns) with a low duty cycle from 1 to 1000.

The modulated signal is spread over multiple frequency bands and transmitted.

Apart from communication applications, UWB is also considered for localization190
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applications. The position estimation is typically performed through reference

nodes of known positions through well-known techniques, such as Received Sig-

nal Strength (RSS), Angle of Arrival (AoA), Time of Arrival (ToA), and Time

Difference of Arrival (TDoA). It has been shown that UWB can achieve high

localization accuracy, mainly due to the decomposition of the multipath signal195

components in the channel’s high bandwidth. However, the increased accuracy

can be actually achieved only through time-based positioning methods, thanks

to the signal’s high time resolution, rather than RSS. The obvious drawback is

that time-based techniques typically require good synchronization. In addition,

UWB is usually of limited range, due to its high bandwidth, making it suitable200

mainly for short distance tracking.

It should be noted that all these target tracking approaches are based on

distance measurements or estimation of the target position. Either relying on

signal strength or angle or timing, estimation errors are inevitable, due to signal

variations induced by shadowing, multipath fading or interference, or even due205

to the tracker’s dead reckoning errors. In contrast, the proposed method does

not involve distance measurements, taking advantage of the fact that estimating

the exact target position is not required for the tracking process. The considered

scenario does not aim at localizing the target, but staying in close range for

the main reason of maintaining connectivity. This is achieved by exploiting210

the communication signal transmitted anyway by the target and considering

its strength indicators in a differential manner. Such an approach does not

require special communication equipment (such as directional antennas) nor

transceivers’ synchronization nor multiple reference points of known coordinates.

2.5. Localization Strategies based on Swarm Controlling215

A promising approach for target localization that has recently risen is the use

of robotic swarms. The control of drone swarms particularly has lately attracted

significant interest, mainly due to the provided practicality and flexibility. In

what follows in this subsection, we discuss a number of representative swarm

controlling strategies for localization purposes.220
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A network of drones that carry RF signal strength monitoring equipment

is presented in [21]. The collected measurements are utilized to estimate dis-

tances based on a propagation model. The location of the radio transmitter is

identified via trilateration of the resulted values. The authors in [22] have intro-

duced a scheme which combines linear and non-linear programming to analyse225

the drones’ movement constraints and perform both optimal and optimization

control. Authors in [23] proposed a technique for planning motion, according

to which a number of drones are grouped together to perform target tracking

in a collaborative manner that involves optimization of the monitoring process

and the communication with a remotely located base station. The main goal is230

to ensure highly reliable connections to the base state, while at the same maxi-

mizing the collected sensor data. The provided evaluation results show that the

process of optimizing transmissions is crucial for the integration of data and the

precision of target positioning. In [24], another promising approach is provided,

according to which a swarm of drones perform collaborative localization of a235

radio transmitter using a control technique that is based on model prediction.

The devices utilize the RSSI measurements of their radio receivers to identify the

next optimal route adopting Receding Horizon Control (RHC). An Extended

Kalman Filter is applied to generate the predicted parameters of the drones’

motion, which are then tuned via using the D-optimality criterion. The authors240

in [25] adopt a similar strategy, which is also based on RHC to enable localiza-

tion of multiple entities. The motion of the group of agents is determined based

on the ergodic theory, where the information density distribution is adjusted by

bearing-only measurements to track moving targets in real time.

3. Overall IoT System Description245

The devised IoT system [1] for monitoring mobile targets/individuals called

eXtreme Sensor Network (XSN), comprises the ”Global Network”, and a number

of ”Regional Networks” that communicate through the former. An illustration

of the main components of the system architecture is provided in Figure 1.
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Figure 1: Architecture of the devised IoT System
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3.1. Global Network250

The agent-based distributed system is the part of the IoT architecture that

realizes the global network, which allows efficient discovery of sensor data ser-

vices and seamless access from remote locations over an unstructured distributed

network. The main problem that is solved in that manner is the localization of

the monitored target that carries the sensor platform and the reception of its255

data regardless of the exact regional network it is located in. The implemented

distributed system in the form of IoT middleware is based on the EDBO (Emer-

gent Distributed Bio-Organization) architecture [26] and was developed using

JADEX [27]. The components that fulfill the aforementioned requirements and

realize distributed access and remote service discovery in the context of the260

considered architecture are the following:

• Biospace: This is the platform that constitutes the basis for the creation

of agents, which are able to serve sensor data.

• Biobots: These are the agents that access sensor nodes via RESTful re-

quests, in order to provide information collected by sensor platforms. They265

are able to communicate in a distributed manner with each other for ser-

vice discovery purposes.

• End User Systems: These are applications that access sensor services by

communicating with the discovered Biobots. In the resulted IoT system,

some Biobots are created in computing devices located in the same regional270

network with the sensor nodes, so that they have direct access to sensor

data. From that point, information can be relayed over the global network.

The end user systems are installed to user devices (such as tablets or

smartphones) that remotely access sensor data or to remote servers that

collect and process sensor information.275

3.2. Regional Network

Each local deployment which allows direct access to a followed mobile tar-

get’s sensor information constitutes a Regional Network. Below, the system
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components which are included in such a deployment are described:

• Monitored Target : This might be a person (for instance victim, patient280

or elderly transmitting vital signs) or any mobile target that has sensors

attached (a Sensor Platform) to collect monitoring data.

• Sensor Platform: This is an embedded system with integrated sensors

carried by the monitored target. It is also equipped with an energy efficient

short-range wireless network interface which enables broadcasting sensor285

information.

