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A B S T R A C T

The recent emergence of dockless bike sharing systems has resulted in new patterns of urban transport. Users can
begin and end trips from their origin and destination locations rather than docking stations. Analysis of changes
in the spatiotemporal availability of such bikes has the ability to provide insights into urban dynamics at a finer
granularity than is possible through analysis of travel card or dock-based bike scheme data. This study analyses
dockless bike sharing in Nanchang, China over a period when a new metro line came into operation. It uses
spatial statistics and graph-based approaches to quantify changes in travel behaviours and generates previously
unobtainable insights about urban flow structures. Geostatistical analyses support understanding of large-scale
changes in spatiotemporal travel behaviours and graph-based approaches allow changes in local travel flows
between individual locations to be quantified and characterized. The results show how the new metro service
boosted nearby bike demand, but with considerable spatial variation, and changed the spatiotemporal patterns
of bike travel behaviour. The analysis also quantifies the evolution of travel flow structures, indicating the
resilience of dockless bike schemes and their ability to adapt to changes in travel behaviours. More widely, this
study demonstrates how an enhanced understanding of urban dynamics over the “last-mile” is supported by the
analyses of dockless bike data. These allow changes in local spatiotemporal interdependencies between different
transport systems to be evaluated, and support spatially detailed urban and transport planning. A number of
areas of further work are identified to better to understand interdependencies between different transit system
components.

1. Introduction

Cities are complex systems, composed of people, places, flows, and
activities (Batty, 2013). Quantifying their dynamics, system inter-
dependencies and spatial structures can characterise urban morphology
and metabolism. People as physical carriers, drive the flows of mate-
rials, money and information within urban spaces, and influence eco-
nomic growth, social equity (Batty, 2013). Understanding the nature of
these flows provides perspectives and insights into how socioeconomic
and environmental problems such as urban development, transporta-
tion efficiency and air quality are being addressed (Borrego et al., 2006;
Desouza & Flanery, 2013; Fishman, Washington, & Haworth, 2014;
Gong, Lin, and Duan, 2017).

Travel data can be used as proxies for urban flows because they
describe people's movement. Traditionally, such data were obtained
from household travel surveys, with high cost and time overheads.
Recent research has used automated mass transit fare-collection data
(e.g. travel cards of bus and metro travel), which is cheap and has high

spatiotemporal granularity, to analyse urban flows travel behaviours
and mobility patterns. However, very little research has considered
urban morphology and metabolism. Zhong, Arisona, Huang, Batty, and
Schmitt (2014) used smart card data (bus and metro) and graph-based
approaches to quantify the dynamics of urban structures through the
analysis of spatial networks. This characterizes by medium-long dis-
tance travel but fails to reveal dynamics in local areas over short dis-
tances. Some research has used cell phone data to detect urban travel
flows and some aspects of urban structure (e.g. home-to-work com-
muting structures) (Calabrese, Di Lorenzo, Liu, & Ratti, 2011; Louail
et al., 2014), but this lacks spatial detail due to cellular positioning,
with median errors of 599m (Zandbergen, 2009). This results in large
uncertainties when inferring people's movement over shorter distances.
Thus, much previous work has examined broad scale urban flows, but
with little consideration of finer scale “capillary” flows. These are
characterized by non-motorised trips (walking, cycling), and they have
the capacity to reveal the nature of urban flows over the “last-mile”.

This study examined dockless bike sharing data from Nanchang,
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China over the period when a new metro line came into operation and
compared “before” and “after” to reveal changes in travel behaviours,
mobility patterns and flows over the last mile through spatiotemporal
and graph-based analyses of dockless bike usage.

2. Background

Bike sharing schemes have become increasingly popular in recent
years, reflecting their environment friendly, low cost and convenient
nature. They are understudied, with research focused on cycling be-
haviours associated with dock-based bike sharing schemes. Vogel,
Greiser, and Mattfeld (2011) examined geographical clusters of docking
stations using spatiotemporal usage. Others have identified bike fleet
rebalancing strategies for different types of stations and quantified links
between bike demand and land use (Daddio & Mcdonald, 2012;
Jiménez, Nogal, Caulfield, & Pilla, 2016; Kaltenbrunner, Meza,
Grivolla, Codina, & Banchs, 2010; O'Brien, Cheshire, & Batty, 2014).

However, bike sharing schemes can play important role in ex-
amining the “first/last mile” problem. This is the distance between
home/workplace and public transport that is too far to walk (Fishman,
2016; Saberi, Ghamami, Gu, Shojaei, & Fishman, 2018; Shaheen,
Guzman, & Zhang, 2010), and bike schemes provide access to other
forms of public transport and mass transit (train, metro, bus etc): they
act as the “capillaries” for the mass transit aorta. The advent of dockless
bike schemes opens up the opportunity to examine the last mile in
detail.

