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Max-Min Rate of Cell-Free Massive MIMO Uplink

with Optimal Uniform Quantization
Manijeh Bashar, Student Member, IEEE, Kanapathippillai Cumanan, Member, IEEE, Alister G. Burr, Senior

Member, IEEE, Hien Quoc Ngo, Member, IEEE, Merouane Debbah, Fellow, IEEE, and Pei Xiao, Senior

Member, IEEE

Abstract—Cell-free Massive multiple-input multiple-output
(MIMO) is considered, where distributed access points (APs)
multiply the received signal by the conjugate of the estimated
channel, and send back a quantized version of this weighted
signal to a central processing unit (CPU). For the first time,
we present a performance comparison between the case of
perfect fronthaul links, the case when the quantized version of
the estimated channel and the quantized signal are available
at the CPU, and the case when only the quantized weighted
signal is available at the CPU. The Bussgang decomposition is
used to model the effect of quantization. The max-min problem
is studied, where the minimum rate is maximized with the
power and fronthaul capacity constraints. To deal with the
non-convex problem, the original problem is decomposed into
two sub-problems (referred to as receiver filter design and
power allocation). Geometric programming (GP) is exploited
to solve the power allocation problem whereas a generalized
eigenvalue problem is solved to design the receiver filter. An
iterative scheme is developed and the optimality of the proposed
algorithm is proved through uplink-downlink duality. A user
assignment algorithm is proposed which significantly improves
the performance. Numerical results demonstrate the superiority
of the proposed schemes.
Keywords: Cell-free Massive MIMO, generalized eigenvalue, ge-
ometric programming, limited fronthaul.

I. INTRODUCTION

Cell-free Massive multiple-input multiple-output (MIMO)

has been recognized as a potential technology for 5th Gener-

ation (5G) systems, where large number of distributed access

points (APs) serve a much smaller number of users, and

hence, uniformly good service performance for all users is

M. Bashar, K. Cumanan and A. G. Burr are with the Department of
Electronic Engineering, University of York, Heslington, York, U.K. e-mail:
{mb1465, kanapathippillai.cumanan, alister.burr}@york.ac.uk. M. Bashar is
also with home of the 5G Innovation Centre, Institute for Communica-
tion Systems, University of Surrey, U.K. e-mail: m.bashar@surrey.ac.uk.
H. Q. Ngo is with the School of Electronics, Electrical Engineering
and Computer Science, Queen’s University Belfast, Belfast, U.K. e-mail:
hien.ngo@qub.ac.uk. M. Debbah is with the Large Networks and Systems
Group (LANEAS), CentraleSupelec, Universite Paris-Saclay, Gif-sur-Yvette
91192, France, and also with the Mathematical and Algorithmic Sciences
Lab, Huawei Technologies Co., Ltd., Boulogne-Billancourt 92100, France.
e-mail: merouane.debbah@centralesupelec.fr. Pei Xiao is with home of the
5G Innovation Centre, Institute for Communication Systems, University of
Surrey, U.K. e-mail: p.xiao@surrey.ac.uk.

The work of K. Cumanan and A. G. Burr was supported by H2020-MSCA-
RISE-2015 under grant number 690750.

The work of H. Q. Ngo was supported by the UK Research and Innovation
Future Leaders Fellowships under Grant MR/S017666/1.

The work of P. Xiao was supported in part by the European Commission
under the 5GPPP project 5GXcast (H2020-ICT-2016-2 call, grant number
761498) as well as by the U.K. Engineering and Physical Sciences Research
Council under Grant EP/ R001588/1.

ensured [1]–[5]. Interestingly, in [2], it is shown that the

system performance of cell-free Massive MIMO depends only

on large-scale fading, i.e., the small-scale fading and noise can

be averaged out when number of APs is large. In [6] a user-

centric approach is proposed where each user is served by

a small number of APs. Cell-free Massive MIMO effectively

implements a user-centric approach [7]. In [8], the authors

consider distributed Massive MIMO in a multi-cell manner,

which is different from cell-free massive MIMO (as there is

no cell concept).

One of the main issues of cell-free Massive MIMO sys-

tems which requires more investigation is the limited-capacity

fronthaul links from the APs to a central processing unit

(CPU). The assumption of infinite fronthaul in [1], [2], [9]

is not realistic in practice. The fronthaul requirements for

Massive MIMO systems, including small-cell and macro-

cell base stations (BSs) have been investigated in [10]. The

fronthaul load is the main challenge in any distributed antenna

systems [10], [11]. First, we consider the case where all APs

send back the quantized version of the minimum mean-square

error (MMSE) estimate of the channel from each user and

the quantized version of the received signal to the CPU. We

next study the case when each AP multiplies the received

signal by the conjugate of the estimated channel from each

user, and sends back a quantized version of this weighted

signal to the CPU. We derive the total number of bits for

both cases and show that given the same fronthaul capacity

for both cases, the relative performance of the aforementioned

cases depends on the number of antennas at each AP, the

total number of APs and the channel coherence time. A

new approach is provided to the analysis of the effect of

fronthaul quantization on the uplink of cell-free Massive

MIMO. While there has been significant work in the context of

network MIMO on compression techniques such as Wyner-Ziv

coding for interconnection of distributed base stations, here for

simplicity (and hence improved scalability) we assume simple

uniform quantization. We exploit the Bussgang decomposition

[12] to model the effect of quantization.

In [1], [2], [13] the authors propose that the APs design the

linear receivers based on the estimated channels, and that this

is carried out locally at the APs. Hence, the CPU exploits only

the statistics of the channel for data detection. However, in this

paper, we propose to exploit a new receiver filter at the CPU to

improve the performance of cell-free Massive MIMO systems.

The coefficients of the proposed receiver filter are designed

based on only the statistics of the channel, which is different
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from the linear receiver at the APs. The proposed receiver

filter provides more freedom in the design parameters and

hence, significantly improves the performance of the uplink

of cell-free Massive MIMO. The work in [14] presents a large

scale fading decoding (LSFD) postcoding vector and power

allocation scheme to solve max-min signal-to-interference-

plus-noise ratio (SINR) problem. However, note that the work

in [14] does not present any iterative algorithm to jointly solve

power minimization problem and LSFD postcoding vector

design. In [15], the authors use a bisection search approach to

solve the power allocation problem. Next, MMSE receiver is

exploited to determine the LSFD postcoding vectors. However,

in our work, we exploit geometric programming (GP) to

optimally solve the power allocation problem. Moreover, we

prove that the proposed algorithm is optimal whereas the

authors in [14] does not present any proof of optimality. In

addition, the work in [14] does not consider any quantization

errors whereas our work investigates the realistic assumption

of limited-capacity fronthaul links.

We next investigate an uplink max-min rate problem with

limited fronthaul links. In particular, the receiver filter coef-

ficients and power allocation are optimized in the proposed

scheme whereas the work in [2] only considered user power

allocations. In particular, we propose a new approach to solve

this max-min problem. A similar max–min rate problem based

on SINR known as SINR balancing in the literature has

been considered [16]–[23]. In [24], [25], the authors consider

MIMO systems and study the problem of max-min user rate

to maximize the smallest user rate. The problem of uplink-

downlink duality has been investigated in [26], [27]. Note

that none of the previous works on uplink-downlink duality

consider Massive MIMO and the SINR formula in single-cell

does not include any pilot contamination, channel estimation

and quantization errors. To tackle the non-convexity of the

original max-min rate problem, we propose to decouple the

original problem into two sub-problems, namely, receiver filter

coefficient design, and power allocation. We next show that

the receiver filter coefficient design problem may be solved

through a generalized eigenvalue problem [28]. Moreover, the

user power allocation problem is solved through standard GP

[29]. We present an iterative algorithm to alternately solve

each sub-problem while one of the design parameters is fixed.

Next an uplink-downlink duality for cell-free Massive MIMO

system with limited fronthaul links is established to validate

the optimality of the proposed scheme. We finally propose

an efficient user assignment algorithm and show that further

improvement is achieved by the proposed user assignment

algorithm.

The idea of exploiting an iterative algorithm to design

the receiver filter and power coefficients in cell-free Massive

MIMO system has been proposed in [30]. However, in [30],

the authors investigate a cell-free Massive MIMO with single-

antenna APs and perfect fronthaul links whereas in the this

work we exploit a cell-free Massive MIMO system with

multiple-antenna APs and limited-capacity fronthaul links.

Furthermore, in this work, unlike [30], user assignment is

investigated. The contributions of the paper are summarized

as follows:

Figure 1. The uplink of a cell-free Massive MIMO system with K single-
antenna users and M APs. Each AP is equipped with N antennas. The solid
lines denote the uplink channels and the dashed lines present the limited-
capacity fronthaul links from the APs to the CPU.

1. We consider two cases: i) the quantized versions of the

channel estimates and the received signals at the APs are

available at the CPU and ii) the quantized versions of

processed signals at the APs are available at the CPU.

The corresponding achievable rates are derived by using

the Use-and-then-Forget (UaF) bounding technique taking

into account the effects of channel estimation error and

quantization error.

2. We make use of the Bussgang decomposition to model the

effect of quantization and present the analytical solution

to find the optimal step size of the quantizer.

3. We propose a max-min fairness power control problem

which maximizes the smallest of all user rates under

the per-user power and fronthaul capacity constraints. To

solve this problem, the original problem is decomposed

into two sub-problems and an iterative algorithm is devel-

oped. The optimality of the proposed algorithm is proved

through establishing the uplink-downlink duality for the

cell-free Massive MIMO system with limited fronthaul

link capacities.

4. A novel and efficient user assignment algorithm based on

the capacity of fronthaul links is proposed which results

in significant performance improvement.

The rest of the paper is organized as follows. Section II de-

scribes the system model and Section III provides performance

analysis. The proposed max-min rate scheme is presented in

Section IV and the convergence is provided in Section V.

The optimality of the proposed scheme is proved in Section

VI. Section VII investigates the proposed user assignment

algorithm. Numerical results are presented in Section VIII,

and finally Section IX concludes the paper.