• Tracking Device: This an autonomous mobile robotic device which follows

the monitored target with the purpose of maintaining proximity in order

to gather and relay data generated by sensors or provide any type of

assistance.290

• Sensor Node: This is an embedded system with suitable wireless network

interfaces to receive the signal broadcasted by the sensor platforms and

then properly forward it, in the form of an entity which realizes mobile ad

hoc network (MANET) routing. It ensures connectivity among multiple

sensor nodes in the same regional network, but also connectivity with the295

Biobots of the Global Network. It may be fixed or carried by the tracking

device and has sufficient processing capabilities to allow the creation of

network services which enable client access to monitoring information. In

the general sense and in the context of the regional network, it plays the

role of the data sink.300

• Local Client : This is an optional device handled by an end user located

in the regional network to access sensor data. Since this entity lies in

the region of the local network, it does not need to access the distributed

service provided in the global network. It may directly query the Sensor

Node to receive sensor data.305

• Gateway : This is just a typical network device that plays the role of the

gateway router for the regional network.
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4. The ”Hot-Cold” Target Following Scheme

The main role of the robotic device in the system architecture is carrying

a sensor node that is kept in range of the sensor platform. In that manner,310

the monitored individual can move freely. Of course, keeping the robot close

can lead to many additional promising applications, such as delivering items to

a person (e.g. medicine), providing assistive services (e.g. making emergency

calls) or even keeping company (numerous studies have shown that robots could

help elderly people as companion pets [28]). The primary goal is maintaining315

communication range; for that reason we have implemented an RF-based fol-

lowing scheme that solely uses the strength of the signal broadcasted by the

sensor platform to estimate its location and move within range.

The RF-based following scheme uses the RSSI (Received Signal Strength In-

dicator) value. This is an indication of the signal power received by the sensor320

node and transmitted by the sensor platform. Our aim is the introduction of a

simple and robust technique exploiting the RF signal which is anyway broad-

casted by sensing devices for communication reasons. It should be highlighted

that our main goal is maintaining communication range, not accurately locating

the sensor platform. Hence, the developed RF-based following scheme aims at325

ensuring exactly that.

The concept behind this scheme is clear. As long as RSSI is not decreased,

the robot keeps moving forward until a maximum RSSI threshold is reached,

indicating that the robot is too close to the monitored person (we call this status

”halt”). If RSSI decreases, then the robotic device rotates and moves towards330

a different direction, in order to avoid moving out of range. Due to the high

unreliability of the wireless link, it is not safe to make final decisions each time

there is a new RSSI reading, since it could just be a random deviation from

the value that actually corresponds to distance. This is the first issue we cope

with. The decisions related with RSSI change are based on statistic metrics of335

consecutive measurements, according to the following steps:

1. The first step is the calculation of the mean RSSI value out of a number of
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samples stored in the Samples Window (SW). The window size is denoted

by SWS (Samples Window Size).

2. Next, after computing two mean values, we are considering the difference340

between the first and the second value. A positive difference (i.e. signal

power increases) corresponds to the indication ”Hot”, whereas a nega-

tive difference (i.e. signal power decreases) corresponds to the indication

”Cold”.

3. Lastly, a decision is made. If the indication is not ”Cold”, the robot345

moves forward, otherwise it rotates. The rotation intends to move the

robot closer to the target.

The ”Hot-Cold” algorithm is presented in Algorithm 1.
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Algorithm 1 The Hot-Cold Algorithm

1: while Tracking-Following do

2: SamplesAverage← ∅

3: j ← 1

4: while j ≤ 2 do

5: RSSI← ∅

6: i← 1

7: while i ≤ SWS do

8: IsHalt← false

9: RSSI[i]← GetRSSI

10: SamplesAverage[j] += RSSI[i]

11: if RSSI[i] ≤ HaltThreshold then

12: if i < SWS then

13: Move by robot step size

14: end if

15: else

16: IsHalt← true

17: end if

18: i++

19: end while

20: SamplesAverage[j] /= SWS

21: j ++

22: end while

23: if IsHalt = false then

24: if SamplesAverage[1] > SamplesAverage[2] then

25: Rotate

26: end if

27: Move by robot step size

28: end if

29: end while

16



A crucial aspect of the introduced algorithm is the rotation angle. It is

important to keep the algorithm simple and error tolerant. The whole scheme350

needs to exhibit advanced immunity to signal power variations, so that it is

adequately robust to drive the robot close to the target. The exact localization is

not significant; maintaining proximity is the highest priority. For these reasons,

the main goal is to efficiently follow the target, while the rotation angle is

fixed. We conclude on the optimal value of the rotation angle through a 3-355

stage analysis presented in the corresponding sub-sections below. The fourth

subsection presents a convergence analysis which proves that by employing the

introduced Hot-Cold algorithm, the robot reaches the followed target in finite

number of steps.

4.1. Geometrical Analysis of Rotation Angle360

The first stage of this analysis focuses on the geometric properties of the

proposed target following scheme. The objective here is to estimate a range of

rotation angles which rapidly move the robotic device closer to the area where

the target is most probably located.

We consider the scenario where the robot moves from point A to point B365

by one step equal to 10 distance units, as presented in Figure 2a. The starting

robot position is A and a step later it is located at position B. Assuming that

at that point the Hot-Cold algorithm deduces that the robot has moved away

from the target, a rotation should be performed. In this example, the rotations

are considered to be counter-clockwise, without loss of generality. The fact that370

the target is closer to A than B indicates that it is located in the area left

from the vertical line bisector of the segment AB (note that the depicted y-axis

lies on this bisector). In order to reach this area, the rotation angle needs to

be higher than 120 degrees and lower than 270 degrees. The figure illustrates

rotation by 120 degrees, which positions the robot after its second step at point375

C. Assuming again that at point C the robot is further from the target than

it was at point B, a new rotation will take place. The target should be now

positioned on the lower half of the area divided by the vertical line bisector

17



(a) Rotation angle: 120 degrees

(b) Rotation angle: 144 degrees

Figure 2: Three consecutive steps with rotations at angle of a) 120 degrees and b) 144 degrees

AM, where M is the midpoint of the line sector AB. It is noted that point A
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lies on this bisector, when the robot rotates by 120 degrees counter-clockwise,380

as illustrated in Figure 2a. Taking also into account the observation of the first

step which dictated that the target is on the left side of the y-axis, it is proven

that the target is located in an area that is accessible by performing fixed angle

rotation between 120 to 144 degrees. Specifically, this area, where the target

is positioned, lies under the line defined by the bisector AM and left from the385

line defined by the y-axis. When rotating by 120 degrees, the robot will be

positioned after the third step back to point A, which is at the borderline of the

target area.

