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The muscles that effect lung ventilation are key to understanding the evolutionary constraints on 28 

animal form and function. Here, through electromyography, we demonstrate a newly discovered 29 

respiratory function for the iliocostalis muscle in the American alligator (Alligator 30 

mississippiensis). The iliocostalis is active during expiration when breathing on land at 28°C and 31 

this activity is mediated through the uncinate processes on the vertebral ribs. There was also an 32 

increase in muscle activity during the forced expirations of alarm distress vocalisations. 33 

Interestingly we did not find any respiratory activity in the iliocostalis when the alligators were 34 

breathing with their body submerged in water at 18°C, which resulted in a reduced breathing 35 

frequency. The iliocostalis is an accessory breathing muscle that alligators are able to recruit in to 36 

assist expiration under certain conditions.  37 

 38 

1. Background 39 

Crocodilians are large, semiaquatic reptiles that first appeared in the Late Cretaceous and share 40 

a common ancestor with birds. Like all amniotes, crocodilians use an aspiration pump for 41 

ventilation [1,2]. In birds and crocodilians the pump generates a unidirectional airflow through 42 

the lungs [3,4]. Inspiration, expiration or both are active processes in vertebrates and can 43 

therefore only be facilitated through muscle action [5]. There are many similarities between the 44 

respiratory systems of birds and crocodilians; their lungs are multi-chambered; the internal 45 

chambers spiral in a clockwise manner and they have an asymmetrical branching pattern [6]. And 46 

there are also similarities in the topography of the intrapulmonary bronchus, bronchi [7] and 47 

aerodynamic valves [4]. Unidirectional airflow through the lungs of alligators, akin to that seen in 48 

birds, was most likely present in the basal archosaurs from the Triassic, predating the evolution 49 

of birds [4]. 50 

 The kinematics of the ribcage during ventilation in crocodilians are now well understood 51 

[8]. During exhalation, the external and parasternal internal intercostals swing the ribs inwards 52 

and backwards [9], contraction of the transversus abdominis moves the liver anteriorly and the 53 

rectus abdominus pulls the hips forward and draws the belly in. During inhalation, intercostal 54 

muscles swing the ribs outwards and forwards [9] and pelvic muscles draw back the hips. The 55 

diaphragmaticus muscle, which runs from the hip to the caudal aspect of the liver, pulls the liver 56 



back causing the lungs to inflate [9,10]. Crocodilian lungs are attached to the parietal pleura and 57 

have deep costal impressions meaning that rather than sliding forwards and backwards they will 58 

expand and contract with changes in thoracic volume [11]. 59 

 Uncinate processes are projections that extend posteriorly off the proximal surface of the 60 

vertebral ribs, and are another shared characteristic between crocodilians and birds [12]. In birds 61 

these processes function as levers and are involved in inspiration and expiration through the 62 

action of the appendicocostalis and the external oblique muscles, respectively [12]. The 63 

morphology of the uncinate processes in birds varies with the degree of specialization to different 64 

forms of locomotion [13]. The presence of uncinate processes is frequently overlooked in 65 

crocodilians as these processes are cartilaginous, which may explain their absence in museum 66 

and fossil specimens. Crocodilian uncinates are morphologically distinct from those of birds being 67 

semi-circular, flattened and broad. However, similar to birds they project from the vertebral ribs, 68 

extend caudally and are associated with thoracic musculature (figure 1). The proximity to the 69 

uncinate processes suggests that the iliocostalis is a likely candidate for potential respiratory 70 

function. Of the muscles currently described and documented as having a role during respiration 71 

in the alligator (Inspiration: diaphragmaticus, ischiotruncus, ischiopubis, intercostals. Expiration: 72 

rectus abdominis, transversus abdominis, intercostals), none has any attachment to the uncinate 73 

processes. The aims of our current study were (1) to provide the first detailed anatomical 74 

description of muscle connections to the uncinate processes and (2) to determine if any muscles 75 

connected to the processes were active during ventilation in A. mississippiensis. 76 

 77 

2. Materials and methods 78 

We examined electromyography (EMG) activity of the iliocostalis muscle under three conditions: 79 