II. SYSTEM MODEL

We consider uplink transmission in a cell-free Massive

MIMO system with M APs and K single-antenna users ran-

domly distributed in a large area. Moreover, we assume each

AP has N antennas. The channel coefficient vector between

the kth user and the mth AP, gmk ∈ CN×1, is modeled as

gmk =
√
βmkhmk, where βmk denotes the large-scale fading,

the elements of hmk are independent and identically distributed
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(i.i.d.) CN(0,1) random variables, and represents the small-

scale fading [2].

A. Uplink Channel Estimation

All pilot sequences transmitted by the K users in the channel

estimation phase are collected in a matrix Φ ∈ Cτp×K , where

τp is the length of the pilot sequence for each user and the

kth column, φφφk , represents the pilot sequence used for the kth

user. After performing a de-spreading operation, the MMSE

estimate of the channel coefficient between the kth user and

the mth AP is given by [2]

ĝmk =cmk

(
√
τpppgmk+

√
τppp

K∑
k′,k

gmk′φφφ
H
k′φφφk+Wp,mφφφk

)
, (1)

where Wp,m ∈ CM×K denotes the noise sequence at the

mth AP whose elements are i.i.d. CN(0,1), pp represents the

normalized SNR of each pilot sequence (which we define in

Section VIII), and cmk =

√
τpppβmk

τppp

∑K
k′=1

βmk′ |φφφH
k′φφφk |2+1

. Note that, as

in [2], we assume that the large-scale fading, βmk , is known.1

The investigation of cell-free Massive MIMO with realistic

COST channel model [33]–[35] will be considered in our

future work.

B. Optimal Quantization Model

Based on Bussgang’s theorem [12], a nonlinear output of a

quantizer can be represented as a linear function as follows:

Q(z) = h(z) = az + nd, ∀k, (2)

where a is a constant value and nd refers to the distortion

noise which is uncorrelated with the input of the quantizer, z.

The term a is given by

a =
E {zh(z)}
E{z2} =

1

pz

∫
Z

zh(z) fz(z)d z, (3)

where pz = E{|z |2} = E{z2} is the power of z and we drop

absolute value as z is a real number, and fz(z) is the probability

distribution function of z. Denote by2

b =
E

{
h2(z)

}
E{z2} =

1

pz

∫
Z

h2(z) fz(z)d z. (4)

Then, the signal-to-distortion noise ratio (SDNR) is

SDNR =
E

{
(az)2

}
E{n2

d
}
=

pza2

pz
(
b − a2

) = a2

b − a2
, (5)

According to [12], [36], [37], the midrise uniform quantizer

function h(z) is given by

h(z) =




− L−1
2
∆ z ≤ −

(
L
2
+ 1

)
∆,(

l + 1
2

)
∆ l∆ ≤ z ≤ (l + 1)∆, l = − L

2
+ 1, · · · , L

2
− 2,

L−1
2
∆ z ≥

(
L
2
− 1

)
∆,

(6)

1The large-scale fading βmk changes very slowly with time. Compared to
the small-scale fading, the large-scale fading changes much more slowly, some
40 times slower according to [31], [32]. Therefore, βmk can be estimated in
advance. One simple way is that the AP takes the average of the power level of
the received signal over a long time period. A similar technique for collocated
Massive MIMO is discussed in Section III-D of [32].

2Equations (2)-(4) come from [12] but we include them here for complete-
ness, and to define the terms we used.

where ∆ is the step size of the quantizer and L = 2α, where

α is number of quantization bits.

Lemma 1. The terms a and b are obtained as follows:

a=∆

√
2

πpz

©«

L
2
−1∑

l=1

e
−

l2
∆

2

2pz +1

ª®®®¬
, b=
∆

2

pz

©«
1

4
+4

L
2
−1∑

l=1

lQ

(
l∆√
pz

)ª®¬
, (7)

where Q(x) is the Q-function and is given by Q(x) =
1
2
erfc

(
x√
2

)
, where erfc refers to the complementary error

function [38].

Proof: Please refer to Appendix A. �

In general, terms a and b are functions of the power of the

quantizer input, pz . To remove this dependency, we normalize

the input signal by dividing the input signal, z, by the square

root of its power,
√

pz , and then multiply the quantizer output

by its square root,
√

pz . Hence, by introducing a new variable

Ûz = z√
pz

, we have

Q(z) = √pzQ(Ûz) = Ûa
√

pz Ûz +
√

pz Ûnd = Ûaz +
√

pz Ûnd . (8)

Note that (8) enables us to find the optimum step size of the

quantizer and the corresponding Ûa. Note that for the case of
Û∆ = 1√

pz
∆, we have Ûa = a, Ûb = b. The optimal step size of the

quantizer is obtained by solving the following maximization

problem:

∆opt = arg max
∆

SDNR=arg max
∆

a2

b − a2

I1
= arg max

Û∆

Ûa2

Ûb − Ûa2

= arg max
Û∆

Ûa2

Ûb
I2

, arg max
Û∆

©«

2 Û∆2

π

(∑ L
2
−1

l=1
exp

(
−l2 Û∆2

2

)
+ 1

)2

Û∆2
(

1
4
+ 4

∑ L
2
−1

l=1
lQ

(
l Û∆

) )
ª®®®¬

= arg max
Û∆

©«

(∑ L
2
−1

l=1
2 exp

(
− l2 Û∆2

2

)
+ 1

)2

1
4
+ 4

∑ L
2
−1

l=1
l Q

(
l Û∆

)
ª®®®®®¬
, (9)

where in step I1, we have used (8) and step I2 comes from

results in Lemma 1. Moreover, note that Û∆ = ∆√
pz

. The

maximization problem in (9) can be solved through a one-

dimensional search over Û∆ for a given L in a symbolic

mathematics tool such as Mathematica. For the input Ûz with

p Ûz = 1, the optimal step size of the quantizer Û∆opt, the resulting

distortion noise power, p Ûnd
= E{| Ûnd |2} = Ûb − Ûa2, and the

resulting Ûa are summarized in Table I.

Remark 1. Interestingly, the optimal values for quantization

step size, Û∆opt , given in Table I, are exactly the same as the

optimal values of quantization step size in [39]. In [39], J. Max

did not provide any analytical solution to solve the problem

of minimizing the mean-squared distortion (or mean-squared

error (MSE)) and to obtain the optimal quantization step size.

Moreover, J. Max only calculates the optimal step size and the

resulting distortion power for α = 1, · · · ,5 whereas Lemma 1

enables us to calculate the optimal step size and the resulting

distortion power for any quantization resolution. Values for α

up to 10 are listed in Table I.
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Table I
THE OPTIMAL STEP SIZE AND DISTORTION POWER OF A UNIFORM

QUANTIZER WITH BUSSGANG DECOMPOSITION.

α Û∆opt σ2
Ûe = p Ûnd

= Ûb − Ûa2 Ûa
1 1.596 0.2313 0.6366

2 0.9957 0.10472 0.88115

3 0.586 0.036037 0.96256

4 0.3352 0.011409 0.98845

5 0.1881 0.003482 0.996505

6 0.1041 0.0010389 0.99896

7 0.0568 0.0003042 0.99969

8 0.0307 0.0000876 0.999912

C. Uplink Transmission

In this subsection, we consider the uplink data transmission,

where all users send their signals to the APs. The transmitted

signal from the kth user is represented by xk =
√
ρqk sk, where

sk (E{|sk |2} = 1) and qk denotes the transmitted symbol and

the transmit power from the kth user, respectively, where ρ

represents the normalized uplink SNR (see Section VIII for

more details). The N × 1 received signal at the mth AP from

all users is given by

ym =
√
ρ

K∑
k=1

gmk

√
qk sk + nm, (10)

where each element of nm ∈ CN×1, nn,m ∼ CN(0,1) is the

noise at the mth AP.

III. PERFORMANCE ANALYSIS

In this section, the performance analysis for two cases is

presented. First we consider the case when the quantized

versions of the channel estimates and the received signals

are available at the CPU. Next, it is assumed that only the

quantized versions of the weighted signals are available at

the CPU. The corresponding achievable rates are derived by

exploiting the UaF bounding technique.

Case 1. Quantized Estimate of the Channel and Quantized

Signal Available at the CPU: The mth AP quantizes the terms

ĝmk , ∀k, and ym, and forwards the quantized channel state

information (CSI) and the quantized signals in each symbol

duration to the CPU. The quantized signal can be obtained as:

Q ([ym]n) = Ûa[ym]n + [eym]n = [ζm]n + j[νm]n, ∀m,n, (11)

where [eym]n refers to the quantization error, and [ζm]n and

[νm]n are the real and imaginary parts of the output of the

quantizer, respectively. Note that we separately quantize the

imaginary and real parts of the input of the quantizer. Note

that [x]n represents the nth element of vector x. The analog-

to-digital converter (ADC) quantizes the real and imaginary

parts of [ym]n with α bits each, which introduces quantization

errors [eym]n to the received signals [40], [41]. In addition, the

ADC quantizes the MMSE estimate of CSI as:

Q ([ĝmk]n) = Ûa[ĝmk]n+[egmk
]n = [̺mk]n+ j[κmk]n,∀k,n, (12)

where [̺mk]n and [κmk]n denote the real and imaginary

parts of the output of the quantizer, respectively. Again,

note that the real and imaginary parts of the input of

the quantizer are separately quantized. For simplicity, we

assume all APs use the same number of bits to quan-

tize the received signal, ym, and the estimated channel,

ĝmk . Therefore, [eym]n = E{|[ym]n |2}[Ûeym]n and [eg
mk
]n =

E{|[ĝmk]n |2}[Ûegmk
]n, where E

{��[Ûeym]n��2} = E {��[Ûeg
mk
]n

��2}
= σ2

Ûe .