The graphical depiction of the the 3-step movement when rotating by 144

degrees is provided in Figure 2b. It can be seen that after three steps, the robot390

reaches position D, which is on the right border of the target area that lies under

the line bisector intersecting point M and left from the line defined by y-axis.

Please note that in the case of 120-degrees rotation illustrated in Figure 2a,

point D overlaps with point A. In conclusion, the geometrical analysis reveals

that the fixed rotation angle has to be higher than 120 and lower than 144395

degrees for the robot to reach the target area in the minimum number of steps,

when adopting Hot-Cold target following. Obviously, rotation angles out of this

range could eventually drive the robot in the target area, however, on average

more steps would be required, whereas the objective is to reach the target as

fast as possible.400

4.2. Numerical Analysis of Rotation Angle

The second stage of the analysis in the effort to identify the optimal rotation

angle for efficient following via the Hot-Cold algorithm focuses on calculating

the number of fixed rotations required to reach a target point at any angle.

Specifically, the objective is to identify the rotation angle φ, which minimizes405

the average number of rotations required (ω) to reach any target angle θi within

a deviation ±ε.

The mathematical expression that relates the aforementioned variables is
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shown in Eq.(2).

θi − ε ≤ (ωi × φ)mod360 ≤ θi + ε (2)

Solving Eq.(2) for ω leads to Eq.(3).

θi − ε ≤ ωiφ− 360κi ≤ θi + ε⇒

θi − ε+ 360κi ≤ ωiφ ≤ θi + ε+ 360κi ⇒

θi − ε+ 360κi

φ
≤ ωi ≤

θi + ε+ 360κi

φ
(3)

where κi is the lowest non-negative integer that makes ωi integer. The opti-

mization problem is formulated as follows:

φ = argminω , ∀i ∈ [1, n] , where n ∈ Z
+ (4)

s.t.

φ, θi, ε ∈ [0, 360) (5)

φ ∈ Z (6)

ωi ∈ Z
∗ (7)

κi ∈ [0, φ] ∧ κi ∈ Z (8)

In order to identify ωi, we solve Eq.(3) in a numerical approach for all integer

values of θi and φ, and different values of ε. Given that κi ∈ [0, φ], consecutive

integer values of κi are tested in each iteration until the first solution of Eq.(3)

is found. The optimal φ is the one which yields the lowest:

ω =

∑n

i=1 ωi

n
(9)

The procedure that provides numerical solution to the described problem through

iterative trials was developed and executed in MATLAB. In more detail, we

tested all rotation angles from 121 up to 143 degrees according to the findings410

of the geometrical analysis (120 and 144 degrees angles are borderline cases,
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hence, non-optimal). It is noted that only angles of integer degrees are consid-

ered; further subdividing angles makes no difference, since the potential benefits

would be minimal and in a real scenario a robotic following device could not

make that accurate turns anyway. For each rotation angle (φ) we compute the415

number of rotations required (ωi) to reach any target angle (θi) from 0 to 359

degrees within a deviation (±ε) from 0 to 30 degrees.

Figure 3 provides a heatmap of ω values that have been derived by averaging

over all 360 values of θi. As expected, high ε ensures low average number of

rotations required (lighter regions). Cells with ”X” represent cases where it420

was impossible to reach some target angles (θi) within the respective deviation

(ε). The optimal rotation angle should require low number of rotations to reach

a large number of target angles within small deviation. In order to conclude

on the value of this angle according to the specific criteria, we have further

averaged the ω values over each rotation angle (φ) and plotted them along with425

the percentage of valid trials in Figure 4. It can be deduced that the lowest mean

number of rotations (16.78) with no invalid trials is achieved when φ equals 139

degrees.

4.3. Exhaustive-Simulation Analysis of Rotation Angle

The third stage of the analysis for identifying the optimal rotation angle that430

would efficiently drive the robotic device close to the target involves exhaustive

simulations in MATLAB. Specifically, the objective of this final part of the

analysis is to compute the number of required steps taken by the robotic device

to approach a fixed target when adopting the Hot-Cold algorithm principles. In

each configuration, the target is placed ρ distance units away from the robot’s435

starting position and at a direction of β degrees. The followed approach is

actually exhaustive; simulations are executed for all integer values of β ranging

from 0 to 359 degrees and ρ ranging from 10 to 100 distance units. Each

simulation is terminated when the robotic device approaches the target within

τ distance units; all integer values from 1 to 10 are tested. It is noted that440

a distance unit is set equal to the length of one step. Based on the Hot-Cold
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Figure 3: Heatmap of average number of rotations required for different rotation angles (φ)

and target angle deviations (±ε) in degrees — Legend: Lightest is 3, Darkest is 179.5, ’X’ is

invalid

Figure 4: Overall average number of rotations required and percentage of valid trials against

different rotation angles (φ)
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concept, the robot rotates at a fixed angle every time its new position is at

a higher distance from the target than its previous position. Simulations are

performed for all integer rotation angles (φ) from 121 to 143 degrees, with the

total number of executed simulations just for this last stage of the analysis445

reaching 7,534,800.

The findings are depicted in the heatmap of Figure 5. For each combination

of φ and τ , we calculate the mean number of steps considering all ρ and β

values; the results are shown in the cells of the heatmap. As expected, the

more relaxed the termination condition is (high τ values), the fewer steps are450

required (lighter regions). Regarding the optimal rotation angle, a clear pattern

is revealed, especially when looking at the overall averages presented in the last

column of the figure. It is evident that the closer a rotation angle is to 135

degrees, the fewer steps are required to reach the target. The minimum number

of 75.87639 averaged steps is achieved for φ exactly equal to 135 degrees.455

Conclusively, the conducted 3-stage analysis shows that the optimal rota-

tion angle for a robotic device adopting the introduced Hot-Cold algorithm to

approach a target as fast as possible is in the range of 135 to 139 degrees.