To understand the last mile using bike data, the provision of other
transport systems needs to be considered as well. Many studies have
examined how cycling and metro trips are combined (Lin, Wang, &
Feng, 2017; Martens, 2007), how this varies for different socio-eco-
nomic groups (Zhao & Li, 2017), are affected by pricing (Lin et al.,
2017) and has sought to quantify the interdependencies between bike
sharing schemes and metro systems (Ding, Zhang, & Xie, 2019; El-Assi,
Mahmoud, & Habib, 2017; Ma, Liu, & Erdoğan, 2015). Most of these
studies have found a positive correlation between metro stations and
bike sharing trips, but some have questioned this (e.g. Tran, Ovtracht, &
D'arcier, 2015). Overall, these studies have focused on bike sharing
preference, bike trip spatial clustering around other transportation hubs
(metro, tramway and railway stations), and have ignored flows and
structures in the last-mile. Examining the relationships between bike
and transportation flows and structures can lead to deeper under-
standing of urban dynamics. Saberi et al. (2018) analysed spatio-
temporal statistics and network (graph structure) properties of bike
sharing trips to examine the impact of metro strikes, identifying in-
crease in bike use (numbers and trip distances). Chen et al. (2016)
constructed a framework to predict the short-term over-demand periods
for sharing bike station clusters considering of metro delay. Both studies
used data from dock-based bike sharing schemes. These have a number
of important shortcomings including service coverage (e.g. bikes may
not available in the suburbs), docks may largely distanct from the ac-
tual origin/destination (OD) and there can be dock capacity/avail-
ability issues. Thus the inference derived from analyses of these data are
limited.

The development of the IoT (Internet of Things) has the potential to
revolutionise many aspects of our lives which are increasingly con-
nected and sensed, generating large volumes of data with location and
temporal attributes. In bike sharing schemes, dockless bikes emerged
around 2015 and rapidly became a success in number of countries in-
cluding China (iiMedia_Research, 2017; Xu et al., 2019). Unlike tradi-
tional bike sharing schemes where bikes can only be borrowed and
returned at docking stations, dockless schemes enable users to locate
and borrow bicycles via a smartphone app, returning them to any sui-
table public location. Dockless schemes allow convenience and flex-
ibility for users. The smart lock system and GPS unit on the bikes not
only facilitate scheme operation and bike management, but also create
a large quantity of spatiotemporal individual level data. An advantage

over data from traditional dock-based bike sharing schemes, is that the
flows captured by the data are more detailed (i.e. with higher spatial
granularity) and better capture people's actual activities, travel de-
mands and behaviours.

Dockless bike sharing studies are few and have focused on bike fleet
management (Pal & Zhang, 2017), planning of related infrastructures
(Bao, He, Ruan, Li, & Zheng, 2017), and bike distribution patterns (Liu,
Shen, & Zhu, 2018). Liu et al. (2018) proposed combining a factor
analysis and convolutional neural networks for inferring dockless
sharing bike distribution in new cities. This work found these spatial
distributions are correlated with nearby urban context, and change over
time. Other studies (Ai et al., 2018; Xu et al., 2019; Yang, Heppenstall,
Turner, & Comber, 2018) have shown that bike distribution is sig-
nificantly time dependent, especially around metro stations, suggesting
that dockless bike flows and activities are highly dynamic. Zhang, Lin,
and Mi (2019) developed a framework for planning geo-fences to
constrain dockless bike parking. Clustering analysis and location-allo-
cation models were applied to assess the implications of spatial plan-
ning of geo-fences in different scenarios. While this framework in-
corporated spatial detail, it lacked explanatory social and economic
information, for example related to the cost of geo-fences and punish-
ment/reward of parking bikes outside/inside geo-fences. Zhou, Ni, and
Zhang (2018) used questionnaires to examine attitudes over the effects
of dockless bikes on metro commuting. Their results showed a sig-
nificant positive influence, especially for non-motorised vehicle owners
and metro stations outside city centres and highlighted the positive role
of such schemes in mass transit systems.

Analyses of data from dockless bike schemes have the capacity to
provide high resolution insights into people's non-motorised mobility
patterns and behaviours and to reveal their relationship with other
urban structures and processes, for example flow networks in other
mass transit system (e.g. metro), urban infrastructure development (e.g.
new train stations, new bridge) and related urban updates. Critically
such data allow such relationships to be examined dynamically over the
last mile.