Note that E
{��[Ûeym]n��2} and E

{��[Ûeg
mk
]n

��2} are quantization errors

of a quantizer with normalized input [Ûym]n = [ym]n√
E{ |[ym]n |2 }

and

[ Û̂gmk]n = [ĝmk ]n√
E{ |[ĝmk ]n |2 }

, respectively. Note that due to power

normalization, Ûa, Ûb, and optimal step size for (11) and (12)

are the same and provided in Table I. The received signal for

the kth user after using the maximum ratio combining (MRC)

detector at the CPU is given by

rk=

M∑
m=1

umk(Q (ĝmk))HQ (ym)=
M∑
m=1

umk

(
Ûaĝmk+e

ĝ

mk

)H(
Ûaym+e

y
m

)

=

M∑
m=1

umk

(
Ûaĝmk+e

ĝ

mk

)H (
Ûa√ρ

K∑
k=1

gmk

√
qk sk+ Ûanm+e

y
m

)

= Ûa2 √ρE
{

M∑
m=1

umk ĝH
mkgmk

√
qk

}
︸                               ︷︷                               ︸

DSk

sk + Ûa2
M∑
m=1

umk ĝH
mknm

︸            ︷︷            ︸
TNk

+ Ûa2√ρ
(
M∑
m=1

umk ĝH
mkgmk

√
qk−E

{
M∑
m=1

umk ĝH
mkgmk

√
qk

})
︸                                                              ︷︷                                                              ︸

BUk

sk+ Ûa2

K∑
k′,k

√
ρ

M∑
m=1

umk ĝH
mkgmk′

√
qk′

︸                        ︷︷                        ︸
IUIkk′

sk′+

K∑
k′=1

Ûa√ρ
M∑
m=1

umk(eĝmk
)Hgmk′

√
qk′

︸                           ︷︷                           ︸
TQEkk′

sk′

+ Ûa
M∑
m=1

umk(egmk
)Hnm

︸               ︷︷               ︸
TQE

g

k

+ Ûa
M∑
m=1

umk ĝH
mke

y
m

︸           ︷︷           ︸
TQE

y

k

+

M∑
m=1

umk

(
e
ĝ

mk

)H
e
y
m

︸                ︷︷                ︸
TQE

gy

k

, (13)

where DSk and BUk denote the desired signal (DS) and

beamforming uncertainty (BU) for the kth user, respectively,

and IUIk represents the inter-user-interference (IUI) caused by

the k ′th user. In addition, TNk accounts for the total noise (TN)

following the MRC detection, and finally the terms TQE
y

k
,

TQE
g

k
, TQE

gy

k
and TQEkk′ refer to the total quantization

error (TQE) at the kth user due to the quantization errors

at the channel and signal. Moreover, by collecting all the

coefficients umk,∀m, corresponding to the kth user, we define

uk = [u1k,u2k, · · · ,uMk]T and without loss of generality, it

is assumed that | |uk | | = 1. The optimal values of umk are

investigated in Section IV.

Proposition 1. Terms DSk , BUk , IUIkk′ , TQNkk′ , TQN
g

k
,

TQN
y

k
, TQN

gy

k
are mutually uncorrelated.

Proof: Please refer to Appendix B. �

To obtain an achievable rate, we use the UaF bounding

technique as in [2]. This techniques is commonly used

in massive MIMO [42], [43] since it yields a simple and

tight achievable rate which enables us to further design the
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SINRCase 1
k

=

Ûa4 |DSk |2

Ûa4E

{
|BUk |2

}
+ Ûa4E

{
|TNk |2

}
+ Ûa4

∑K
k′,k E

{
|IUIkk′ |2

}
+Ûa2E

{���TQE
y

k

���2
}
+ Ûa2E

{���TQE
g

k

���2
}
+Ûa2

K∑
k′=1
E

{
|TQEkk′ |2

}
+E

{���TQE
gy

k

���2
}.(14)

SINRCase 1
k

=

N2qk

(∑M
m=1

umkγmk

)2

N2
∑K

k′,kqk′

(∑M
m=1

umkγmk
βmk′

βmk

)2 ���φφφH
k
φφφk′

���2 +N

(
Ctot

Ûa4
+ 1

) ∑M
m=1

umkγmk

∑K
k′=1

qk′ βmk′ +
N

ρ

(
Ctot

Ûa4
+ 1

) ∑M
m=1

umkγmk

.(15)

systems. The tightness of this bound for cell-free Massive

MIMO is presented in [2]. Using Proposition 1 and the UaF

bounding technique in [2], we can obtain an achievable rate

as RCase 1
k

= log2(1 + SINRCase 1
k
), where SINRCase 1

k
is given

by (14). The closed-form expression for the achievable uplink

rate of the kth user is given in the following theorem.

Theorem 1. Having the quantized CSI and the quantized

signal at the CPU and employing MRC detection at the CPU,

the closed-form expression for the achievable rate of the kth

user is given by RCase 1
k

= log2(1 + SINRCase 1
k

), where the

SINRCase 1
k

is given by (15) (defined at the top of this page),

where γmk =
√
τpppβmkcmk and Ctot = 2 Ûa2σ2

Ûe + σ
4
Ûe .

Proof: The power of quantization errors can be obtained as

E

{��[eym]n��2} = E {��[Ûeym]n��2}
(
ρ

K∑
k′=1

qk′βmk′ + 1

)
,

E

{��[eg
mk
]n

��2}
= E

{��[Ûeg
mk
]n

��2} γmk . (16)

Since E
{��[Ûeym]n��2} = E {��[Ûeg

mk
]n

��2}
= σ2

Ûe , we have:

E

{��[eym]n��2} = σ2
Ûe

(
ρ

K∑
k′=1

qk′βmk′ + 1

)
,

E

{��[eg
mk
]n

��2}
= σ2

Ûeγmk . (17)

Using (16) and the fact that quantization error is indepnedent

with the input of the quantizer, after some mathematical

manipulations, we have:

Ûa2
E

{��TQE
y

k

��2}
+ Ûa2
E

{��TQE
g

k

��2}
+ Ûa2

K∑
k′=1

E
{
|TQEkk′ |2

}

+ E

{��TQE
gy

k

��2}
= NCtot

M∑
m=1

umkγmk

(
ρ

K∑
k′=1

qk′βmk′ + 1

)
.(18)

Note that the terms |DSk |2, E
{
|BUk |2

}
, and E

{
|IUIkk′|2

}
are

derived in (50), (51) and (56), respectively. Finally substituting

(18), (50), (51) and (56) into (14) results in (15), which com-

pletes the proof of Theorem 1. �

Case 2. Quantized Weighted Signal Available at the CPU:

The mth AP quantizes the terms zm,k = ĝH
mk

ym, ∀k, and

forwards the quantized signals in each symbol duration to the

CPU as

zmk = ĝH
mkym = rmk + jsmk, ∀k,m, (19)

where rmk and smk represent the real and imaginary parts of

zmk , respectively. An ADC quantizes the real and imaginary

parts of zm,k with α bits each, which introduces quantization

errors to the received signals [40]. Let us consider the term

ez
mk

as the quantization error of the mth AP. Hence, using

the Bussgang decomposition, the relation between zmk and its

quantized version, Ûzmk , can be written as

Q (zmk) = Ûazmk + ez
mk
. (20)

Note that given the fact that the input of quantizer, i.e.,

zmk = ĝH
mk

ym, is the summation of many terms, it can be

approximated as a Gaussian random variable. This enables us

to exploit the values given in Table I, which are obtained for

Gaussian input. The aggregated received signal at the CPU

can be written as3

rk =

M∑
m=1

umk

(
Ûa ĝH

mkym︸ ︷︷ ︸
zmk

+ez
mk

)
= Ûa√ρ

K∑
k′=1

M∑
m=1

umk ĝH
mkgmk′

√
qk′sk′

+ Ûa
M∑
m=1

umk ĝH
mknm+

M∑
m=1

umkez
mk
= Ûa√ρE

{
M∑
m=1

umk ĝH
mkgmk

√
qk

}
︸                              ︷︷                              ︸

DSk

sk

+ Ûa√ρ
(
M∑
m=1

umk ĝH
mkgmk

√
qk−E

{
M∑
m=1

umk ĝH
mkgmk

√
qk

})
︸                                                             ︷︷                                                             ︸

BUk

sk+

K∑
k′,k

Ûa

√
ρ

M∑
m=1

umk ĝH
mkgmk′

√
qk′

︸                        ︷︷                        ︸
IUIkk′

sk′+ Ûa
M∑
m=1

umk ĝH
mknm

︸           ︷︷           ︸
TNk

+

M∑
m=1

umkez
mk

︸      ︷︷      ︸
TQEk

, (21)

where TQEk refers to the total quantization error (TQE) at the

kth user. Note that in cell-free Massive MIMO with M →∞,

due to the channel hardening property, detection using only

the channel statistics is nearly optimal. This is shown in [2]

(see Fig. 2 of reference [2] and its discussion). Moreover, in

[2] the authors show that in cell-free Massive MIMO with

M → ∞, the received signal includes only the desired signal

plus interference from the pilot sequence non-orthogonality.

Finally, using the analysis in [2], the corresponding SINR of

the received signal in (21) can be defined by considering the

worst-case of the uncorrelated Gaussian noise is given by (22)

3Note that for both Case 1 and Case 2, the AP estimates the channel.
Therefore the total complexity is the same for Case 1 and Case 2. However,
in Case 1 the CPU performs N2 multiplication and M − 1 additions whereas
in Case 2 the APs establish N multiplications and the CPU performs N

multiplications and combines the transmitted signals form M APs (via
fronthaul links) which requires M − 1 additions.
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SINRCase 2
k =

|DSk |2

E
{
|BUk |2

}
+

K∑
k′,k
E

{
|IUIkk′ |2

}
+ E

{
|TNk |2

}
+

1

Ûa2
E

{
|TQEk|2

} . (22)

SINRCase 2
k

≈
N2qk

(∑M
m=1

umkγmk

)2

N2
K∑

k′,k
qk′

(
M∑
m=1

umkγmk
βmk′

βmk

)2 ���φφφH
k
φφφk′

���2+N
M∑
m=1

umk

(
σ2
Ûe (2βmk − γmk )

Ûa2
+γmk

)
K∑

k′=1
qk′ βmk′+

N

ρ

(
σ2
Ûe
Ûa2
+ 1

)
M∑
m=1

umkγmk

. (23)

(defined at the top of the next page). Based on the SINR

definition in (22), the achievable uplink rate of the kth user is

given in the following theorem.

Theorem 2. Having the quantized weighted signal at the CPU

and employing MRC detection at the CPU, the achievable

uplink rate of the kth user in the cell-free Massive MIMO

system is R = log2(1 + SINRCase 2), where SINRCase 2 is given

by (23) (defined at the top of this page).

