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Abstract—Data-driven false data injection attack is one of the
emerging techniques in smart grids, provided that the adversary
can monitor the meter readings. The basic idea is constructing at-
tack vectors from the estimated signal subspace, without knowing
system measurement matrix. However, its stealthy performance is
significantly influenced by the accuracy of the estimated subspace.
Furthermore, it is computationally demanding, because full-size
singular value decomposition (SVD) is required for model order
selection. In this paper, we propose a truncated SVD based
computationally efficient attacking scheme using only the first
dominant eigenvector. Both experiment and simulation results are
provided to evaluate the performance of the proposed scheme.
Compared with the standard false data injection techniques
with known measurement matrix, similar stealthy performance
is achieved with a reasonable computational complexity.

Index Terms—Data-driven false data injection attack, smart
grid, subspace method, bad data detector

I. INTRODUCTION

Information and communication systems are widely used in

power grids. However, they have convenient entry points for

malicious attackers and are vulnerable to cyber-attacks. Al-

though it is possible to compromise the control center directly,

in practice, existing security measures make it unlikely [1], and

it is more realistic to assume that the attackers have access to

the field devices, and the associated supervisory control and

data acquisition (SCADA) communication channels, because

they are geographically scattered over a large area, and lack

adequate protection features. Here we focus on the false data

injection (FDI) attacks against direct current (DC) linear state

estimation in power grids [2]–[4]. In general, attacks on the

measurements can be detected by bad data detector (BDD).

But a well designed FDI attack vector that lies in the subspace

spanned by measurement matrix can remain stealthy to the

BDD [5]. The basic idea is to learn the measurement matrix

or estimate its subspace structure from the meter readings.

Using such vulnerabilities, crafting stealthy data-driven FDI

attacks from the measurement data are shown in [6] and [7].

Principal component analysis (PCA) and independent com-

ponent analysis (ICA) [7]–[9] are two widely used projec-

tion methods for subspace based data-driven stealthy attacks.

Recently, low rank matrix recovery techniques [10], [11]

are consolidated to launch such an attack from incomplete

measurements [12], [13]. Another interesting extension is

considering alternating current nonlinear state estimation [14]–

[16]. Here we focus on PCA based data-driven FDI attacks

against DC linear state estimation. The basic idea of PCA

is to find a set of principal components such that the pro-

jected measurements retain most information about original

measurements. However, one limitation of the existing PCA

based data-driven FDI attacks is determining the pseudorank

[7], [17], which is defined as the rank of the noiseless data

matrix and depends on the number of measurements and the

correlation of the system states [18]. Full-size singular value

decomposition (SVD) is required to estimate pseudorank.

Therefore, the computational complexity is high, especially for

large scale systems. Furthermore, for the existing data-driven

techniques, performance degradation occurs if the nominated

and actual pseudorank are mismatched. Besides the pseudo-

rank, the error of the estimated eigenvectors are also critical,

which are inversely proportional to the eigenvalues [19]. In

general, larger errors will cause larger residuals, and therefore

increase the probability of being detected by BDD.

To overcome these drawbacks, we propose a computa-

tionally efficient implementation scheme for data-driven FDI

attack , where only the first principal component is utilized to

construct the attack, and pseudorank estimation and full-size

SVD are not required, which leads to significant reduction

in computational complexity. Furthermore, compared with the

standard FDI attack, which assumes that the measurement

matrix is known, similar stealthy performance is achieved for

the proposed data-driven scheme. Even though the proposed

technique is introduced for power grids, the key idea can be

applied to other linear cyber-physical systems.

The remainder of this paper is organized as follows. In

Section II, some preliminaries are provided. In Section III,

we present the proposed stealthy data-driven FDI scheme.

Experiment and numerical results are provided to demonstrate

the effectiveness of the proposed algorithm in Section IV.

Finally, conclusions are drawn in Section V.

Notation: Transpose and inverse operators are denoted as

(·)T and [·]−1, respectively. We use Im to represent the identity

matrix of size m. Moreover, the blackboard bold letter R

denotes the set of real numbers, rank(·) and col(·) denote the

rank and column space of a matrix. R(A) is the space spanned

by A. The ℓ2-norm is denoted as ‖ · ‖2.