Considering the inevitable declination from the set rotation angle of a robotic

vehicle, configuring it to the median value of 137 degrees is a safe choice.460

4.4. Convergence Analysis

Following the 3-stage analysis for the determination of the optimal rota-

tion angle, in this subsection a convergence analysis is presented, which was

conducted to prove whether the Hot-Cold algorithm theoretically ensures tar-

get approaching within a finite number of steps. We break down this analysis465

in two parts, Hot mode and Cold mode, demonstrating that in both modes

the introduced algorithm manages to converge robot’s position close to target’s

position.
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Figure 5: Mean number of steps required against rotation angle (φ) in degrees and halt

distance from target (τ) in step-lengths
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Lemma 1

A robotic device which performs target following using the Hot-Cold algo-470

rithm always approaches the target while in Hot mode, given that their hor-

izontal distance is greater than half of the robot’s step, considering no signal

fading, SWS equal to 1, and random walk as the target’s mobility model.

Proof 1

Regarding the target’s movement, since it employs random walk, in every475

step it changes its distance (d) from the robot in a uniform manner, with a

mean value of 0.

Focusing on the robot’s movement, being in Hot mode means that the cur-

rent distance d is lower or equal to the corresponding distance during the pre-

vious step. It is noted that the two distances are directly comparable using the480

respective RSSI values, since for this theoretical analysis we assume that signal

strength is only affected by propagation attenuation, not fading of any kind.

Figure 6 illustrates a general tracking scenario, where the robot performs four

steps (AB = BC = CD = DE = s) and is located in five consecutive points

(starting point A, ending point E). Covering the general model, we consider485

two alternative locations (at opposite sides symmetrical to the horizontal axis)

for the target: P and P ′. The application of the Pythagorean theorem yields

the following equations for robot’s first step:

AP 2 = PO2 +AO2 (10)

BP 2 = PO2 +BO2 = PO2 + (AO −AB)2 (11)

BP ≤ AP ⇒ BP 2 ≤ AP 2 ⇒

PO2 + (AO −AB)2 ≤ PO2 +AO2 ⇒

AO ≥ s/2 (12)

Eq.(12) proves that the robotic device stays in Hot mode and moves forward

approaching the target (current distance not greater than the previous one) as490
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Figure 6: General tracking scenario, representing robot’s 4 consecutive steps, transiting from

Hot mode (AB,BC) to Cold mode (CD,DE)

long as their horizontal distance (AO) just before the current step is not shorter

than the robot’s half step size (s/2). At the point this condition ceases to hold

(point B), the robot increases distance d with its immediate next step (point

C), so transits to Cold mode. It is noted that due to symmetry the same also

holds when the target is positioned at P ′.495

Lemma 2

A robotic device which performs target following using the Hot-Cold algo-

rithm approaches in Cold mode the target right after the first rotation, when

their signed vertical distance is higher than 0.7304s−1.0649t (t is their horizon-

tal absolute distance, s is the robot step size and t > s
2
) or otherwise right after500

the second rotation, considering no signal fading, SWS equal to 1, and random

walk as the target’s mobility model.
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Proof 2

Using as reference Figure 6, we now focus on the case that the robot transits

to Cold mode when it moves to point C. The condition for this transition

is CP > BP (or equivalently CP ′ > BP ′), which yields CO > BO. Given

that BC = s, the latter condition holds when t = OC > s/2. According to the

principles of the Hot-Cold algorithm, we consider that the robot rotates at point

C by φ = 137◦ counterclockwise, without loss of generality (in case of clockwise

rotation, points P and P ′ can be just considered exchanged). Right after the

rotation and robot’s movement by one step-size (s), its new location is D and

there can be two cases regarding its distance from the target: i) it has been

decreased (e.g. DP < CP ) or ii) it has not been decreased (e.g. DP ′ > CP ′).

Hence, this analysis initially focuses on identifying the relation between the

target’s y-coordinate (denoted by r1) and the robot’s ability to approach right

after its first rotation (point D). Specifically, we estimate the r1 threshold which

ensures that the considered distance after rotating becomes smaller. This part

of the problem is formulated and solved as follows, where t > s
2
:

CP > DP ⇒ CP 2 > DP 2 ⇒

r21 + t2 > (t+ s cos(φ))2 + (s sin(φ)− r1)
2 ⇒

0 > s2(cos2(φ) + sin2(φ)) + 2ts cos(φ)− 2r1s sin(φ)⇒

2r1 sin(φ) > s+ 2t cos(φ)
0 ≤ φ ≤ π
======⇒

r1 > 1
2
s csc(φ) + t cot(φ)

φ = 137◦

=====⇒

r1 > 0.7304s− 1.0649t (13)

Next, this analysis focuses on the condition for approaching the target right

after the second rotation, which requires that at the first rotation the robot

increased its distance, hence, it remained in Cold mode. In Figure 6, this is the

case when the target is located at point P ′. Following an approach similar to

the above, it holds (where t > s
2
):

DP > EP ⇒ DP 2 > EP 2 ⇒

(t+ s cos(φ))2 + (s sin(φ)− r2)
2 >
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(t+ s cos(φ) + s cos(2φ))2 + (s sin(φ) + s sin(2φ)− r2)
2 ⇒

s+ 2t cos(φ)− 2r2 sin(φ) >

s(cos(φ) + cos(2φ))2 + 2t(cos(φ) + cos(2φ)) +

s(sin(φ) + sin(2φ))2 + 2r2(sin(φ) + sin(2φ))⇒

2r2 sin(2φ) > 4s cos2(φ
2
) + 2t cos(2φ)− s

π

2
≤ φ ≤ π

======⇒
3π
2

≤φ≤2π

r2 <
4s cos2(φ

2
) + 2t cos(2φ)− s

2 sin(2φ)

φ = 137◦

=====⇒

r2 < 0.2294s− 0.0629t (14)

From Eq.(13) and Eq.(14) it derives that the r1 threshold is always lower

than the r2 threshold, given that t > s
2
, which is always true. This means

that if the robot moves away form the target after the first rotation, it will

definitely approach it after the second rotation, transiting from Cold to Hot

mode. Furthermore, following the same analytical method, it is shown that in

case of two required rotations, the robot-target distance (illustrated by EP ′ in

Figure 6) is eventually smaller than the original distance before any rotations

(CP ′). Specifically, for the general case of considering target’s position as P ,

the problem is formulated as follows, where r3 is the target’s y-coordinate and

t > s
2
:

CP > EP ⇒ CP 2 > EP 2 ⇒

r23 + t2 >

(t+ s cos(φ) + s cos(2φ))2 + (s sin(φ) + s sin(2φ)− r3)
2 ⇒

0 > s(cos(φ) + cos(2φ))2 + 2t(cos(φ) + cos(2φ)) +

s(sin(φ) + sin(2φ))2 − 2r3(sin(φ) + sin(2φ))⇒

r3(sin(φ) + sin(2φ) >

2s cos2(−φ

2
) + t(cos(φ) + cos(2φ))

φ = 137◦

=====⇒

r3 < 2.1251t− 0.8646s (15)

505
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From Eq.(13) and Eq.(15) it derives that the r1 threshold is always lower

than the r3 threshold, given that t > s
2
, which is always true. Thus, it is proven

that starting from the position where the robot enters the Cold mode (point C

in Figure 6), it will always approach the target either right after the first 137◦

rotation in case their signed vertical distance is higher than 0.7304s − 1.0649t510

or right after its second rotation, otherwise.

5. System Evaluation

The evaluation of the devised system is based on a dual approach. Ini-

tially, we focus on the introduced Hot-Cold target following algorithm, which

is thoroughly evaluated in a simulation-based manner. Then, a prototype is515

implemented, which is tested in controlled laboratory conditions.

5.1. Simulation-based Evaluation of Target Following Scheme

In order to thoroughly evaluate the main focus of this work, which is the

introduced Hot-Cold RF-based target following scheme, a simulator [29] was

developed in the Processing Integrated Development Environment [30]. There

are two main objectives of the conducted simulations: i) identify the optimal

SWS (Samples Window Size) values and ii) evaluate Hot-Cold performance by

comparing it against a reference target following scheme. The set values of

the main simulation parameters are shown in Table 1. The direction change

in the simulator takes place in two simulation cycles, that is 1 sec duration.

At this point, it is clarified that the purpose of the simulations is to conduct

comparison-based evaluation, which is successfully achieved by setting the exact

same parameter values to the different simulation settings which are compared

against each other. It is also noted that radio propagation modeling is based on

the log-distance path loss model with log-normal shadowing, since it is widely

accepted and generic enough to simulate various environments [31]. Path loss

at the reference distance is estimated according to Friis formula [32], resulting
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in the following equation for estimating signal path loss:

PL = 10n log d+ 20 log f + 20 log 4π
c
+Xg (16)

where d is the transmitter-receiver distance, f is the central frequency, c is the

speed of light, Xg is a Gaussian random variable with mean µ = 0 and standard

deviation σ modelling slow fading due to mobility/shadowing. It should be520

noted that the correlation between the received signal strength and the distance

is verified in multiple studies including the experiments and regression analyses

performed in the context of WINNER I [33] and WINNER II [34] projects on

wireless channel modeling. However, it is undeniable that this correlation is

degraded by the presence of any form of noise (such as fading and interference).525

Driven by this fact, the proposed technique avoids the direct computation of

distances based on RSSI, rather it utilizes indications of RSSI changes to roughly

deduce whether the robotic device approaches the target or not.

Before proceeding with the performance evaluation, we first compare the

efficiency of the adopted technique of averaging RSSI values within the Samples530

Window (SW) against the dominant Extended Kalman Filtering (EKF) tech-

nique. We have chosen EKF as a reference noise cancellation algorithm, on the

grounds that it is probably the most widely accepted scheme for nonlinear state

estimation in navigation systems, such as the Global Positioning System [35].

In our case, EKF was applied on the observed RSSI values that vary as the535

target moves and the robot follows it, which obviously constitutes a nonlinear

model. The only observable metric is the received RSSI, while the estimated

state is the true RSSI (i.e. relieved from noise), with both values being scalar.

The EKF observation model as well as the process noise covariance were set to

1. On the other hand, the observation noise covariance, which optimally reflects540

the standard deviation of the Gaussian noise experienced by the receiver, is set

to varying values given that the exact shadowing effect is unknown. Figure

7 presents the percent of correct tracking estimates (i.e. Hot or Cold) made

when we replace in the introduced algorithm the SW averaging with EKF for

different values of observation noise covariance. The dashed line depicts the545
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Table 1: Simulation Parameters

Simulation Parameter Value

Simulation duration 1000 sec

Executions per simulation 5

Simulation space 100×100 m2

Robot speed 7.2 km/h (default)

Target speed 3.6 km/h

Target mobility pattern Random waypoints

Halt distance 3 m

Broadcast interval / Simulation cycle period 0.5 sec

Target TX power 0 dBm

Robot RX sensitivity -94 dBm

Target TX antenna gain 0 dBi

Robot RX antenna gain 2 dBi

Path loss exponent 2.8

Signal frequency 2.4 GHz

respective results when we average the values within the SW, as described in

Algorithm 1. It becomes evident that in the general case, the two techniques

perform similarly in the context of the Hot-Cold algorithm. Of course, it should

be clarified that EKF and its variations can be very promising, since they are

highly adjustable and can be tuned for specific mobility and signal propagation550

models. It is undeniable that EKF exhibits its great potential when fusing the

readings from multiple sensors. However, since in the considered environment

only RSSI readings are assumed to be available and there can be no safe infer-

ence about the target’s mobility model, the SW averaging technique is adopted.
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Figure 7: Correct tracking estimates of the adopted SW averaging technique compared with

EKF for different values of observation noise covariance.

Nevertheless, it is clear that Hot-Cold is modular enough to allow replacements555

of its RSSI estimating component with any suitable filtering technique, such as

EKF.