Proof: Please refer to Appendix C. �

A. Required Fronthaul Capacity

Let τf be the length of the uplink payload data transmission

for each coherence interval, i.e., τf = τc−τp, where τc denotes

the number of samples for each coherence interval and τp
represents the length of pilot sequence. Defining the number of

quantization bits as αm,i , for i = 1,2, corresponding to Cases

1 and 2, and m refers to the mth AP. For Case 1, the required

number of bits for each AP during each coherence interval is

2αm,1 × (NK + Nτf ) whereas Case 2 requires 2αm,2 × (Kτf )
bits for each AP during each coherence interval. Hence, the

total fronthaul capacity required between the mth AP and the

CPU for all schemes is defined as

Cm=




2
(
NK + Nτf

)
αm,1

Tc

, Case 1,

2
(
Kτf

)
αm,2

Tc

, Case 2,

(24)

where Tc (in sec.) refers to coherence time.4 In the following,

we present a comparison between two cases of uplink trans-

mission. To make a fair comparison between Case 1 and Case

2, we use the same total number of fronthaul bits for both

cases, that is 2(NK + Nτf )αm,1 = 2(Kτf )αm,2.
5

IV. PROPOSED MAX-MIN RATE SCHEME

In this section, we formulate the max-min rate problem for

Case 2 of uplink transmission in cell-free Massive MIMO

system, where the minimum uplink rates of all users is max-

imized while satisfying the transmit power constraint at each

user and the fronthaul capacity constraint. Note that the same

4Exploiting the constraint Cm ≤ Cfh, the largest number of quantization

level is equal to αm,1 =

⌊
TcCfh

2
(
NK+Nτ f

)
⌋

and αm,2 =

⌊
TcCfh
2Kτ f

⌋
.

5Future work is needed to investigate the performance analysis for different
numbers of quantization bits as well as the numbers of APs. This will be
presented in [15].

approach can be used to investigate the max-min rate problem

for Case 1. The achievable user SINR for the system model

considered in the previous section is obtained by following a

similar approach to that in [2]. Note that the main difference

between the proposed approach and the scheme in [2] is the

new set of receiver coefficients which are introduced at the

CPU to improve the achievable user rates. The benefits of the

proposed approach in terms of the achieved user uplink rate is

demonstrated through numerical simulation results in Section

V. In deriving the achievable rates of each user, it is assumed

that the CPU exploits only the knowledge of channel statistics

between the users and APs to detect data from the received

signal in (21). Using the SINR given in (23), the achiev-

able rate is obtained RUP
k
= log2(1 + SINRCase 2

k
). Defining

uk = [u1k,u2k, · · · ,uMk]T , Γk = [γ1k, γ2k, · · · , γMk]T , Υkk′ =

diag
[
β1k′

(
σ2
Ûe (2β1k−γ1k)
Ûa2 +γ1k

)
,· · · , βMk′

(
σ2
Ûe (2βMk−γMk)

Ûa2 +γMk

)]
,

Λkk′ =

[
γ1k β1k′

β1k
,
γ2k β2k′

β2k
, · · · , γMk βMk′

βMk

]T
and

Rk = diag

[(
σ2
Ûe
Ûa2
+ 1

)
γ1k, · · · ,

(
σ2
Ûe
Ûa2
+ 1

)
γMk

]
, the achievable

uplink rate of the kth user is given by Next, the max-min rate

problem can be formulated as follows:

P1 : max
qk ,uk ,α2

min
k=1, · · · ,K

RUP
k (26a)

subject to | |uk | | = 1,∀k, 0 ≤ qk ≤ p
(k)
max, ∀k, (26b)

Cm ≤ Cfh, ∀m, (26c)

where p
(k)
max and Cfh refer to the maximum transmit power

available at user k and the capacity of fronthaul link between

each AP and the CPU, respectively. Note that using (24), Cm

is given as Cm =
2(Kτ f )αm,2

Tc
,∀m. Throughout the rest of the

paper, the index m is dropped from αm,i, i = 1,2, as we

consider the same number of bits to quantize the signal at

all APs. Problem P1 is a discrete optimization with integer

decision variables and it is obvious that the achievable user

rates monotonically increase with the capacity of the fronthaul

link between the mth AP and the CPU. Hence, the optimal

solution is achieved when Cm = Cfh,∀m, which leads to fixed

values for the number of quantization bits. As a result, the

max-min based max-min rate problem can be re-formulated

as follows:

P2 : max
qk ,uk

min
k=1, · · · ,K

RUP
k (27a)

subject to | |uk | | = 1, ∀k, (27b)

0 ≤ qk ≤ p
(k)
max, ∀k . (27c)
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Problem P2 is not jointly convex in terms of uk and power

allocation qk,∀k. Therefore, it cannot be directly solved

through existing convex optimization software. To tackle this

non-convexity issue, we decouple Problem P2 into two sub-

problems: receiver coefficient design (i.e. uk) and the power

allocation problem. The optimal solution for Problem P2, is

obtained through alternately solving these sub-problems, as

explained in the following subsections.

A. Receiver Filter Coefficient Design

In this subsection, the problem of designing the receiver

coefficients is considered. We solve the max-min rate problem

for a given set of allocated powers at all users, qk,∀k, and fixed

values for the number of quantization levels, Qm,∀m. These

coefficients (i.e., uk , ∀k) are obtained by independently max-

imizing the uplink SINR of each user. Therefore, the optimal

receiver filter coefficients can be determined by solving the

following optimization problem:

P3 : max
uk

(28a)

N2uH
k

(
qkΓkΓ

H
k

z
)
uk

uH
k

(
N2

∑K
k′,kqk′ |φφφHk φφφk′ |2Λkk′Λ

H
kk′+N

∑K
k′=1 qk′Υkk′+

NRk

ρ

)
uk

subject to | |uk | | = 1, ∀k . (28b)

Problem P3 is a generalized eigenvalue problem [28], [30],

[44], where the optimal solutions can be obtained by de-

termining the generalized eigenvector of the matrix pair

Ak = N2qkΓkΓ
H
k

and Bk = N2
∑K

k′,kqk′|φφφHk φφφk′ |2Λkk′Λ
H
kk′ +

N
∑K

k′=1 qk′Υkk′+
N
ρ
Rk corresponding to the maximum gener-

alized eigenvalue.

B. Power Allocation

In this subsection, we solve the power allocation problem

for a given set of fixed receiver filter coefficients, uk , ∀k,

and fixed values of quantization levels, Qm,∀m. The optimal

transmit power can be determined by solving the following

max-min problem:

P4 : max
qk

min
k=1, · · · ,K

SINRUP
k (29a)

subject to 0 ≤ qk ≤ p
(k)
max. (29b)

Without loss of generality, Problem P4 can be rewritten by

introducing a new slack variable as

P5 : max
t ,qk

t (30a)

subject to 0 ≤ qk ≤ p
(k)
max, ∀k,SINRUP

k ≥ t, ∀k . (30b)

Proposition 2. Problem P5 can be formulated into a standard

GP.

Algorithm 1 Proposed algorithm to solve Problem P2

1. Initialize q(0) = [q(0)
1
,q
(0)
2
, · · · ,q(0)

K
], i = 1

2. Repeat steps 3-5 until
SINR

UP,(i)
k

− SINR
UP,(i−1)
k

SINR
UP,(i−1)
k

≤ ǫ,∀k

3. Determine the optimal receiver coefficients U(i) =
[u(i)

1
,u
(i)
2
, · · · ,u(i)

K
] through solving the generalized eigenvalue

Problem P3 in (28) for a given q(i−1),
4. Compute q(i) through solving Problem P5 in (30) for a given

U(i)

5. i = i + 1

Proof: Please refer to Appendix D. �

Therefore, Problem P5 is efficiently solved through exist-

ing convex optimization software. Based on these two sub-

problems, an iterative algorithm has been developed by al-

ternately solving both sub-problems at each iteration. The

proposed algorithm is summarized in Algorithm 1. Note that

ǫ in Step 2 of Algorithm 1 refers to a small predetermined

value.

V. CONVERGENCE

In this section, we present the convergence of the proposed

Algorithm 1. We propose to alternatively solve two sub-

problems to find the solution of the original Problem P2, where

at each iteration, one of the design parameters is determined

by solving the corresponding sub-problem while other design

variable is fixed. We showed that each sub-problem provides

an optimal solution for the other given design variable. Let

us assume at the i − 1th iteration, that the receiver filter

coefficients u
(i−1)
k
,∀k are obtained for a given power allocation

q(i−1) and similarly, the power allocation q(i) is determined for

a fixed set of receiver filter coefficients u
(i−1)
k
,∀k. Note that,

the optimal power allocation q(i) determined for a given u
(i−1)
k

achieves an uplink rate greater than or equal to that of the

previous iteration. In addition, the power allocation q(i−1) is a

feasible solution to find q(i) as the receiver filter coefficients

u
(i)
k
, ∀k are determined for a given q(i−1). Note that the uplink

rate of the system monotonically increases with the power. As

a result, the achievable uplink rate of the system monotonically

increases at each iteration. Note that the achievable uplink

max-min rate is bounded from above for a given set of per-

user power constraints and fronthaul link capacity constraint.

Hence the proposed algorithm converges to a specific solution.

Note that to the best of our knowledge and referring to [1] this

is a common way to show the convergence. In the next section,

we prove the optimality of the proposed Algorithm 1 through

the principle of uplink-downlink duality.

RUP
k ≈ log2

©«
1 +

uH
k

(
N2qkΓkΓ

H
k

)
uk

uH
k

(
N2

∑K
k′,k qk′ |φφφHk φφφk′ |2Λkk′Λ

H
kk′ + N

∑K
k′=1 qk′Υkk′ +

N

ρ
Rk

)
uk

ª®®®®¬
. (25)
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VI. OPTIMALITY OF THE PROPOSED MAX-MIN RATE

ALGORITHM

In this section, we present a method to prove the optimality

of the proposed Algorithm 1. The proof is based on two main

observations: we first demonstrate that the original max-min

Problem P2 with per-user power constraint is equivalent to

an uplink problem with an equivalent total power constraint.