3. Study area and data

3.1. Study area

Nanchang in southeast China is the capital city of Jiangxi province
with a population of 2.15 million. The city has a typical humid sub-
tropical climate, characterized by hot and humid summers and mild
winters. It has two metro lines as of September 2017. A new line of 17
stations, Metro Line 2, opened and started running on August 18, 2017.
Fig. 1 shows the transit map of Nanchang with the Gan river running
through the city and the two metro lines. Other public transit systems
include bus and dockless bike sharing. This study analysed data of
around 80,000 dockless bikes from the Nanchang urban area around
the time of the opening of Metro Line 2, specifically to compare bike
usage “before” and “after” the opening of the new metro line.

3.2. Data description

A program was set up to collect dockless bike availability data via
the bike scheme API (application programming interface) for the month
of August 2017. Queries to the API can return bike availability for any
specified location (point) returning information on bike identifiers and
their coordinates, with an in-built limit of the nearest 30 available
bikes. The program iterated through the whole urban area collecting
data on bike availability on a raster grid of 0.0015 degrees (length of
sides equals to approximately 150m). Most available bikes locations
across Nanchang were captured approximately every four minutes due
to the large urban area and the API query limits. There were some gaps
in coverage due to bike GPS and communication unit signal receiving
problems (e.g. GPS does not function well in tunnels). The data include
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bike ID (identifier), coordinates and the timestamp information. Fig. 2
(a) shows a snapshot of dockless bike in Nanchang, with each point
representing an available dockless bicycle.

Extreme weather conditions have been found to have significant
negative effects on cycling activity (El-Assi et al., 2017; Zhou et al.,
2017). To ensure consistency across both time periods, only data from
rain-free days were analysed, with weather data from wunderground.
com (one meteorological station, every 3 h), and although other con-
ditions (e.g. air condition, temperature) may have minor impacts on
bike usage, these were relatively consistent over the study periods. Data
for 5 weekdays before and 5 weekdays after the opening of new metro
line were selected for analysis, with all data collected in the same
month and under the same general weather conditions in rain-free days.

Table 1 shows an example of the data collected and Table 2 shows

Fig. 1. Study area (source: OpenStreetMap).

Fig. 2. (a) Snapshot of dockless bike distribution; (b) detecting bike trips.

Table 1
Example of data records.

Time Bike ID Longitude Latitude

2017-08-07 13:35:29 7910***002 115.9190 28.61415
2017-08-07 13:35:29 7910***748 115.8367 28.78435
2017-08-07 13:35:29 7910***911 115.8369 28.78446
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the dates of the data used in the analysis. Open Street Map data were
also used to provide basic background mapping and road network data.

4. Methods

4.1. Detecting bike trips

The data provide snapshots of available dockless bike locations, bike
identifier and timestamps. From the stacks of snapshots, it is possible to
identify the changes in location of an individual bike and thus to derive
dockless bike trip information. For this study, the threshold trip value
was 100m: if the change in location of an available bike between two
timestamps exceeded this threshold, then the two records were linked
as a trip, with the earlier one providing the origin coordinates, and the
latter one the destination. It should be noted that this method is unable
to identify round trips where the origin is close to destination. Fig. 2 (b)
shows an example trip. The bike changes its location from t1 to t5,
which are combined to form a bike trip. It stays in the same place from
t5 to t9 and is considered as available in this period. Similarly, a second
trip can be identified from t9 to t10. The dockless bike sharing scheme
also allows bikes to be scheduled (booked) in advance of 15min, but
this still allows trip origin and destination to be identified, although
with a small impact on trip duration.

4.2. Constructing dockless bike mobility graph (network) structure

Converting the bike data into a graph structure to represent flows
allows the changes arising from the introduction of a new metro line to
be examined. Typically, any system composed of interconnected in-
dividuals can be viewed as a graph (i.e. network) with individual
components are represented by nodes (i.e. vertices) and their inter-
connections by arcs or links (i.e. edges). Examples include online
friendship networks, scientific collaboration networks and global air-
line routes. In urban and transportation studies, bike sharing docking
stations (Austwick, O'Brien, Strano, & Viana, 2013), bus stops and
metro stations are typically viewed as nodes. If there is at least one trip
between a pair of nodes (stations), then a link is generated between
them. By representing the relationship between transportation nodes
(e.g. bike/bus/metro stations) as travel flow links, mobility graph
structures can be constructed. For example, Saberi et al. (2018) studied
the dynamics of bike sharing networks in London, casting docking
stations as graph nodes, and flows between stations as links. However,
dockless bike sharing schemes provide greater spatial detail about the
patterns of bike movements and therefore their riders than docking
station data. Because bikes and bike trips are not aggregated over
docking stations, constructing graphs of dockless trips requires different
considerations. Fig. 3 (a) shows an example of bike trip origins in an
urban area. Instead of being located at fixed docking stations, they are
more loosely distributed along roads, and sometimes clustered at cer-
tain road segments. Fig. 2 (a) also confirms that majority of the bikes
are located close to roads, with few of them distant to the road network
in the north and southeast. These are locations outside the Nanchang
urban area, and distant from metro system.