(1) at rest and breathing at an ambient temperature of 28°C, (2) at rest and breathing at a 10-fold 80 

lower breathing frequency while the body was submerged in a water tank at 18°C with their front 81 

legs supported on a block, keeping the head in a breathing chamber and (3) during forced 82 

expirations when making alarm distress vocalisations at an ambient temperature of 28°C. 83 

Experiments were conducted on 5-8 female alligators hatched from eggs collected in Louisiana 84 

and raised in the animal unit at the University of North Texas (mean ± SE body mass 1395±150g; 85 



age 2years) housed in fiberglass pens (0.7x2x0.7m) in freshwater and fed commercial alligator 86 

food twice weekly. Animals were maintained on a 12h:12h light:dark cycle at 28°C, the same 87 

temperature at which the mask and barking experiments were conducted; the temperature of 88 

the water in the tank was 18°C. 89 

Anaesthesia was induced by placing the head of the alligator into a plastic tube containing 90 

cotton gauze soaked in isoflurane (Henry Schein Animal Health, Dublin, OH, USA). The trachea 91 

was then intubated with TygonÒ tubing and alligators were ventilated (5 breaths min-1, 30mL 92 

min-1) using a mechanical ventilator (model 665, Harvard Apparatus, Holliston, MA, USA). 93 

Isoflurane was maintained at 1.5-3% during surgery using an isoflurane vaporizer (Highland 94 

Medical Equipment, Temecula, CA, USA). Body temperature was maintained at 28±0.5°C with a 95 

heating lamp connected to a ThermistempÒ temperature controller (model 71A, YSI, Yellow 96 

Springs, OH, USA). Surgery was minimally invasive and animals were fully recovered after 24 h 97 

and prior to any data collection. Following completion of all experimentation animals were killed 98 

by an overdose of pentobarbitone (150mg kg-1, Fatal-PlusÒ, Vortech Pharmaceutical, Dearborn, 99 

MI, USA) and used for anatomical investigation and confirmation of EMG electrode placement. 100 

All EMG data were collected on equipment from Telemetry Research LimitedÒ (Auckland, New 101 

Zealand). On the left side of the animals, the intercostal spaces between the 3rd and 4th dorsal ribs 102 

were located by palpating the skin above the site. A 2-3cm incision was then made to expose the 103 

target area of the iliocostalis muscle. A Dual Biopotential Transmitter (TR40BB) was then sutured 104 

onto the back of each animal at approximately the midpoint along the vertebral column. The 105 

shielded EMG electrodes (diameter 1mm) were then tunnelled under the skin from the posterior 106 

margin of the thoracic region (2-3cm from EMG implantation site) to the incision above the 107 

iliocostalis muscle. EMG electrodes were then sewn directly into the muscle belly of the 108 

iliocostalis above the uncinate processes. Data from the transmitter were telemetered to a 109 

receiving unit (TR102, filtered above 1000 and below 100Hz). All data were collected on a 110 

PowerLabÒ 16/35 running ChartÒ v7-8 (ADInstruments, Colorado Springs, CO, USA).  111 

Breathing was monitored via a ValidyneÒ pressure transducer (Model DP-45-16, Validyne 112 

Engineering Corp, Northridge, CA, USA) connected to a pneumotach in line with either a face mask 113 

made from a 50ml plastic beaker modified to add inlet and outlet tubes and sealed around the 114 



alligator head with BisicoÒ (ISO4823, Typ 3, Bielefelder Dental Silicone GmbH, Germany) when 115 

they were at rest and breathing or the outflow pipe of the breathing chamber above the water 116 

tank for at rest breathing when the body was submerged (figure S2). In both cases air was drawn 117 

through the system at 500 ml min-1. Alarm distress vocalisations were elicited by gently tapping 118 

on the head of the alligator with two fingers and were synced to EMG traces via manually 119 

depressing a purpose built 5V trigger connected to the PowerLabÒ. Raw EMG data were band-120 

pass filtered (60 – 250 Hz), rectified and smoothed (Triangular Bartlett smoothing) in LabChartÒ. 121 