We next prove that the same SINRs can be achieved in both

the uplink and the virtual downlink with an equivalent total

power constraint, which enables us to establish an uplink-

downlink duality. Finally, we show that the virtual downlink

problem is quasi-convex and can be optimally solved through

a bisection search [45]. Note that the uplink Problem P1 and

the equivalent virtual downlink problem achieve the same

SINRs and the solution of the virtual downlink problem is

optimal. As a result, the optimality of the proposed Algorithm

1 is guaranteed. The details of the proof are provided in the

following subsections.

A. Equivalent Max-Min Uplink Problem

We aim to show the equivalence of Problem P2 with a per-

user power constraint and the uplink max-min rate problem

with a total power constraint. Note that in the total power

constraint, the maximum available transmit power is defined

as the sum of all users’ transmit power from the solution of

Problem P2, which is formulated as:

P6 : max
qk ,uk

min
k=1, · · · ,K

RUP
k (31a)

subject to | |uk | | = 1, ∀k, (31b)

K∑
k=1

qk ≤ Pc
tot. (31c)

Problem P6 is not convex in terms of receiver filter coeffi-

cients uk and power allocation qk,∀k. To deal with this non-

convexity, similar to the proposed method to solve problem

P2, we propose to modify Algorithm 1 to incorporate the

total power constraint in Problem P6. Hence, we decompose

Problem P6 into receiver filter coefficient design and power

allocation sub-problems. The same generalized eigenvalue

problem in Problem P3 is solved to determine the receiver filter

coefficients whereas the GP formulation in P5 is modified to

incorporate the total power constraint (31c). Note that, the total

power constraint is a convex constraint (posynomial function

in terms of power allocation) and GP with the equivalent total

power constraint can be used to find the optimum solution.

Lemma 2. The original Problem P2 (with per-user power

constraint) and the equivalent Problem P6 (with the equivalent

total power constraint) have the same optimal solution.

Proof: Please refer to Appendix E. �

B. Uplink-Downlink Duality for Cell-free Massive MIMO

This subsection demonstrates an uplink-downlink duality for

cell-free Massive MIMO systems. In particular, it is shown

that the same SINRs (or rate regions) can be realized for

all users in the uplink and the virtual downlink with the

equivalent total power constraints [27], [46], respectively.

In other words, based on the principle of uplink-downlink

duality, the same set of filter coefficients can be utilized in

the uplink and the downlink to achieve the same SINRs for

all users with different user power allocations. The following

theorem defines the achievable virtual downlink rate for cell-

free Massive MIMO systems:

Theorem 3. By employing conjugate beamforming at the APs,

the achievable virtual downlink rate of the kth user in the

cell-free Massive MIMO system with K randomly distributed

single-antenna users, M APs where each AP is equipped with

N antennas and limited-capacity fronthaul links is given by

(32) (defined at the top of this page).

Proof: This can be derived by following the same approach

as for uplink transmission in Theorem 2. �

Note that in (32), pk, ∀k denotes the downlink

power allocation for the kth user and the following

equalities hold: Γk = [γ1k, γ2k, · · · , γMk]T , Fk′k =

diag
[
β1k

(
Ûa2(2β1k′−γ1k′)

σ2
Ûe

+γ1k′

)
,· · ·, βMk

(
Ûa2(2βMk′−γMk′)

σ2
Ûe

+γMk′

)]
and ∆k′k =

[
γ1k′β1k

β1k′
,
γ2k′β2k

β2k′
, · · · , γMk′βMk

βMk′

]T
. The

following Theorem provides the required condition to

establish the uplink-downlink duality for cell-free Massive

MIMO systems with limited-capacity fronthaul links:

Theorem 4. By employing MRC detection in the uplink and

conjugate beamforming in the virtual downlink, to realize the

same SINR tuples in both the uplink and the virtual downlink

of a cell-free Massive MIMO system, with the same fronthaul

loads, the same filter coefficients and different transmit power

allocations, the following condition should be satisfied:

N

M∑
m=1

K∑
k=1

(
σ2
Ûe
Ûa2
+ 1

)
γmk |wmk |2 =

K∑
k=1

q∗k = Pc
tot , (34)

where q∗
k
, ∀k refer to the optimal solution of Algorithm 1, and

wmk denotes the (m, k)-th entry of matrix W which is defined

as follows:

W = [√p1u1,
√

p2u2, · · · ,
√

pKuK ]. (35)

Proof: Please refer to Appendix F. �

C. Equivalent Max-Min Downlink Problem

In this subsection, we provide an optimal solution for the

max-min rate downlink problem with the equivalent total

power constraint. This problem can be written as follows:

P7 : max
pk ,uk

min
k=1, · · · ,K

RDL
k (36a)

subject to | |uk | | = 1, ∀k,

K∑
k=1

pk ≤ Pc
tot, (36b)

where RDL
k
= log2(1+SINRDL

k
), and SINRDL

k
is defined in (32).

This problem is difficult to jointly solve in terms of transmit

filter coefficients uk’s and power allocations pk’s. However,
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SINRDL
k (U,p) =

uH
k

(
N2pkΓkΓ

H
k

)
uk

N2
∑K

k′,k uH
k′ pk′ |φφφHk′φφφk |2∆k′k∆

H
k′kuk′ + N

∑K
k′=1 uH

k′ pk′Fk′kuk′ +
N
ρ

. (32)

SINRUP
k (U,q) =

uH
k

(
N2qkΓkΓ

H
k

)
uk

uH
k

(
N2

∑K
k′,k qk′ |φφφHk φφφk′ |2Λkk′Λ

H
kk′ + N

∑K
k′=1 qk′Υkk′ +

N

ρ
Rk

)
uk

.
(33)

it can be represented by introducing a new variable W to

decouple the variables U and q as follows:

P8 : max
W

min
k=1, · · · ,K

RDL
k (37a)

subject to N

M∑
m=1

K∑
k=1

(
σ2
Ûe
Ûa2
+ 1

)
γmk |wmk |2 ≤ Pc

tot. (37b)

It is easy to show that Problem P8 is quasi-convex. Hence,

a bisection [45] approach can be used to obtain the optimal

solution for the original Problem P8 by sequentially solving

the following power minimization problem for a given target

SINR t at all users:

P9 : min
W

M∑
m=1

K∑
k=1

γmk |wmk |2 (38a)

subject to (38b)

wH
k

(
N2
ΓkΓ

H
k

)
wk

N2
∑K

k′,k wH
k′ |φφφ

H
k′φφφk |2∆k′k∆

H
k′kwk′ + N

∑K
k′=1

wH
k′Fk′kwk′ +

N
ρ

≥ t,

N

M∑
m=1

K∑
k=1

(
σ2
Ûe
Ûa + 1

)
γmk |wmk |2 ≤ Pc

tot, (38c)

where wk represents the kth column of the matrix W defined in

(35). Problem P9 can be reformulated by exploiting a second

order cone programming (SOCP). Note that the objective

function in (38) refers to the total transmit power. As a

result, the optimal solution for Problem P7 can be obtained

by extracting the normalized transmit filter coefficients uk’s

and power allocations pk’s as

p∗
k
= | |w∗

k
| |2, ∀k, & u∗

k
=

w∗
k

| |w∗
k
| | , ∀k, (39)

where the w∗
k
’s refer to the optimal solution of Problem

P8. Note that constraint (38c) is an equivalent total power

constraint to the per-user power constraint in the original

Problem P2, which is a more relaxed constraint than (27c).

However, it is already shown in the previous sub-section that

the same SINRs can be realized in both the uplink and the

virtual downlink with per-user and the equivalent total power

constraints.

D. Prove of Optimality of Algorithm 1

In Lemma 2, we prove that Problems P2 and P6 are

equivalent, and have the same solution. Next, in Proposition

1, using uplink-downlink duality, we prove that Problem P6

and the virtual downlink Problem P7 are equivalent. Note that

the SINR achieved by solving Problem P7 are optimal (the

optimal solution is obtained by a bisection search approach).

This confirms that the proposed algorithm to solve Problem

P2 is optimal.

VII. USER ASSIGNMENT

Exploiting (24), it is obvious that the total fronthaul capacity

required between the mth AP and the CPU increases linearly

with the total number of users served by the mth AP. This

motivates the need to pick a proper set of active users for

each AP. Using (24), we have

α2 × Km ≤
CfhTc

2τf
, (40)

where Km denotes the size of the set of active users for the mth

AP. From (40), it can be seen that decreasing the size of the

set of active users allows for a larger number of quantization

levels. Motivated by this fact, and to exploit the capacity of

fronthaul links more efficiently, we investigate all possible

combinations of α2 and Km. First, for a fixed value of α2,

we find an upper bound on the size of the set of active users

for each AP. In the next step, we propose for all APs that the

users are sorted according to βmk,∀k, and find the Km users

which have the highest values of βmk among all users. If a user

is not selected by any AP, we propose to find the AP which has

the best link to this user (in Algorithm 2, π( j) = argmax
m

βmj

determines best link to the jth user, i.e., the index of the AP

which is closest to the jth user). Note that to only consider

the users that have links to other APs, we use k |Skπj , �,

where � refers to empty set. Then we drop the user which

has the lowest βmk,∀k, among the set of active users for that

AP, which has links to other APs as well. Finally, we add the

user which is not selected by any AP to the set of active users

for this AP. We next solve the virtual downlink problem to

maximize the minimum uplink rate of the users as follows

P10 : max
W

min
k=1, · · · ,K

RDL
k (®γmk) , (41a)

subject to N

M∑
m=1

K∑
k=1

(
σ2
Ûe
Ûa2
+1

)
®γmk |wmk|2 ≤ Pc

tot, (41b)

where

®γmk =

{
γmk, m ∈ Sk
0, otherwise

(42)

where Sk refers to the set of active APs for the kth user. The

proposed algorithm is summarized in Algorithm 2.