II. PRELIMINARIES

The set of nodes in power grids is denoted by N =

{1, 2, . . . , n}. The voltage phase angle at node i during time

slot t is denoted by xi[t], i ∈ N , which corresponds to the

system state at time t for a DC power flow model. The system

state is monitored using sensors deployed at the nodes as well

as the transmission lines, which measure the power injections

and the forward and reverse power flows, respectively. These

measurements are collected at the fusion center. Under the

DC power flow model, the measurements at the t-th sampling

instance z[t] ∈ R
m are related to the system state x[t] ∈ R

n

in a linear fashion [20], given by

z[t] = Hx[t] + e[t], t = 1, 2, · · · , k. (1)

where H =
[

h1 h2 · · · hn

]

∈ R
m×n is the system

measurement matrix and e[t] is the sensor measurement noise,

which is assumed to be white Gaussian and independent of the

system state x[t]. At each time slot t, one convenient way to

estimate the system state x̂[t] from measurement vector z[t] is

using the least squares estimation method, and the closed-form

solution is given by

x̂[t] =
(

HTH
)−1

HT
z[t]. (2)

After state estimation, BDD checks for possible measure-

ment inconsistencies by comparing the residual

r[t] =
∥

∥z[t]−Hx̂[t]
∥

∥

2
, (3)

against a pre-defined threshold τ, and an alarm is raised

if r[t] ≥ τ . Threshold τ is selected to maintain a certain

false-positive rate. We consider a strong attacker model who

has read and write access to the sensor measurements. The

objective of the attacker is to construct FDI attack vectors

that can bypass BDD. Note that designing a stealthy attack

is equivalent to finding a nonzero vector in col(H) [7].

Therefore, it can be constructed from the basis of R(H)
without knowing system measurement matrix. The basis is

obtained by applying SVD on the estimated sample covariance

matrix.

A. Existing Data-Driven FDI Scheme

The data-driven approach proposed in [7] is based on the

subspace of the covariance matrix of z[t]. Because the noise

is additive white Gaussian, the covariance matrix of z[t] can

be described as

Σz = HΣxH
T + σ2Im = Φ+ σ2Im, (4)

where Σx denotes the sample covariance matrix of the states

and noise power σ2 is unknown. Assuming that the system

measurement matrix H is of full column rank and states

covariance matrix Σx is non-singular, the pseudorank of Φ

is n.

Applying SVD to Σz , we have

Σz = UΛVT , (5)

where Λ = diag
{

λ1 λ2 · · · λm

}

is a diagonal matrix,

with its entries being the eigenvalues of Σz in descending

order, and

U =
[

u1 u2 · · · um

]

, (6)

are the corresponding eigenvectors.

Since λn+1 = λn+2 = · · · = λm = σ2, the first

n largest eigenvalues λ1, λ2, · · · , λn are referred to as the

dominant eigenvalues. After obtaining all the eigenvalues, the

information theoretic criteria (ITC) can be used for pesudorank

estimation, which is one of the widely used techniques [17].

Let Us =
[

u1 u2 · · · un

]

contain the first n columns of

U; then

HΣxH
T = UsΛsU

T

s
(7)

where

Λs = diag
{

λ1 − σ2 λ2 − σ2 · · · λn − σ2
}

. (8)

Since H and Us have independent columns, and meanwhile

Σx and Λs are nonsingular, Us forms a basis of R(H) as well

as R(HΣxH
T ). The relationship between Us and H is given

by

Us = HQ, (9)

where Q =
[

q1 q2 · · · qn

]

∈ R
n×n is a invertible

matrix and u1 = Hq1. This is the theoretical foundations

for data-driven FDI techniques. Generate a non-zero vector

c[t] ∈ R
n×1, either random or deterministic. Then, the attack

vector a[t] is constructed by [7],

a[t] = Usc[t]. (10)

III. THE PROPOSED DATA-DRIVEN FDI SCHEME

Comparing with the existing data-driven scheme, the pro-

posed scheme have two main advantages.

1) First of all, the error of the estimated eigenvectors Us

are inversely proportional to the eigenvalues [19]. Since

a larger error will cause larger residuals and increase

the probability to be detected by BDD, for the proposed

data-driven FDI scheme, only the first dominant eigen-

vector is used to construct the attack vector.

2) An additional advantage is that pseudorank estimation

is not required in the proposed scheme. Instead of full-

size SVD, a reduced version of the SVD is sufficient,

such as the thin, compact and truncated SVDs. They are

faster and have a lower storage requirement.

For the proposed data-driven FDI scheme, the attack vector

or false data is constructed as

a[t] = c[t]u1, (11)

where c[t] is either a deterministic or random number, and u1

denotes the first column of the estimated signal subspace Us.

Compromised measurement za[t] is obtained by injecting

a[t] into the original measurements [5],

za[t] = Hx[t] + e[t] + a[t]. (12)



Fig. 1. A circuit diagram of the IEEE 14-bus test system [21].