In each respiratory cycle the processed signal was partitioned into 50 bins each for inspiration 122 

and expiration, adjusted for cycle phase duration. In each bin, the mean intensity of EMG activity 123 

(mV) and integrated signal were recorded allowing for quantification of the onset of muscle 124 

activity. ANOVA on the sum of integrated EMG across 10 breaths in each animal was used to test 125 

if muscle activity occurred in phase with either inspiration or expiration (tables S1, S2). 126 

3. Results 127 

The iliocostalis (figure 1a) is a segmented muscle, which is connected to the vertebrae and 128 

extends superficially across the vertebral ribs. It also occupies the intercostal spaces and is 129 

attached to the uncinate processes. The uncinate processes sit within the myosepta, which 130 

segment the iliocostalis muscle, superficial to and dorsal to the ventral external intercostals 131 

(figure 1b). Iliocostalis muscle fibres originate from the posterior edge of the vertebral ribs and 132 

embed the uncinate processes, making it likely that they will be removed during any de-fleshing 133 

of the skeleton. The superficial (figure 1a) and deep external oblique, extends across the 134 

intermediate and sternal rib portions, the superficial part attaches to the fascia overlying the 135 

iliocostalis. The layers of external oblique have attachments to the rectus abdominis and 136 

truncocaudalis (figure 1a).  137 

 We implanted electrodes into the body of the iliocostalis directly above the uncinate 138 

processes on the vertebral ribs (figure 1a,b). When the alligators were at rest and breathing at, 139 

13.21±0.77 breaths per minute (bpm) at an ambient temperature of 28°C phasic activity of the 140 

iliocostalis was correlated with expiration (figure 2a, electronic supplementary material (esm) 141 

figure S1, table S1). The activity of the iliocostalis muscles is not a result of the alligators wearing 142 

the mask (figure S2). Interestingly, however, there was no phasic respiratory activity of the 143 



iliocostalis muscle when the alligators were at rest and breathing but their body submerged in a 144 

water tank at 18°C; both when the breathing frequency was fast (4.6±0.92 bpm, figure 2b) or 145 

when approximately 10-fold lower (1.57± 0.46 bpm, figure 2c, esm figure S3). The iliocostalis also 146 

demonstrated significantly greater phasic activity (»20-fold) during expirations associated with 147 

alarm distress vocalisation when compared to the animal breathing at rest (figure 2d, esm figure 148 

S1, table S2).  149 

 150 

4. Discussion 151 

Understanding the evolution of respiratory structures is complicated as soft tissues, such as the 152 

lung rarely fossilise. Furthermore, all tetrapods evolved from fish ancestors and the divergence 153 

of the hypaxial muscles from a locomotor to breathing role creates the possibility for antagonistic 154 

functions. Overcoming Carrier’s constraint, as this conflict is known [14, 15], has led to the 155 

evolution of novel accessory breathing structures and muscle recruitment across the tetrapod 156 

lineage.  157 

 Our findings demonstrate that the iliocostalis, into which the uncinate processes are 158 

embedded, is an accessory breathing muscle contributing to expiration during periods of 159 

increased ventilatory frequency by moving the rib cage inwards and backwards. It is well 160 

established that, as found here, breathing rates in crocodilians are directly correlated with body 161 

temperatures and an increase in ventilatory frequency [16]. Furthermore, in crocodilians 162 

alterations in the intensity of muscle action and recruitment of different muscles is known to 163 

relate to differences in the rate of breathing. For example, the intensity of exercise influences the 164 

mechanics of breathing [17]. When crocodilians are resting or walking the diaphragmaticus makes 165 

a limited contribution. However, as the level and intensity of effort increase (during swimming 166 

and high-speed walking) the diaphragmaticus becomes the principal contributor [17]. The 167 

iliocostalis also functions during postural support and trunk bending during locomotion in some 168 

reptiles [18]. The role described here, as an accessory breathing muscle, does not preclude the 169 

iliocostalis from a dual role in support or sagittal bending of the body during locomotion in the 170 

alligator, however this remains to be determined. In birds, for example, the appendicocostalis 171 

muscle has a dual role during respiration and locomotion [12]. Future experiments examining if 172 