VIII. NUMERICAL RESULTS AND DISCUSSION

In this section, we provide numerical simulation results to

validate the performance of the proposed max-min rate scheme

with different parameters. A cell-free Massive MIMO system

with M APs and K single-antenna users is considered in a
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Algorithm 2 User Assignment

1. Using (40), find the maximum possible integer value for

Km,∀m

2. Sort users according to the ascending channel gain: βm1 ≥
βm2 ≥ · · · ≥ βmK ,∀m

3. Assign Km users with the highest values of βmk,∀m to each

AP, i.e., Tm ← {k(1), k(2), · · · , k(Km)},∀m

4. Find set of active APs for each user; Sk ←
{m(1),m(2), · · · ,m(Mk )},∀k

5. for j = 1 : K

if size {Sj} = 0

π( j) = argmax
m

βmj , δ( j) = argmin
k

βπ(j)k, k |Skπj , �, Tπ(j) ←
Tπ(j)\δ( j), Tπ(j) ← Tπ(j) ∪ j

end

end

6. If m ∈ Sk , then ®γmk ← γmk , otherwise ®γmk = 0 and solve

the max-min rate problem P2

D×D simulation area, where both APs and users are uniformly

distributed at random. In the following subsections, we define

the simulation parameters and then present the corresponding

simulation results. The channel coefficients between users and

APs are modeled in Section II where the coefficient βmk is

given by βmk = PLmk10
σsh zmk

10 , where PLmk is the path loss

from the kth user to the mth AP and the second term10
σsh zmk

10 ,

denotes the shadow fading with standard deviation σsh = 8

dB, and zmk ∼ N(0,1) [2]. In the simulation, an uncorrelated

shadowing model is considered and a three-slope model for

the path loss similar to [2]. The noise power is given by

pn = BW × kB × T0 × W, where BW = 20 MHz denotes

the bandwidth, kB = 1.381 × 10−23 represents the Boltzmann

constant, and T0 = 290 (Kelvin) denotes the noise temperature.

Moreover, W = 9dB, and denotes the noise figure. It is

assumed that that p̄p and ρ̄ denote the power of pilot sequence

and the uplink data powers, respectively, where pp =
p̄p

pn

and ρ =
ρ̄

pn
. In simulations, we set p̄p = 200 mW and

ρ̄ = 200 mW. Similar to [2], we assume that the simulation

area is wrapped around at the edges which can simulate

an area without boundaries. Hence, the square simulation

area has eight neighbours. We evaluate the average rate of

the system over 300 random realizations of the locations

of APs, users and shadow fading. Similar to the model in

[47], the fronthaul links establish communications through

wireless microwave links with limited capacity. Hence, we use

Cfh = 100 Mbits/s [47], unless otherwise it is indicated. In this

paper, the term “orthogonal pilots” refers to the case where

unique orthogonal pilots are assigned to all users, while in

“random pilot assignment” each user is randomly assigned a

pilot sequence from a set of τp orthogonal sequences of length

τp (< K), following the approach of [2].

1) Performance of Different Cases of Uplink Transmission:

Fig. 2a presents the average per-user uplink rate, where the

per-user uplink rate is obtained by solving Problem P4, given

by (29) for Cases 1 and 2. The values of α1 = 9 and α2 = 2

correspond to a total number of 14,400 bits for each AP during

each coherence time (or frame). In addition, similar to [40]

we use a uniform quantizer with fixed step size. As Fig 2a

shows the performance of Case 1 is slightly better than Case

2 for K = 20. Next, the performance of the cell-free Massive

MIMO system is evaluated for a system with K = 40 in which

each AP is equipped with N = 20 antennas. Fig. 2a shows the

average rate of the cell-free Massive MIMO system, where for

Case 1 and Case 2, we set α1 = 3 and α2 = 8, respectively

which leads to a total number of 64,000 fronthaul bits per

AP per frame. Fig. 2a shows that the performances of Case

1 and Case 2 depend on the values of N , K and τf . Next,

we investigate the effect of number of antennas per AP and

τf for K = 20. Fig. 2b shows the average per-user uplink

rate of cell-free Massive MIMO versus number of antennas

per AP and two cases of τp = 20 (τf = 180) and τp = 10

(τf = 190). Moreover, we consider (α1 = 18, α2 = 5), (α1 =

18, α2 = 10), (α1 = 18, α2 = 15) for the cases of N = 5,

N = 10, N = 15, respectively, resulting 18,000 bits for all

values of N . As the figure shows the difference between Case

1 and Case 2 decreases as N increases. Moreover, for the case

of orthogonal pilots and N = 15, the performance of Case

2 is better than the performance of Case 1. Since in case 1,

the CPU knows the quantized channel estimates, other signal

processing techniques (e.g., zero-forcing processing) can be

implemented to improve the system performance and can be

considered in future work.

2) Performance of the Proposed User Max-Min Rate Al-

gorithm: In this subsection, we evaluate the performance

of the proposed uplink max-min rate scheme. To assess the

performance, a cell-free Massive MIMO system is considered

with 70 APs (M = 70) where each AP is equipped with

N = 4 antennas and 40 users (K = 40) which are randomly

distributed over the simulation area of size 1 × 1 km meters.

Moreover, we consider the case {M = 50,N = 4,K = 30}
Fig. 3 presents the cumulative distribution of the achievable

uplink rates for the proposed Algorithm 1 in the case similar to

[2], without defining the coefficients uk , (i.e., umk = 1 ∀m, k)

and solving Problem P4, with random pilot sequences with

length τp = 30. As seen in Fig. 3, the performance (i.e. the

10%-outage rate, Rout, refers to the case when Pout = Pr(Rk <

Rout) = 0.1, where Pr refers to the probability function) of the

proposed scheme is almost three times than that of the case

with umk = 1 ∀m, k.

3) Convergence: Next, we provide simulation results to

validate the convergence of the proposed algorithm for a

set of different random realizations of the locations of APs,

users and shadow fading. These results are generated over the

simulation area of size 1×1 km2 with random and orthogonal

pilot sequences. Fig. 4a investigates the convergence of the

proposed Algorithm 1 with 70 APs (M = 70) and 40 users

(K=40) and random pilot sequences with length τp = 30,

whereas Fig. 4b demonstrates the convergence of the proposed

Algorithm 1 for the case of M = 30 APs and K = 50

with orthogonal pilot sequences. The figures confirm that the

proposed algorithm converges after a few iterations, while the

minimum rate of the users increases with the iteration number.



11

10 11 12 13 14 15 16

Number of APs (M)

0.5

1

1.5

2

2.5

A
v
er

ag
e 

p
er

-u
se

r 
u
p
li

n
k
 r

at
e 

(b
it

s/
s/

H
z)

Case 1, K=20, N=4

Case 2, K=20, N=4

Case 1, K=40, N=20

Case 2, K=40, N=20

(a) Average per-user uplink rate for cases 1 and 2, with (N = 4,
K = 20, τp = 20, α1 = 9, α2 = 2), and (N = 20, K = 40, τp = 40,
α1 = 8, α2 = 5) with D = 1 km and τc = 200. Note that here
τ f = τc − τp = 160.

5 10 15

Number of antennas per AP (N)

1

1.5

2

2.5

3

A
v
er

ag
e 

p
er

-u
se

r 
u
p
li

n
k
 r

at
e 

(b
is

/s
/H

z)

Case 1, 
p
=20

Case 2, 
p
=20

Case 1, 
p
=10

Case 2, 
p
=10

(b) Average per-user uplink rate for cases 1 and 2, for M = 20,
K = 20, τp = 20, τp = 10, D = 1 km and τc = 200 versus
number of antennas per AP. Note that we consider (α1 = 18, α2 =

5), (α1 = 18, α2 = 10), (α1 = 18, α2 = 15) for the cases of N = 5,
N = 10, N = 15, respectively.Figure 2. Performance of different cases of uplink transmission

0 0.5 1 1.5 2 2.5

Per-user uplink rate (bits/s/Hz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

u
la

ti
v
e 

d
is

tr
ib

u
ti

o
n

Proposed scheme

 (Algorithm 1)

u
mk

=1 and solve

Problem P
4

M=70, N=4,

K=40, =30

M=30, N=8,

K=50, =50

Figure 3. The cumulative distribution of the per-user uplink rate, for {M =
70, N = 4, K = 40}, {M = 50, N = 4, K = 30}, and τp = 30, α1 = 1 and
D = 1 km.

4) Uplink-Downlink Duality in Cell-Free Massive MIMO

System: Here, the simulation results are provided to support

the theoretical derivations of the uplink-downlink duality and

the optimality of Algorithm 1. It is assumed that users are

randomly distributed through the simulation area of size 1× 1

km. Figs. 5 compares the cumulative distribution of the achiev-

able uplink rates between the original uplink max-min problem

(Problem P1), the equivalent uplink problem (Problem P6)

and the equivalent downlink problem (Problem P7). In Fig.

5, the minimum uplink rate is obtained for a system with 30

APs (M = 30) where each is equipped with N = 8 antennas

and has 50 users (K = 50) for two cases of orthogonal pilot

sequences and random pilot sequences with length τp = 30.

Moreover, Fig. 5 demonstrates the same results for 70 APs

(M = 70), N = 4, 40 users (K = 40), and τp = 30. The

simulation results provided in Fig. 5 validate our result that

the problem formulations P1, P6 and P7 are equivalent and

achieve the same minimum user rate. In addition, these results

support our result on the uplink-downlink duality for cell-free

Massive MIMO in Section VI and the proof of optimality of

Algorithm 1.

5) Performance of the Proposed User Assignment Algo-

rithm 2: This subsection investigates the performance of

the proposed user assignment Algorithm 2. In Fig. 6a, the

average per-user uplink rate is presented with M = 120,

N = 2, K = 50, orthogonal pilot sequences and random

pilot assignment with D = 1 km, versus the total number

of active users per AP. Here, we used inequality (40) and

set α2 × Km = 100 for all curves in Fig. 6a. The optimum

value of Km, (K
opt
m ), depends on the system parameters and

as Fig. 6a shows for both cases of τp = 50 and τp = 30,

the optimum value is achieved by K
opt
m = 20. As a result,

the proposed user assignment scheme can efficiently improve

the performance of cell-free Massive MIMO systems with

limited fronthaul capacity. For instance, using the proposed

user assignment scheme for the case of τp = 50 in Fig. 6a, one

can achieve per-user uplink rate of 2.442 bits/s/Hz by setting

K
opt
m = 20, instead of quantizing the signals of all K = 40

users and achieving per-user uplink rate of 2.3 bits/s/Hz,

which indicates more than 5.2% in the performance of cell-

free Massive MIMO systems with limited fronthaul capacity.