The key performance indicators that are used for evaluation purposes are

the following: i) Average Distance: The distance between the robot and the

target averaged over the simulation duration. Lower values indicate better per-560

formance. ii) Cycles in Range: Simulation cycles during which the robot stays

in the communication range of the target. Higher values indicate better perfor-

mance. iii) Cycles in Halt: Simulation cycles during which the robot freezes,

due to short (halt) distance from the target. Higher values indicate better per-
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formance.565

In our effort to identify the optimal SWS values for the Hot-Cold algorithm,

we have initially run simulations for SWS ranging from 1 to 10 and for standard

deviation of noise due to fading (σ) ranging from 0 to 6. For each SWS value,

the minimum Average Distance is identified, as well as the Average Distance

corresponding to different σ values. In Figure 8, we plot the difference of each570

Average Distance value from the minimum value, along with the mean and

standard deviation. It can be seen that on average the algorithm achieves

smallest differences from the minimum distances for SWS values in the range of

3 to 7. In the place of ”Average Distance”, Figure 9 depicts ”Cycles in Range”

and Figure 10 depicts ”Cycles in Halt”, while considering the difference from575

the maximum value. The former shows that the robot stays more time in range

for SWS values lying in the range of 4 to 7. Similarly, Figure 10 reveals that

the robot reaches halt distance more times with SWS values ranging from 3 to

6.

The first part of the simulation-based evaluation of the introduced Hot-Cold580

algorithm has shown that on average highest following efficiency is achieved for

SWS values in the range of 3 to 7. Hence, these are the SWS values that we

are using to compare Hot-Cold versus a reference target following algorithm.

The simulation results about the ”Average Distance” metric are presented in

Figure 11. The chart plots ”Average Distance” as a function of the standard585

deviation (σ) of the Additive White Gaussian Noise (AWGN) used for mod-

eling signal fading for different SWS values of the Hot-Cold algorithm as well

as the Trilateration target following algorithm and a control case. The latter

refers to the case that the robot is completely static, staying in its original

position throughout the whole duration of the simulation, which results in av-590

erage distance of 30 meters. As expected, lower noise yields shorter following

distance. Moreover, the results reveal that for increased noise with σ equal to

5 or higher, RSSI-based target following algorithms become too inaccurate and

they perform even worse than the control case. It should be noted though that

this behavior is also due to the fact that while the target is constrained within595
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Figure 8: Difference from the minimum average distance between robot and target versus

SWS values of the Hot-Cold algorithm, for different standard deviation values of noise due to

fading (σ).
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Figure 9: Difference from the maximum cycles the robot stays in communication range with

the target versus SWS values of the Hot-Cold algorithm, for different standard deviation

values of noise due to fading (σ).
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Figure 10: Difference from the maximum cycles the robot stays in halt distance from the

target versus SWS values of the Hot-Cold algorithm, for different standard deviation values

of noise due to fading (σ).
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Figure 11: Average distance between robot and target versus the standard deviation of noise

due to fading (σ), for different SWS values of the Hot-Cold algorithm, the Trilateration

algorithm, and the control case.

the simulation space limits, the robot is free to move even beyond those limits,

which causes large distances in case of too inaccurate following. However, for

lower σ values, Hot-Cold outperforms Trilateration, except from the unrealistic

case of noise-free signal (σ = 0).

Similar conclusions can be drawn when comparing ”Cycles in Range”. Figure600

12 shows that the robot can stay longer in communication range when Hot-Cold

is used for noise levels lower than six standard deviations. For higher levels of

noise, staying still (control case) would actually perform better than trying to

follow. In the unrealistic case of noise absence, both Hot-Cold and Trilateration
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Figure 12: Simulation cycles during which the robot stays within the target’s communication

range versus the standard deviation of noise due to fading (σ), for different SWS values of the

Hot-Cold algorithm, the Trilateration algorithm, and the control case.

can achieve 100% simulation cycles in range. Reaching halt distance from target605

(i.e. within 3 meters for our simulations) is even more challenging for the target

following process. It can be seen in Figure 13 that the Trilateration curve

overlaps with the control curve at almost 0% for fading due to shadowing with

σ higher than 1. In fact, excluding the unrealistic case of σ equal to 0, Hot-

Cold manages to drive the robot to halt distance clearly more frequently than610

Trilateration.

As last part of the simulation-based evaluation of the target following scheme,

we investigate the impact of the robot-target relative speed on the tracking ef-
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Figure 13: Simulation cycles during which the robot stays within halt distance from the

target versus the standard deviation of noise due to fading (σ), for different SWS values of

the Hot-Cold algorithm, the Trilateration algorithm, and the control case.
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ficiency. Figure 14 presents the average distance between the target and the

robot for different values of robot speed, keeping target’s speed fixed at 3.6615

km/h and signal fading σ equal to 2. The minimum considered robot speed is

3.6 km/h, since following a target which moves slower than it does not really

make sense. The respective control and trilateration values are also plotted as

references. It is evident that there is a relation between the robot speed and the

SWS value. This is attributed to the distance covered by the robot relatively620

to the target and the spatial frequency of the RSSI readings. In more detail,

since RSSI readings occur at fixed time periods of 0.5 sec, traveling at higher

speeds leads to longer distances covered between the readings. In that man-

ner, Hot-Cold decisions become more accurate, thus, tracking becomes more

efficient (lower average robot-target distance). However, if the robot moves too625

fast, then it travels too far before making a rotation decision, which degrades

tracking efficiency. This behavior is intensified by the impact of the SWS value,

since smaller sample windows lead to more frequent but less accurate decisions.

The results reveal that for each value of robot speed there is an optimal SWS

which minimizes the average distance. For instance, in the context of the consid-630

ered values, when the robot moves at 18 km/h, the optimal size of the samples

window is 3, assuming that the target speed is 3.6 km/h and the signal fading

σ is 2.

The results of the conducted simulations for the evaluation of the proposed

Hot-Cold algorithm have provided insights for parameters’ optimization and635

conclusions on performance through a comparative study. The Trilateration

algorithm is employed as reference and is shown to perform excellent in ideal

condition, when there is actually no fading due to shadowing. In all other cases,

it fails to drive the robot close to the target as efficiently as Hot-Cold does.

The reason is that Trilateration is based on accurate calculation of the robot-640

target distance according to the received signal strength. This approach provides

perfect results in the unrealistic case of a noise free channel, but degrades fast as

fading increases. On the other hand, the introduced algorithm provides target

following capabilities based on relative signal differences after storing values in

40



Figure 14: Average distance between robot and target versus the robot speed, for different

SWS values of the Hot-Cold algorithm, the Trilateration algorithm, and the control case

(standard deviation of noise due to fading (σ) is set to 2).
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the Samples Window. As a result, Hot-Cold is more tolerant to random fading645

effects, managing to effectively turn the robot towards the moving target. Of

course, when signal gets too unstable with great deviations (σ higher than 5),

RSSI-based target following becomes too unreliable and quite infeasible. Most

efficient following is shown to be possible for SWS values between 3 and 7.