This study uses road segments to aggregate bike locations and to
cast them as vertices in a graph structure. The graph links represent
trips originating from one road segment to another. Choosing the right
spatial scale of aggregation is important because this can impose a

source of bias in spatial analysis (Openshow, 1979). Some research
(Calabrese et al., 2011; Louail et al., 2014) using cell phone data to
detect commuting flows in cities choose grid cells to aggregate flow
origin and destinations with size varying from 500m to 2 km. These
scales may be useful for capturing work-home commuting flows and
inferring coarse scale urban structure, but here the focus was on iden-
tifying more spatially detailed structures in small areas requiring a finer
spatial scale. Fig. 3 (b) reveals that trip distances are commonly around
400m and that 28% of trip O-D distance are< 500m, with 1 km and
2 km distances corresponding to 60% and 85% or trips respectively.
This indicates that aggregation scales between 500m to 2 km may re-
sult in important information loss. Here, road segments of 200m were
used to aggregate dockless bike flows, since this distance captures>
96% of trips.

Fig. 4 illustrates the process of casting bike trips to a graph using
road networks segments as nodes. First, the Nanchang road network
was split into segments based on road joins. Second, if a split segment
was longer than 200m, then was divided into smaller segments of equal
distance, all < 200m. Then, bike trip origin and destination were as-
signed to the nearest road segment using ArcGIS 10.4. The result is that
each trip has information about its origin and destination road segment,
with a trip regarded as a flow from one node to another.

Dockless bike travel flows and the graph structures in the “before”
period (5 days) are shown in Fig. 5, using a spatial layout and a
Fruchterman Reingold layout. Each node represents a short road seg-
ment with the edge between any two nodes indicating travel flow be-
tween them, and the network was trimmed using a threshold of at least
10 trips between two nodes, to improve the visualisation. Fig. 5 char-
acterizes nodes degree (number of connections) using both shading and
node size. Node degree in an urban mobility network represents the
connectivity or accessibility to destinations or activities across the
network. In this case study, bike travel is split by the river, with few
links crossing it (Fig. 5 a). Most of the trips are local, with the majority
of the links connecting nearby areas (Fig. 5 a), and the graph structure
has a clear multi-core (multi cluster) spatial pattern. This is different to
graph structures derived from other transportation modes such as metro
and bus travel (e.g. Zhong et al., 2014) which tend to link different
parts of city over longer distances. The Fruchterman Reingold layout
(Fig. 5 b) seeks to reduce the overlaps between nodes and maintain
spatial topology. For example, two clusters of nodes presented in Fig. 5
(c) and (d) are shown in Fig. 5 (e) and (f) respectively. The group of
nodes in Fig. 5 (c) and (e) are dominated by 2 nodes connected to
surrounded nodes with low degree, while Fig. 5 (d) and (f) suggest a
group of more evenly connected nodes. The structures imply many
different patterns of how people move around and use urban space.

5. Result and discussion

5.1. Spatiotemporal analysis

5.1.1. Temporal pattern
Temporal analysis of bike usage can reveal the dynamics in and

characteristics of dockless bike sharing schemes. Fig. 6 (a) shows the
temporal travel patterns of dockless bike trips in Nanchang (whole
study area) with the highest daily temperature. Trip amount is the
count of trips starting at different times in hourly intervals. Over the
two periods, bike usage shows a similar overall temporal pattern with
some difference in trip numbers. There are two significant rush hours in
each day, one from 07:00 lasting for two hours and another around
18:00, with hourly trip number reaching approximately 19,000. There
is also a lunch time peak at 12:00. The trip amounts overlap with the
exception of Monday at 12:00, when it is slightly lower, which is po-
tentially due to the hotter weather (38 °C) than any other days (Fig. 6
(a)). The total trip amounts for the two periods is 838,464 and 892,764
respectively, an increase of 6.5%.

For the purposes of illustration Fig. 6 (b) defines service area

Table 2
Date of collected data.

Period Day of week Date

Before Monday, Tuesday 7, 8 August 2017
Wednesday-Friday 2, 3, 4 August 2017

After Monday-Friday 21–25 August 2017

Y. Yang, et al. Computers, Environment and Urban Systems 77 (2019) 101361
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Fig. 3. (a) Examples of bike trip origin spatial distribution; (b) Dockless bike trip distance probability distribution.

Fig. 4. Diagram of creating graph nodes from road network.