6) Effect of the Capacity of Fronthaul Links: What is the

optimal capacity of fronthaul links in cell-free Massive MIMO

systems to approach the performance of the system with per-

fect and error-free fronthaul links? The aim of this subsection

is to answer this fundamental question. In this subsection,

we evaluate the performance of the cell-free Massive MIMO

system with two cases of perfect and limited fronthaul links.

To assess the performance, a cell-free Massive MIMO system

is considered with M = 120, K = 50, N = 2, D = 1 km,

τp = 30 and τp = 50. To improve the performance of the

system, we exploit the proposed user assignment algorithm.

Fig. 6b presents average per-user uplink rate with the proposed
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max-min rate algorithm versus number of quantization bits, α1

with the use of proposed user assignment algorithm. As Fig.

6b shows, for both cases of random and orthogonal pilots to

closely approach the performance of perfect fronthaul links,

we need to set α1 ≥ 8.

IX. CONCLUSIONS

We have studied the uplink max-min rate problem in cell-

free Massive MIMO with the realistic assumption of limited-

capacity fronthaul links, and have proposed an optimal solu-

tion to maximize the minimum user rate. The original max-

min problem was divided into two sub-problems which were

iteratively solved by formulating them into generalized eigen-

value problem and GP. The optimality of the proposed solution

has been validated through establishing an uplink-downlink

duality. Numerical results have been provided to demonstrate

the optimality of the proposed scheme in comparison with the

existing schemes. In addition, these results confirmed that the

proposed max-min rate algorithm can increase the median of

the CDF of the minimum uplink rate of the users by more

than two times, compared to existing algorithms. We finally

showed that further improvement (more than three times) in

minimum rate of the users can be achieved by the proposed

user assignment algorithm.

APPENDIX A: PROOF OF LEMMA 1

We exploit (3) and (6) to find a and b for uniform quantizer

as follows:

a =
1

pz

∫ ∞

−∞
zh(z) fz(z)dz =

1

pz

(∫ − L
2
+1

−∞
−z

L − 1
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∆ fz(z)dz
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Figure 6. Average per-user uplink rate.
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where the steps a1 and a2 come from the property that the

input of the quantizer has the Gaussian distribution, and l ′ =
l+1, respectively. �

APPENDIX B: PROOF OF PROPOSITION 1

Terms e
y
m and e

ĝ

mk
have i.i.d. random variables with zero

mean [40]. The value of the quantization error is uncorrelated

with the input of the quantizer. This can be achieved by

exploiting the Bussgang decomposition [12]. In this paper,

we do not address the details of Bussgang decomposition

and it can be considered an an interesting future direction.

As a result, we have E
{[

e
y
m

]
n

}
= 0 & E

{[
e
ĝ

mk

]
n

}
= 0,

E
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(eym)He
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}
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}
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E
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me

y
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}
= 0, and E
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ĝH
mk

e
y
m

}
= 0. In addition, based on

[1], we have gmk = ĝmk + ḡmk, where ḡmk has i.i.d. CN(0,1)
elements. Hence, E
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gH
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e
y
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}
= 0 & E

{
gH
mk

e
ĝ
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= 0. These

result in
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= 0, (45)
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Moreover, note that as the term DSk is a constant, we

have E
{
DSH

k
TQN

y

k

}
= DSH

k
E

{
TQN

y

k

}
= 0, and sim-

ilarly E
{
DSH

k
TQN

g

k

}
= 0, E

{
DSH

k
TQN

gy

k

}
= 0, and

E
{
DSH

k
TQNkk′

}
= 0. In addition, we have

E
{
BUH

k TQNkk′
}
=E

{(
M∑
m=1

umk ĝH
mkgmk

√
qk

− E
{

M∑
m=1

umk ĝH
mkgmk

√
qk

}
︸                         ︷︷                         ︸

A1

)H M∑
m=1

umk(eĝmk
)Hgmk′

√
qk′

}

= E



(

M∑
m=1

umk ĝH
mkgmk

√
qk

)H (
M∑
m=1

umk(eĝmk
)Hgmk′

√
qk′

)


− E
{
A1

H

(
M∑
m=1

umk(eĝmk
)Hgmk′

√
qk′

)}
. (47)

For the first term of (47), we have

E



(

M∑
m=1

umk ĝH
mkgmk

√
qk

)H (
M∑
m=1

umk(eĝmk
)Hgmk′

√
qk′

)


=

√
qkqk′E

{
M∑
m=1

M∑
n=1

umkumk ĝH
mkgmk(eĝnk)

Hgnk′

}
= 0, (48)

where the last equality is due to E
{
gH
mk

e
y
m

}
= 0, E

{
gH
mk

e
ĝ

mk

}
=

0, and E
{
ĝH
mk

e
ĝ

mk

}
= 0. For the second term of (47), as A1 is

a constant, and using E
{
gH
mk

e
ĝ

mk

}
= 0, we have

E

{
AH

1

(
M∑
m=1

umk(eĝmk
)Hgmk′

√
qk′

)}
= 0. (49)

Finally, using (48) and (49), we have E
{
BUH

k
TQNkk′

}
= 0.

Using the same approach, it is easy to show that the terms

DSk , BUk , IUIkk′ , TQNkk′ , TQN
g

k
, TQN

y

k
, and TQN

gy

k
are

mutually uncorrelated, which completes the proof of Proposi-

tion 1. �

APPENDIX C: PROOF OF THEOREM 2

The desired signal for the user k is given by

DSk =
√
ρE

{
M∑
m=1

umk ĝH
mkgmk

√
qk

}
=N
√

pqk

M∑
m=1

umkγmk .(50)
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Hence, |DSk |2 = ρqk
(
N

∑M
m=1 umkγmk

)2

. Moreover, the term

E{|BUk |2} can be obtained as

E
{
|BUk |2

}
= ρ

M∑
m=1

qku2
mk

(
E

{��ĝH
mkgmk − E

{
ĝH
mkgmk

}��2})

= ρN

M∑
m=1

qku2
mkγmk βmk, (51)

where the last equality comes from the analysis in [2,

Appendix A], and using γmk =
√
τpppβmkcmk . The term

E{|IUIkk′ |2} is obtained as

E
{
|IUIkk′ |2

}
= ρ qk′E



�����
M∑
m=1

cmkumkgH
mk′w̃mk

�����
2
︸                                   ︷︷                                   ︸

A

+ ρ τpppE




qk′

������
M∑
m=1

cmkumk

(
K∑
i=1

gmiφφφ
H
k φφφi

)H
gmk′

������
2
︸                                                             ︷︷                                                             ︸

B

,(52)

where the third equality in (52) is due to the fact that for

two independent random variables X and Y and E{X} = 0,

we have E{|X + Y |2} = E{|X |2} + E{|Y |2} [2]. Since w̃mk =

φφφH
k

Wp,m is independent from the term gmk′ similar to [2],

Appendix A, the term A in (52) immediately is given by A =

Nqk′
∑M

m=1 c2
mk

u2
mk
βmk′ . The term B in (52) can be obtained

as

B = τpppqk′E



�����
M∑
m=1

cmkumk | |gmk′ | |2φφφHk φφφk′
�����
2
︸                                                  ︷︷                                                  ︸

C

+ τpppqk′E



������
M∑
m=1

cmkumk

(
K∑

i,k′
gmiφφφ

H
k φφφi

)H
gmk′

������
2
︸                                                            ︷︷                                                            ︸

D

. (53)

The first term in (53) is given by

C = τpppqk′E



�����
M∑
m=1

cmkumk | |gmk′ | |2φφφHk φφφk′
�����
2


= Nτpppqk′
��φφφHk φφφk′ ��2

M∑
m=1

c2
mku2

mk β
2
mk′

+ N2qk′
��φφφHk φφφk′ ��2

(
M∑
m=1

umkγmk

βmk′

βmk

)2

, (54)

where the last equality is derived based on the fact γmk =√
τpppβmkcmk . The second term in (53) can be obtained as

D = τpppqk′E



�����
M∑
m=1

cmkumk

( K∑
i,k′

gmiφφφ
H
k φφφi

)H
gmk′

�����
2


=N
√
τpppqk′

M∑
m=1

u2
mkcmk βmk′βmk−Nqk′

M∑
m=1

u2
mkc2

mk βmk′

− Nτpppqk′

M∑
m=1

u2
mkc2

mk β
2
mk′

��φφφHk φφφk′ ��2 . (55)

Finally by substituting (54) and (55) into (53), and substituting

(53) into (52), we obtain

E{|IUIkk′ |2} = Nρqk′

(
M∑
m=1

u2
mk βmk′γmk

)

+ N2ρqk′
��φφφHk φφφk′ ��2

(
M∑
m=1

umkγmk

βmk′

βmk

)2

. (56)

The total noise for the user k is given by

E
{
|TNk |2

}
= E



�����
M∑
m=1

umk ĝH
mknm

�����
2

= N

M∑
m=1

u2
mkγmk, (57)

where the last equality is due to the fact that the terms ĝmk

and nm are uncorrelated. Based on the analysis in [48], we

have

Rez
k
ez
k

(a)
= σ2

Ûe diag(Rzk zk ), (58)

where Rez
k
ez
k

and Rzk zk refer to the covariance matrix of the

quantization error and the covariance matrix of the input of

the quantizer, respectively. Moreover, note that in step (a), we

exploit the analysis in [48, Section V]. Thus, the power of the

quantization error for user k is given by:

E
{
|TQEk |2

}
= E



�����
M∑
m=1

umkez
mk

�����
2

=

M∑
m=1

u2
mkE

{��ez
mk

��2} , (59)

Finally, the power of the quantization error is obtained as the

following:

E

{��ez
mk

��2}
= E

{�� Ûez
mk

��2} σ2
zmk
= σ2

Ûeσ
2
zmk
, (60)

where we used the fact that all APs use the same number of

bits to quantize the weighted signal zmk in (21). Next, the term

σ2
zmk

is obtained as

σ2
zmk
=E

{(
ĝH
mkym

)H (
ĝH
mkym

)}
=E

{(
√
ρ

K∑
k′=1

umk ĝH
mkgmk′

√
qk′sk′

+ umk ĝH
mknm

)H (
√
ρ

K∑
k′=1

umk ĝH
mkgmk′

√
qk′sk′+umk ĝH

mknm

)}

≈ ρE


�����
K∑

k′=1

umk ĝH
mkgmk′

√
qk′sk′

�����
2

+E

{��umk ĝH
mknm

��2}, (61)

where the approximation (61) is obtained byignoring the cor-

relation between the terms ĝH
mk

nm and
∑K

k′=1 ĝH
mk

gmk′
√

qk′sk′ .