5.2. Experimental Testbed650

In order to perform real-world experiments on the introduced scheme, we

have developed a testbed which enables following an individual and providing

remote real-time access to her e-health data in the form of a service.

5.2.1. Robotic Device Software

In this subsection, we focus on the robotic device software, which includes655

the Hot-Cold algorithm. For this testbed, the robot software [36] was developed

in the Eclipse Integrated Development Environment using Java and the LeJOS

framework [37]. According to the system architecture, the program is executed

in a Raspberry Pi that constitutes the sensor node and is mounted on the robotic

device. It controls the robot over a USB connection with the robot processing660

unit.

Moreover, for practical reasons we have implemented in the robot an ob-

stacle avoidance mechanism, which relies on two ultrasonic sensors positioned

at the two corners (left, right) of the robot’s lower front side that can detect

obstacles at a distance up to 255 cm at an angular range of approximately ±90◦.665

The concept of the respective developed algorithm is twofold: a) avoid moving

towards the same obstacle repetitively, b) avoid following a direction which is

almost opposite to the one already followed. For instance, if the robot meets

a wall at an angle, it should always avoid it retaining the same direction and

not turning back. The readings of the ultrasonic sensors are constantly checked.670

The corresponding steps are:

• If the readings of both sensors get lower than 25 cm, then the robot travels

backwards by 10 cm and then rotates by 45◦.
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• Else if the reading of just the right sensor gets lower than 25 cm, then

the robot travels backwards by 10 cm and then rotates by +10◦ (i.e. left675

direction).

• Else if the reading of just the left sensor gets lower than 25 cm, then the

robot travels backwards by 10 cm and then rotates by −10◦ (i.e. right

direction).

It is noticed that the specific obstacle avoidance scheme allows the robot to680

navigate both in wider as well as in narrower spaces. It never requires backwards

movement for more than 10 cm, while it can drive the robot through a corridor

as narrow as 70 cm (so that it can move in straight line between the walls

without triggering the sensors). Of course, it should be clarified that the obstacle

avoidance algorithm is fully configurable and replaceable, since it is not part of685

the main focus of this work. In fact, it is considered as part of the lower layer

motion control, whereas the proposed Hot-Cold tracking algorithm operates on

top of it indicating the general direction towards the target.

5.2.2. Testbed Setup

With the completion of the testbed, three experimental scenarios were set690

up, each one under two different radio propagation conditions. The tested case

was monitoring in real-time the vital sings of a followed individual, both locally

and remotely within the context of an IoT architecture. The role and properties

of each entity of the testbed are described below:

• Prototyped Sensor Platform: The sensor platform was implemented and695

tested using an Arduino Uno board in combination with an e-health kit

including a number of e-health sensors for estimating airflow, temperature,

skin conductance, skin resistance, heart rate, SPO2, electrocardiogram,

and body position. We equipped the board with a wireless network module

featuring IEEE 802.15.4 [38] for broadcasting sensor data.700

• Prototyped Tracking Device: The device following the monitored individ-

ual is a mobile robotic device, equipped with an ultrasound sensor for
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obstacle avoidance.

• Prototyped Sensor Node: A Raspberry Pi 3 realizes the sensor node. It is

equipped with an IEEE 802.15.4 module (through a conversion bridge) to705

communicate with the sensor platform. Moreover, it uses an IEEE 802.11

USB dongle to provide access to sensor data through relaying. Each sensor

node performs MANET routing using the ”Better Approach To Mobile

Adhoc Networking” protocol [39] and is attached on the robotic device.

• Prototyped Biospace/Biobot : The EDBO Biospace was developed via JADEX710

as a Java program running in the relay node. The Biospace creates a

Biobot providing the corresponding sensor data service, which is made

discoverable to the whole Global Network of the IoT architecture through

the provided service registry.

• Prototyped End User System: The end user system was realized as a Java-715

based client software running in a tablet, which is able to discover the

created Biobots and access their sensor data service.

The testbed was deployed in a closed-space sports University facility of di-

mensions 35m x 40m (totaling 1400 m2), where the Cartesian axes origin (0, 0)

is placed at the top left corner. A robotic device equipped with a sensor node720

moves at 10 km/h and performs Hot-Cold tracking (with parameters SWS = 4

and φ = 137◦) of a person carrying a sensor platform, who walks at 5 km/h

when moving. The edge-to-edge front wheel distance (i.e. the track width) of

the robotic device is 17.5 cm and the duration of a direction change (stop-rotate-

start) is on average 2.5 sec. The sensor data are forwarded over an IEEE 802.11725

MANET through a Raspberry Pi relay node to a laptop that constitutes the

end user system. Four iterations of 60 sec are performed for each experimental

scenario, which are set up as follows:

• 1st Scenario: This is considered as control scenario, where the target

remains static at position (5, 5). The robot’s starting position is (30, 35)730

facing away from the target (direction at 50◦).
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• 2nd Scenario: The target moves in straight line starting at point (5, 5)

and in 28 sec reaches the destination point (50, 35). The robot’s starting

position is (30, 5) with initial direction 0◦.

• 3rd Scenario: The target moves in zigzag starting at point (5, 5), visiting735

after 10 sec the first waypoint (5, 11.5), 20 sec later it reaches the second

waypoint (30, 25), and 20.5 sec later it reaches the destination (5, 35).

The robot’s starting position is (30, 5) with initial direction 0◦.

Two experimental evaluations took place for each one of the three scenar-

ios, corresponding to different radio propagation conditions. In detail, the first740

experiment was performed under normal noise conditions, with no interference

intentionally created in the testbed environment. The second experiment per-

formed for each scenario took place under elevated noise conditions using two

sources of interference: a pair of Raspberry Pi devices positioned at coordinates

(0,0) and (35,40), respectively. These two devices were equipped with a 5 dBi745

omni-directional antenna and were configured to exchange data over an IEEE

802.11n link operating at channel 6, which has a central frequency of 2437 MHz

and bandwidth of 20 MHz, and transmit at 13 dBm TX power. It is noted

that the specific communication directly interferes with the IEEE 802.15.4 link

connecting the target to the robotic device, which is set at frequency 2435 MHz750

that corresponds to channel 17 of the specific standard.