there were any changes in muscle activity along the rostrocaudal axis of this muscle in 173 

crocodilians may also shed new light on this potential dual role. The importance of recruitment 174 

of the iliocostalis to assist expiration was confirmed by the relative increase in muscle activity 175 

during vocalisation. Alligators have a large vocal repertoire that depends on active control of 176 

laryngeal movements and expiration [18]. Recruitment of the iliocostalis to assist respiration is 177 

not unique to alligators; in the garter snake a slip of the iliocostalis, the M. retractor costae biceps, 178 

contributes to inhalation [19]. More common, however, is recruitment of hypaxial muscles to 179 

assist breathing in other reptiles [15,20] or mammals [21]. The absence of expiratory activity of 180 

the iliocostalis when the alligators were at rest and breathing either relatively slowly or quickly 181 

with their body submerged is likely due to the decrease in metabolic rate at the lower body 182 

temperature in the water. Under conditions of reduced aerobic demand hydrostatic pressure 183 

acting on the abdomen which shifts the liver further into the ribcage, may facilitate passive 184 

expiration [9].  185 

 Uncinate processes may be key accessory breathing structures across the tetrapod 186 

lineage. They also occur in maniraptoran dinosaurs including velociraptor and the oviraptorids 187 

and may have a role in avian-like breathing mechanics in these animals [22]. Some quadrupedal 188 

dinosaurs also possessed analogous intercostal plates thought to play a role in respiration or 189 

locomotion [23]. The trends for bipedality and enhanced cursoriality seen in dinosaurs [24] has 190 

also evolved with the crocodilian lineage [25] indicating the necessary decoupling of ventilation 191 

and locomotion was in place in the earliest archosaurs. Outside the archosaur lineage, broad, 192 

plate-like uncinate processes are also reported in the early amphibians Eyrops and Dissorophus 193 

[26]. Interestingly, given our findings for the alligator, the iliocostalis extended onto the ribs in 194 

Eryops [27]. Uncinate processes are also reported in one species of extinct frog, Prosalirus biti 195 

[28]. Any potential role of the uncinates in amphibian breathing is unknown although expiration 196 

is passive in extant anurans and passive or active in urodeles [2]. Pterosaurs have analogous 197 

structures, sternocostapophyses, thought to have a similar function to the uncinate processes 198 

during rib movements and reducing the work of breathing [29].  199 

 200 



Demonstrating an accessory respiratory function for the iliocostalis, mediated through the 201 

uncinate processes, suggests that flexibility in the mechanics of breathing in crocodilians linked 202 

to changes in respiratory demand likely evolved in basal Archosaurs. 203 
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Figure Legends 220 

 221 

Figure 1 (A) Diagram of the axial musculature of A. mississippiensis illustrating the iliocostalis (ic), 222 

deep external oblique (eop), rectus abdominus (ra) and truncocaudalis (tc). Star indicates EMG 223 

electrode placement in the ic. (B) muscles have been removed to highlight the uncinate processes, 224 

(arrows, ucp). Cranial is to the left.  225 

 226 

A          B           C            D 227 

228 

Figure 2 Electromyography (EMG) of the iliocostalis muscle. The top trace in each panel is a 229 

representative raw unprocessed EMG signal (mV), the middle trace is processed, rectified EMG 230 

activity for all alligators (mV, band-pass filtered 60-250Hz) and the bottom trace indicates; 231 

inspiration and expiration for panels A, B & C and denotes alarm distress vocalisation events for 232 

panel D. All traces are from one alligator. The iliocostalis is active during expiration when alligators 233 

were at rest and breathing at 28°C (A), demonstrates no activity during either expiration or 234 

inspiration when at rest and breathing either rapidly (B) or more slowly (C) with the body 235 

submerged in water at 18°C and demonstrated a marked increase in activity during expiration 236 

associated with alarm vocalisations (D). Alarm vocalisation events (bottom trace, D) were 237 

indicated by manually depressing a 5V trigger upon each vocalisation shown in the bottom trace, 238 

hence the slight offset caused by the delay in reaction time to the alarm vocalisation event.  239 

 240 
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