Fig. 5. Dockless bike travel flows and graph structure of “before period” in (a) spatial layout; (b) Fruchterman Reingold layout, with detail in (c) to (f) as described in
the text.
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catchments of 2 km around new metro stations. Trip amounts in these
catchmentss increased by 28.0% from 96,239 to 123,182. The highest
rise was found in early morning with increases of 38.5%, 38.0% and
31.3% in the hour intervals from 06:00–09:00, respectively and another
increase around 20:00 by 34.7%. The observations indicate that the
largest bike trip amount increase occurs in the morning rush hour
period, suggesting the popularity of trips using the new metro with
dockless bike as a preferred travel mode during morning commuting.

5.1.2. Spatial pattern
Dockless bike sharing scheme offers flexibility, efficiency, and low

cost making it an attractive way to fill the gaps in the public transit
system (such as bus and metro). Bike sharing travel has different spatial
properties from other public transit modes, due to its non-motorised
nature. For example, dockless bikes are not suitable for long distance
travel, but they can be left immediately adjacent to the destination.
Understanding the unique spatial pattern of dockless bike usage is
important for scheme management (bike re-balancing) and the inter-
dependence between metro and dockless bike system provides crucial
information about local mobility. A spatial analysis (Pebesma, 2018)
was conducted to examine the characteristics and dynamics of dockless
bike sharing scheme in the study area. Fig. 7 (a) shows the dockless bike
trip kernel density across the city in the five weekdays of the before
period based on trip origins. A KDE bandwidth of 118.2 m was de-
termined as follows::

⎜ ⎟= ∗ ⎛
⎝

∗ ⎞
⎠

∗ −band width SD D n0.9 min , 1
ln(2) m

0.2

(1)

where SD is the standard distance of the points spatial distribution, Dm

is the median distance, and n is the number of points. The KDE has a
100m resolution.

The city centre from where most to trips originate, straddles both
sides of the river,. It has the highest kernel density value (21,471 trips
per km2). Several hubs can be also observed in the south away from city
centre and the metro service.

Fig. 7 (b) shows the changes of kernel density estimation (KDE)
between the two periods. The highlighted area in Fig. 7 (b) shows the

new metro service catchments west of the river. It shows a clustering
pattern of increased density. By contrast, in other part of the city, areas
of increase bike use are adjacent to or nearby to areas of decrease,
suggesting an overall balanced and dynamic pattern. The observed
spatial proximity between increase and decrease is due to the nature of
dockless bike sharing scheme: people are able to pick up and park bikes
at places of their choice when necessary subject to availability. The
flexibility of travel in this way is demonstrated by heterogenous use
patterns, especially at fine spatial scales.

To better understand the impact of new metro service on dockless
bike sharing trips, a further statistical analysis was conducted to ex-
amine the probability density of dockless bike origin/destination spatial
distribution. Fig. 8 (a, b) illustrates the probability and cumulative
probability of start and end distances from the newly opened metro
stations.

By comparing Fig. 8 (a) and (b), a new peak at around 120m in the
“after” period is observed, which suggests that more bike trips originate
from or end at areas very close (around 120m) to metro stations. This
distance can also be understood as how far metro travellers are typi-
cally prepared to go (walk) to get or leave bikes around their metro
usage. The first peak (Fig. 8 a) decreases and reaches a floor around
220m, indicating weakened spatial clustering of bike trips origins and
destinations. This distance can be interpreted as the affordable (walking
distance) limit between the metro station and the bike, and provides
information to support the planning of related bike parking facilities,
suggesting in this case an upper limit for the provision of bike parking
areas around metro stations. The highest peak in the “before” period is
located at around 800m, but moves to 600m in the “after” period
(Fig. 8 a), suggesting the impact of the new metro stations on bike
usage. The cumulative probability (Fig. 8 b) indicates however that this
impact is heterogeneous, with higher cumulative probability in areas at
shorter distances to new metro stations in the “after” period. Figs. 7 and
8 indicate the extent to which the areas closer to new metro stations
experienced greater changes in daily dockless bike trips, in terms of
distances people walked to get a bike and volume of trips.