Note that the simulation results confirm that this approxima-

tion is very tight [49]. The first term in (61) can be obtained

as

E



�����
K∑

k′=1

umk ĝH
mk

gmk′
√

qk′ sk′

�����
2


= E



�����
K∑

k′=1

umk (gmk − ǫmk )Hgmk′
√

qk′ sk′

�����
2


=E



�����
K∑

k′=1

umkgH
mk

gmk′
√

qk′ sk′

�����
2
︸                                    ︷︷                                    ︸

I

+E



�����
K∑

k′=1

umkǫ
H
mk

gmk′
√

qk′ sk′

�����
2
︸                                    ︷︷                                    ︸

II

,(62)
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where each element of ǫ is given by ǫmk = CN(0, βmk −γmk).
The terms I and II in (62) are given as following: I =

Nβmk

∑K
k′=1 qk′βmk′, and II = N(βmk − γmk)

∑K
k′=1 qk′βmk′ .

Finally, we have

E
{
|TQEk|2

}
≈ Nσ2

Ûe

M∑
m=1

u2
mk

[
√
ρ (2βmk − γmk)

K∑
k′=1

qk′βmk′ + γmk

]
,(63)

By substituting (50), (51), (56) and (57) into (22), the cor-

responding SINR of the kth user is obtained by (23), which

completes the proof of Theorem 2. �

APPENDIX D: PROOF OF PROPOSITION 2

The standard form of GP is defined as follows [45]:

P12 : min f0(x), (64a)

subject to fi(x) ≤ 1, i = 1, · · · ,m,gi(x) = 1, i = 1, · · · , p,
(64b)

where f0 and fi are posynomial and gi are monomial func-

tions. Moreover, x = {x1, · · · , xn} represent the optimization

variables. The SINR constraint in (64) is not a posynomial

function in this form, however it can be rewritten as the

following posynomial function:

uH
k

(
N2

∑K
k′,kqk′ |φφφHk φφφk′ |2Λkk′Λ

H
kk′+N

∑K
k′=1 qk′Υkk′+

NRk

ρ

)
uk

uH
k

(
N2qkΓkΓ

H
k

)
uk

<
1

t
,∀k . (65)

By applying a simple transformation, (65) is equivalent to the

following inequality:

q−1
k

(
K∑

k′,k

akk′qk′ +

K∑
k′=1

bkk′qk′ + ck

)
<

1

t
,∀k, (66)

where akk′ =
uH
k

(
|φφφH

k
φφφk′ |2Λkk′Λ

H
kk′

)
uk

uH
k (ΓkΓHk )uk

, bkk′ =
uH
k
Υkk′uk

uH
k (ΓkΓHk )uk

and

ck =
uH
k

Rkuk

ρuH
k (ΓkΓHk )uk

. The transformation in (66) shows that

the left-hand side of (65) is a posynomial function. Hence,

the power allocation Problem P4 is a GP (convex problem),

where the objective function and constraints are monomial

and posynomial, respectively, which completes the proof of

Proposition 2. �

APPENDIX E: PROOF OF LEMMA 2

This lemma is proven by exploiting the unique optimal

solution of the uplink max-min SINR problem with total

power limitation through an eigensystem [26]. This problem

is iteratively solved and the optimal receiver filter coefficients

Ǔ are determined by solving Problem P3. Next, we scale

the power allocation at each user such that the per-user

power constraints are satisfied. Let us consider the following

optimization problem for a given receiver filter coefficients Ǔ:

P11 : CUP
(
Ǔ,Ptot

)
= max

qk
min

k=1, · · · ,K
SINRUP

k

(
Ǔ,q

)
, (67a)

subject to

K∑
k=1

qk ≤ Ptot. (67b)

The optimal solution of Problem P11 can be determined by

finding the unique eigenvector associated with unique positive

eigenvalue of an eigensystem and the power allocation q̌ that

satisfies the following condition [26]:

K∑
k=1

q̌k = Ptot. (68)

The SINRs of all users can be collectively written as

q̌
1

CUP
k

(
Ǔ,Ptot

) = DΨ
(
Ǔ
)

q̌ + Dσ

(
Ǔ
)
, (69)

where σ

(
Ǔ
)
∈ CK×1, σk (uk) =

N

ρ

(
σ2
Ûe
Ûa2
+1

)
M∑
m=1

ǔmkγmk and

D and Ψ
(
Ǔ
)

are defined as

D = diag

[
1

ǔH
1

Ď1ǔ1

, · · · , 1

ǔH
K

ĎK ǔK

]
, (70)

[
Ψ

(
Ǔ
)]

kk′
=

{
ǔH
k

ˇ̌Rkk ǔk, k = k ′,

ǔH
k

Řkk′ ǔk + ǔH
k

ˇ̌Rkk′ ǔk, k , k ′,
(71)

where Ďk , Řkk′ and ˇ̌Rkk′ are defined as

SINRUP
k = (72)

qkuH
k

( Ďk︷    ︸︸    ︷
N2
ΓkΓ

H
k

)
uk

uH
k

( K∑
k′,k

qk′ N2 |φφφHk φφφk′ |2Λkk′Λ
H
kk′︸                     ︷︷                     ︸

Řkk′

+

K∑
k′=1

qk′ NΥkk′︸ ︷︷ ︸
ˇ̌Rkk′

+

NRk

ρ

)
uk

.

Having both sides of (69) multiplied by 1T = [1, · · · ,1],
we obtain 1

CUP
k (Ǔ,Ptot) =

1

Ptot

1T ĎΨ
(
Ǔ
)

q̌ +
1

Ptot

1TDσ

(
Ǔ
)
,

which can be combined with (69) to define the following

eigensystem:

Λ

(
Ǔ,Ptot

)
q̌ext =

1

CUP
k

(
Ǔ,Ptot

) q̌ext, (73)

Λ

(
Ǔ,Ptot

)
=


DΨT

(
Ǔ
)

Dσ

(
Ǔ
)

1

Ptot

1TDΨT
(
Ǔ
) 1

Ptot

1TDσ

(
Ǔ
)

. (74)

The optimal power allocation q̌ is obtained by determining

the eigenvector corresponding to the maximum eigenvalue of

Λ

(
Ǔ,Ptot

)
and scaling the last element to one as follows:

Λ

(
Ǔ,Ptot

)
q̌ext = λmax

(
Λ

(
Ǔ,Ptot

))
q̌ext, q̌ext =

[
q̌

1

]
, (75)

Note that to find the optimal power allocation q̌, the elements

of eigenvector of Λ
(
Ǔ,Ptot

)
should be scaled such that the



16

last element is one to satisfy the total power constraint. In

particular, the element of the eigenvector that needs to be

scaled depends on the type of power constraint in the problem.

For example, to meet the total power constraint, the last

element is scaled to one. Similarly, to meet the other types of

power constraints (for example, per-user power constraint), the

components of this eigenvector can be scaled by any positive

value to satisfy a given condition as follows:

Λ

(
Ǔ,Ptot

)
δconsq̌ext = λmax

(
Λ

(
Ǔ,Ptot

))
δconsq̌ext, (76)

where δcons is a positive constant. This is the key fact that

exploited to show that both Problems P2 and P6 provide the

same optimal solution. We further scale the power allocation

q̌ to satisfy the per-user power constraints which is performed

through carrying out the following two steps:

q̄ =



q̌1

p
(1)
max
.
.
.

q̌K

p
(K)
max

.


. (77)

Next, we find the maximum value among the elements of q̄,

i.e., max(q̄), and divide all elements of q̄ by it. Hence the

power allocation ˇ̌q is defined as follows:

ˇ̌q =



q̌1

max(q̄)
.
.
.

q̌K

max(q̄) ,


. (78)

In the next iteration, the same max-min problem is solved

with a new total power constraint obtained by summing up

the allocated power to all users in the previous iteration:

L1 :CUP
(
Ǔ,Pnew

tot

)
=max

qk
min

k=1, · · · ,K
SINRUP

k

(
Ǔ,q

)
, (79a)

subject to

K∑
k=1

qk ≤ Pnew
tot , where Pnew

tot =

K∑
k=1

ˇ̌qk . (79b)

At the convergence of the algorithm, the per-user power

constraints are satisfied with achieving the same uplink SINR

for each user. Interestingly, if this max-min problem is solved

with the corresponding total power constraint, then it will

converge to the same optimal solution of max-min problem

with per-user power constraints. This is due to the property

that the eigensystem exploited to obtain the power allocation

in (74) has a unique positive eigenvalue and a corresponding

unique eigenvector. Furthermore, in both Problems P2 and

P6, different elements of the same eigenvector are scaled to

meet the corresponding constraints on the power allocation. In

other words, the last element is scaled to meet the total power

constraint in P6 whereas the element with the highest ratio as

in (76) is scaled to meet the per-user power constraint. As the

equivalent total power Pc
tot for Problem P6 chosen from the

solution of the original P2, both of them will converge to the

same solution whose optimality is proven later by considering

an equivalent problem related to the virtual downlink SINR.

Therefore, Problems P2 and P6 are equivalent and have the

same optimal solution. �

APPENDIX F: PROOF OF THEOREM 4

To achieve the same SINR tuples in both the uplink and the

downlink, we need:

SINRDL
k (U,p) = SINRUP

k (U,q) ,∀k . (80)

By substituting uplink and downlink SINRs, in (33) and (32),

respectively, in equation (80) and summing all equations by

both sides, we have

p1N

M∑
m=1

(
σ2
Ûe
Ûa2
+1

)
u2
m1γm1+· · ·+pKN

M∑
m=1

(
σ2
Ûe
Ûa2
+1

)
u2
mKγmK

=

K∑
k=1

qk . (81)

Therefore, this condition between the total transmit power

on the uplink and the equivalent total transmit power on the

downlink should be satisfied to realize the same SINRs for all

users. �
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