5.2.3. Testing Results

The experimental results of the robot-target distance for the 1st scenario

are presented in Figure 15, along with an illustration of the scenario setup. In

Figure 15a, it can be seen that in normal noise conditions, after correcting its755

direction, the robot manages to reach the static target within the experiment

duration. Specifically, in three iterations the target is reached in about 20 sec,

while in one iteration the target is reached in about 37 sec. Figure 15b shows

that under elevated noise conditions, the robot has to correct its direction several

times, due to some erroneous estimates of the signal strength variations caused760
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Figure 15: Distance between target and robot adopting Hot-Cold tracking versus time in the

1st scenario, under a) normal noise and b) elevated noise conditions

by the induced interference, however, it still manages to closely approach the

target within the duration of the experiment.

In the 2nd scenario, the charts in Figure 16 also present target’s distance

from the robot’s starting point (dashed line). It is evident that under normal

noise conditions (Figure 16a) the robot initially corrects its direction and reaches765

the target about 2 sec after the latter arrives at destination (at time 28 sec),

except from one iteration that required sixteen more seconds. Under elevated

noise conditions, it can be seen that the robot has to realign its trajectory

several times, but eventually manages to stay in the target’s proximity, as show

in Figure 16b.770

Probably the most challenging scenario is the third one, with the correspond-

ing results for normal noise conditions presented in Figure 17a. Until the first

waypoint, the target moves almost opposite from the robot’s initial direction,

causing temporal distance increment. After that, the robot approaches, reach-
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Figure 16: Distance between target and robot adopting Hot-Cold tracking versus time in the

2nd scenario, under a) normal noise and b) elevated noise conditions

ing minimum distance right after the target’s arrival at the second waypoint.775

Then, the robot manages in all iterations to maintain proximity, however, the

9.5 sec that the target remains static at the destination point is not sufficient

time for the robot to stay stably close to the target. A similar behaviour is

also observed under elevated noise conditions, as presented in Figure 17b. It

is evident that in the presence of excessive interference, it is quite difficult for780

the robot to stay close to the target when the latter reaches the second way-

point, however, it eventually manages to approach closely by the end of the

experiment.

Conclusively, in all three scenarios, the Hot-Cold algorithm has succeeded in

its goal of adjusting robot’s trajectory to keep approaching the target, affected785

of course by the mobility pattern. Artificially increasing the radio interference

led to degradation of the tracking performance (longer intervals before reaching

the target), however, the robot managed to stay in target’s close proximity.
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Figure 17: Distance between target and robot adopting Hot-Cold tracking versus time in the

3rd scenario, under a) normal noise and b) elevated noise conditions

During the experiments, end-to-end connectivity to the sensor platform was

maintained, with all sensor data collected every 0.5 sec successfully relayed to790

the end user system.

In general, the tracking environment may affect the behavior of the Hot-

Cold scheme in various ways. The structure of the considered scene has a direct

impact on the RF signal propagation as well as on the target’s mobility pat-

tern and the robot’s following abilities. Specifically, the presence of multiple795

obstacles (such as in an urban environment) can create high shadowing and

multipath fading effects which lead to less reliable RSSI estimates, hence, to

less accurate rotation decisions. On the other hand, a relatively open scene

ensures weaker fading, thus, more efficient tracking decisions based on the re-

ceived signal strength fluctuations. Moreover, heavily obstructed paths make it800

difficult to maintain a consistent tracking course and put most of the pressure

on the adopted obstacle avoidance technique, which however is not an internal
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component of the introduced Hot-Cold algorithm, but a complementary one.

Generally, as expected, all elements that may affect signal propagation (such

as objects’ reflection and refraction factors) and/or mobility have an impact805

on the efficiency of the introduced technique. The presented evaluation results

have revealed that in environments where the tracking robot can effectively move

via obstacle avoidance and the standard deviation of the experienced Gaussian

fading is lower than 5, the proposed scheme can ensure effective tracking per-

formance.810

6. Conclusions and Future Directions

In this paper, we have primarily introduced a new algorithm for following

mobile monitored targets/individuals in the context of an IoT system. The de-

vised technique, called Hot-Cold, is able to ensure proximity maintenance by

the tracking robotic device solely based on the strength of the RF signal broad-815

casted by the target to communicate its sensors’ data. Possible applications

of such a tracking technique are quite promising and include the sustainment

of communication links for monitoring purposes in dynamic environments with

limited or unavailable network infrastructure. The monitoring information is

made available over a bio-inspired IoT architecture, which allows flexible cre-820

ation and discovery of sensor-based services.

For the identification of the optimal rotation angle employed by the tracking

robot, a complete analysis was conducted in four steps: geometrical analysis,

numerical analysis, exhaustive-simulation analysis, and convergence analysis.

The analytical results reveal that performance optimization is achieved for Hot-825

Cold at a rotation angle of ∼137 degrees. An in-depth evaluation of the pro-

posed technique was performed through simulations and in comparison with

the well-known concept of trilateration-based tracking. The simulation results

have identified the optimal configuration for Hot-Cold key parameters and have

shown that it achieves superior performance for realistic levels of signal fad-830

ing due to shadowing. The evaluation part is completed with the presentation
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of a testbed, which demonstrates the proposed IoT system concept. All key

components are thoroughly described, focusing on the target following aspect.

The conducted experiments show the operability of the overall approach and

especially focus on the effectiveness of the tracking technique.835

Future work involves the optimization of the tracking technique for general-

ized target following scenarios in the context of IoT. For instance, we intend to

investigate combinations of different numbers of tracking devices following one

or more monitored targets in a cooperative manner. Moreover, possible applica-

tions can be extended from mobile tracking robots to Unmanned Autonomous840

Vehicles (UAVs - drones). In general, the related potential extensions in terms of

candidate applications and functionality enhancements are numerous and very

promising for the future of IoT and they definitely worth further exploration.
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