Metro services not only change where people pick or park their
bikes, but also influence local trip distance patterns. Building on the

Fig. 6. Temporal pattern of dockless bike trips in (a) Nanchang city; (b) around new metro service catchments.
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results in Fig. 8 (a), buffers of 250m and 2,000m around new metro
stations were used to select bike trips with origin or destination within
them. Trips that start or end in the 250m buffer can be understood as
“last mile” trips, and trips in the 2,000m buffer capture flows within
the metro service catchment area, indicating changes over larger areas.
The travel distance patterns were examined their distributions com-
pared (Fig. 9). Fig. 9 (a, c) indicates that bike trip counts increased
significantly in both buffer zones and that the new metro service sti-
mulated more trips regardless of travel distance. Fig. 9 (b, d) describes
the changes in probability distributions and indicates that trips with a
travel distance of< 1,000m are more likely to be made with the in-
troduction of the new metro service and long distance trips (> 1,000m)
less likely. t-tests were used to confirm the difference in dockless bike
trip distances in the two periods (Table 3) for the 2 trip types. The p-
values in each case are< 0.0001, indicating the statistical significance
of the observed reduction in trip distances with the introduction of the
new metro line. Mean travel distance dropped from 1,178m to 1,034m

for “last mile” trips, and trips in the larger service areas around new
metros (radius of 2,000m) significantly decreased from 1,317m to
1,150m. Overall, the results suggest that new metro stations en-
couraged increases in cycling activity but with reduced trip distances,
indicating improvements in local mobility and access to transportation
services.

5.2. Graph-based analysis

Interpreting the changes in flow networks is important for under-
standing changes in mobility patterns and urban dynamics. Graph-
based approaches were applied to quantify and compare the differences
in the network structures. Firstly, two graph structures were con-
structed based on bike travel flow data for the two periods according to
the method described above. Only trips with their origin and destina-
tion road segments in the 2,000m buffers around metro stations were
selected, as this was considered the maximum distance people would

Fig. 7. (a) Kernel Density of dockless bike trips in “before period”; (b) Kernel Density difference of dockless bike trips in the two periods.

Fig. 8. (a) Probability density; and (b) accumulative probability of distance between dockless bike trip origin/destination and nearest new metro station in the two
periods.
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travel using the combination of dockless bike and metro.

5.2.1. Network statistical properties
Table 4 shows the network properties in the new metro service

catchments. From the table some changes between the 2 periods can be
identified: the number of nodes increased from 984 to 1,064, and the
number of edges increased from 34,948 to 41,967. Network con-
nectivity, δ, representing graph structure resilience, also increased in-
dicating the increased strength of the cycling network and its robust-
ness to potential nodes failures, for example due to external
disturbances such as a road closures. Node degree helps to evaluate the
connectivity to and accessibility of destinations in a mobility graph
(Zhong et al., 2014). Tables 5 and 6 confirm the significance of the
changes in node degree mean and variance, with the mean value in-
creasing from 124.4 to 132.5. Fig. 10 (a) shows the node degree dis-
tributions between the two periods and, despite higher means and third
quantiles, the first quantile and median are relatively unchanged,

Fig. 9. Distributions of dockless bike trip travel distance around new metro stations over the two periods: (a) Density distribution (buffer within 250m); (b)
Probability density (buffer within 250m); (c) Density distribution (buffer within 2,000m); (d) Probability density (buffer within 2,000m).

Table 3
t-test for travel distance (m).

Buffer radius p-Value Mean value 95% confidence interval

Before After Before After

250 < 0.000 1,178 1,034 1,059–1,297 865–1,203
2,000 < 0.000 1,317 1,150 1,160–1,473 973–1,327

Table 4
Graph properties in the two periods.

Properties Before After

Number of nodes (N) 984 1064
Number of edges (L) 34,948 41,967
L/N 35.51 39.44
δ=2L/N2 0.07218 0.07414
Total Flux 85,393 111,920
Mean Node flux 168.64 209.27
Mean node degree 124.45 132.49
Variance of Node flux 12,065.71 16,949.17
Variance of Node degree 6,204.00 6,716.69
Mean clustering coefficient 0.4246 0.4345

Table 5
t-test for degree and flux.

Graph property p-value mean value 95% confidence interval

before after before After

Degree 0.024 124 132 120–129 128–137
Flux < 0.0001 167 209 162–175 201–217

Alternative hypothesis is true: both true difference in means of degree and flux
are not equal to 0.
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indicating the contribution of nodes with high degrees to the change in
variance. This implies a higher probability of observing a node with
very larger degree in the “after” period than “before”. The node flux of
graph, the total amount of trips that start from or end at a node, can be
used to understand trip volumes. The rises in both total and mean flux
(Tables 4 and 5) indicate that the demand for dockless bikes in local
areas increased. The node flux CDF (Cumulative Density Function) in
Fig. 10 (b) suggests there is higher probability of nodes with a larger
flux. These changes describe the increased attractiveness of road seg-
ments, as well as their interaction strength in connection to other seg-
ments in the network. The node flux variability (Table 4) increases in
value indicating a more heterogeneous distribution of interaction
strength across the network. Tables 5 and 6 show the t-test and variance
test results and confirm that observed changes are statistically sig-
nificant. The clustering coefficient (Table 4) represents the extent to
which nodes in a network tend to cluster (i.e. have links between them)
(Saberi et al., 2018). Its average value shows an increase after the new
metro opening, suggesting that the dockless bike trip network became