After state estimation, we have

za[t]−Hx̂[t] = Π⊥
(

e[t] + a[t]
)

. (13)

where

Π⊥ = I−H
(

HTH
)−1

HT . (14)

Let ra[t] be the residual contributed by a[t], which is given

by

ra[t] =
∥

∥Π⊥a[t]
∥

∥

2
=

∥

∥c[t]Π⊥u1

∥

∥

2
, (15)

and substituting u1 = Hq1 into (15), where q1 is a non-zero

column vector, we have

ra[t] =
∥

∥c[t]Π⊥Hq1

∥

∥

2
. (16)

Since

Π⊥H = 0 and ra[t] = 0, (17)

the proposed data-driven FDI scheme using the first dominant

eigenvector is stealthy and can bypass BDD.

IV. CASE STUDIES

A. Experiment Results

As shown in Fig. 1, the IEEE 14-bus system with 11 load

buses is chosen as the test system. The software toolbox

MATPOWER [21] is utilized to generate the measurements.

Real power load data on January 02, 2016 from New York

Independent System Operator (NYISO) is fed into the IEEE

14-bus system. Sampling interval is 5 minutes. NYISO con-

sists of 11 regions and is marked from A to K in Fig. 2.

The following procedures are utilized to estimate system states

using load patterns from NYISO:

• Link the buses of the IEEE 14-bus system to regions of

NYISO as follows:
[

2 3 4 5 6 9 10 11 12 13 14
F C I B G K E H J D A

]

,

where the row is the bus number of the IEEE 14-bus

system and the second row represents the NYISO region

index in Fig. 2.

• Normalize the load data collected from NYISO accord-

ingly, the DC power flow model is considered [5]. For
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Fig. 2. Region index of NYISO

each set of the power loads, optimal power flow (OPF)

is used to extract the system states.

• White Gaussian noise with amplitude 0.1 is added to the

raw measurements. All the results are obtained over 5000

independent trials.

Fig. 3 shows the BDD bypassing probability versus ob-

servation time for different probability of false alarm pFA
ratios. Noise amplitude is 0.1 and ‖a‖2 = 100. As shown

in Fig. 3, a similar performance is achieved for the proposed

data-driven FDI scheme without knowing the measurement

matrix as compared to benchmark [5]. However, performance

deterioration occurs for the proposed approach if only a

few measurements are available, since the estimated signal

subspace is erroneous with a limited number of measurements,

which generates a larger residual and increases the probability

of being detected by BDD.
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Fig. 3. Probability to bypass BDD versus observation time for different
probability of false alarm ratios. Sampling interval is 5 minutes.

B. Simulation Results

First, we consider the effects of the number of columns used

to construct FDI attacks. The proposed approach is compared



with benchmark [5], which assumes that the measurement

matrix H is known. The noise amplitude is 1, ‖a‖2 = 200
and pFA = 0.01. As shown in Fig. 4, using more columns

will reduce the probability to bypass BDD. The results are

consistent with the observations in [19], which shows that the

error of the estimated eigenvectors are inversely proportional

to the eigenvalues. A larger error will cause larger residuals.

Therefore, for a given number of measurements, using more

eigenvectors will increase the probability of being detected by

BDD. It is better to using a smaller number of columns to

obtain a higher BDD bypassing probability, especially when

the number of measurements or observation time is limited.

This is one of the motivations of using only the first dominant

eigenvector to construct FDI attacks.
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Fig. 4. Probability to bypass BDD versus number of columns used to construct
FDI attacks.

In the second test, the proposed scheme is compared with

the data-driven scheme in [7] and benchmark [5], which

assumes that the measurement matrix is known. The noise

amplitude is 1, attacking strength ‖a‖2 = 100, and probability

of false alarm pFA = 0.01. As shown in Fig. 5, the proposed

scheme outperforms [7] and is close to the benchmark, even

with a limited number of measurements. On the other hand, for

[7], a large number of measurements are required to achieve

a reasonable BDD bypassing probability. Furthermore, even

more measurements are required if the measurements are

highly correlated, which is common in real applications.

In the last test, we evaluate the effects of attacking strength

‖a‖2. Noise amplitude is 1 and pFA = 0.01. As shown in

Fig. 6, accuracy of the estimated signal subspace is critical

for the data-driven techniques. The allowed attacking strength

is affected by the accuracy of the estimated signal subspace.

This is a limitation of the data-driven schemes, when compared

with benchmark [5].

V. CONCLUSION

The emerging data-driven FDI attack in power grids has

been studied. A truncated SVD based computationally efficient

data-driven FDI attacking scheme was proposed using only
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the first dominant eigenvector of the measurement covariance

matrix. As a result, the pseudorank or model order information

is not required. Furthermore, trade-offs between the attacking

strength and accuracy of the estimated signal subspace were

investigated. Although the work has been presented from an

attacker’s points of view, the insight provided by the proposed

scheme is also helpful for system operators. Furthermore, the

key idea of the proposed scheme can be applied to other cyber-

physical systems with a similar linear model.
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