more locally connected.
These results suggest that the dockless bike sharing mobility net-

work became denser and more heterogeneous after the opening of the
new metro service. Similar patterns are evident in other graph prop-
erties. Firstly, changes in betweenness centrality were examined
through “node betweenness” (Newman, 2005) rather than “edge be-
tweenness” (Girvan & Newman, 2002). Node betweenness represents
the extent to which nodes stand between each other in a graph, or serve
as a bridge from one part to another (Newman, 2005). In the context of
urban studies, this measure can identify hubs in flow networks (Zhong
et al., 2014). Fig. 10 (c) shows the cumulative probability of node be-
tweenness centrality. This indicates that the probability of low be-
tweenness nodes decreased slightly, while the probability of higher
betweenness nodes increased, and therefore that the nodes with higher
levels of connectedness have a more intensive role in the “after” graph.
This describes the emergence of well-connected hubs.

PageRank is another indicator graph node importance. Generally, if
the number of highly centred nodes (with very high PageRank) de-
ceases while the number of secondary PageRank nodes increases, then
this implies a polycentric changes. These suggest that the influence of
strong centred nodes has gradually relaxed with their centrality in-
creasingly shared with emerging subcentres (Zhong et al., 2014).
Fig. 10 (d) shows the CDF of PageRank, the “after” period exceeds the
“before” period at around 0.75 of the cumulative probability and in-
dicates that nodes are more likely to have secondary high PageRank,
suggesting underlying polycentric transformation. The next section re-
inforces this finding by detecting community structures in graphs.

Table 6
Variance test for degree and flux difference.

Graph property p-Value Ratio of variances
(before divide after)

Ratio of variance
(95% confidence interval)

Degree 0.205 0.924 0.817–1.044
Flux <0.0001 0.712 0.630–0.805

Alternative hypothesis is true: both true ratio of variances of degree and flux are
not equal to 1.

Fig. 10. Graph properties distribution, (a) degree, (b) flux, (c) betweenness, (d) PageRank.
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5.2.2. Community detection and graph structure
Communities in a dockless bicycle sharing network can be under-

stood as a set of road segment clusters (graph subsets, or sub-graphs)
that are more connected by trips internal to the cluster than external.
This different in internal and external connects in clusters is measured
by modularity (Newman & Girvan, 2004). A modularity maximization
algorithm, the Louvain method (Blondel, Guillaume, Lambiotte, &
Lefebvre, 2008), was applied to detect the communities in the dockless
bike network. Modularity characterizes the density of edges inside
potential communities relative to edges outside of the community.
Networks with high modularity have dense connections between com-
munity members but sparse connections with nodes in different com-
munities. Optimizing this value theoretically results in the best possible
segmentation of the nodes in a given graph structure. The Louvain
method first finds small communities by optimizing modularity locally
on all nodes, then each small community is grouped into one node and
the first step is repeated, in an iterative way.

Fig. 11 shows the different communities detected in the two periods
using colour shades. Although the analysis does not include node (road
segment) location, the communities are spatially coherent, suggesting
considerable spatial structure in this network. The introduction of new
metro station resulted in the emergence of new communities in the
network (Fig. 11). One is located around the transfer station in the
north, and another can be found near the centre of new network and
demonstrates the impact of a new metro line on the structure of
dockless cycling activities. Combined with the changes in other graph
properties, it is possible to conclude that the new metro catchment area
results in more bike trips and forms stronger local travel connections
which are more polycentric.

Another important indicator graph structure is assortativity. This
describes the tendency of high degree nodes (nodes with many edges),
to connect to other high degree nodes. For example, the structures in
Fig. 5 (d) and (f) have higher assortativity than the structures of Fig. 5
(c) and (e). Structures with high assortativity are more robust to node
removal or failure. Assortativity increased from 0.1832 to 0.2895 after
the introduction of the new metro service along with a slight increase in

modularity, from 0.3236 to 0.3733. From a transportation perspective,
the rise in the two indicators suggests that the new network alleviates
congestion and enhances the efficiency of travel by non-motorised
traffic (discussed in Sun, Zhang, & Wu, 2012). Here, the evolution in
graph structure shows a quick self-adaptive process that meets the in-
creasing and changing patterns of travel demand and traffic flows, and
strongly implies underlying urban resilience. Whether the performance
of the network will deteriorate with future increases in network size or
a dramatic rise in trip numbers, remains to be seen. From the per-
spective of “urban metabolism”, the assortative structure suggests a
robust spread and interaction of various urban flows of information,
capital and materials through non-motorised traffic, but may also pose
future challenges, for example in the context of protecting against the
spread of epidemics.

5.2.3. Flowmap
A final exploration of the changes in bike flow through flow maps is

shown in Fig. 12. This illustrates bike travel origin or destinations road
segment in the 2,000m buffers and the colour shades are used to in-
dicate trip density between different road segments, connected by the
directed links. Several important differences can be observed, especially
areas close to the new metro stations. For example, Cuiyuanlu, Xuefu-
dadaodong, Wolongshan and Guotizhongxin stations all show large
changes in flows and structures. These stations resulted in many new
outward flows and regions of high trip destination density. The flows
“i” and “ii” in Fig. 12 (a) suggest that bike users travel long distances
from their origins to destinations in the “before” period, but these flows
disappeared in the “after” period (Fig. 12 b). This is because travellers
used the metro service instead of taking long-distance cycling trips,
implying local mobility improvements. In the before period, there are
many travel flows on the east of Yingtanjie Station (a large residential
area). After the opening of the new metro service, more bike travel
flows extended from and linked to Yingtanjie station, indicating that
residents quickly changed their travel habits and started to combine
dockless bikes trips with metro travel.

Fig. 11. Communities of road segments for dockless bike sharing trip network in two periods.
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6. Conclusion

In order to capture the impact of metro service on the dockless bike
sharing system, this study applied a combination of geo-statistical and
graph theory approaches. The analyses led to an in-depth under-
standing of the interaction and evolution of urban behaviours around
non-motorised activity, by considering the changes in in the spatial
patterns of dockless bike sharing as result of a new metro line. The new
metro service increased nearby dockless bike sharing demand by 28%,
and resulted in changes in other spatiotemporal patterns of travel be-
haviours, including bike travel distance and bike origin-destination
spatial distributions. The observed changes in travel were not homo-
genous across the study area with greater impacts closer to new metro
stations. The dynamics and evolution in the graph structure capture the
urban resilience of dockless bike schemes who are able to adapt to in-
frastructural changes such as new metro systems. Dockless bike trip
structure has a tendency towards being polycentric (i.e. with more
community structures), stronger local connectivity, higher assortativity
reflecting increased travel demand and scheme robustness. This insight
is not only useful for dockless bike schemes, but also provides a new
perspective for the analysis on urban resilience and the inter-
dependence between different urban complex systems. Observations
from flow maps can be used to indicate improvements in local mobility,
and the speed of adaption by people to combine dockless bike for metro
travels.

A number of policy and planning implications emerge from this
study. First, it is important for bike sharing operators to prepare more
bike fleets in the new metro service areas as demand will increase.
Second, bike parking facilities need to be planned around metro sta-
tions over distances up to approximately 220m. Third, analysis of the
changes in the origin-destination and network structure can help to
reveal which locations (roads) are more frequently used by bike users,
thus supporting related planning. Last, bike fleet rebalance strategies
need be redesigned to adapt to changes of flows.

There are several limitations to this work. First, it used short road
segments (< 200m) to aggregate bike travel flows, which although
selected through analysis, may be specific to this study. Second, the
study analysed data from a limited number of days. Climate (rainy days
in summer) and the timing of the school year (the new term starts in
September) were the major reasons for excluding data in order to
minimise the variance of environmental factors. The changes in bike
travel behaviours and associated flow structures could be confirmed if
data for a longer period was available and through analysis of a similar
case study area, with newly opened metro lines. Third, the data ac-
quisition (section 3.2) procedure is only able to obtain information
about the nearest 30 available bikes for each location, at each query.
This potential data loss, if more bikes are available in that small area,
introduces uncertainty into the analysis and results. Such shortcoming
are commonly found in dockless bike sharing research (e.g. Ai et al.,
2018; Liu et al., 2018; Shen, Zhang, & Zhao, 2018). However, since the

Fig. 12. Flow maps of dockless sharing bike trips in new metro service catchment, (a) “Before” period; (b) “After” period.
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data are consistent over the two periods, with similar sampling char-
acteristics and uncertainties, the findings from “before” and “after” the
new metro line are comparable. Finally, although dockless bike data
provide a better representation of non-motorised travel behaviour than
cell phone data, there is an inherent sampling bias because not all city
inhabitants will be cyclists or will use a bike sharing scheme. Future
work will examine these issues further and will extend the analysis to
integrate urban context, in order to develop a deeper understanding the
implications of changes in spatiotemporal patterns and graph structure
evolutions. It will also examine the long-term spatiotemporal effects of
new metro stations on dockless bike sharing whose future patterns may
change over time, as a result of deeper intergration of the two travel
systems.
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