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Abstract

A modern notion of integrability is that of multidimensional consistency (MDC), which classically im-
plies the coexistence of (commuting) dynamical flows in several independent variables for one and the 
same dependent variable. This property holds for both continuous dynamical systems as well as for discrete 
ones defined in discrete space-time. Possibly the simplest example in the discrete case is that of a linear 
quadrilateral lattice equation, which can be viewed as a linearised version of the well-known lattice poten-
tial Korteweg-de Vries (KdV) equation. In spite of the linearity, the MDC property is non-trivial in terms of 
the parameters of the system. The Lagrangian aspects of such equations, and their nonlinear analogues, has 
led to the notion of Lagrangian multiform structures, where the Lagrangians are no longer scalar functions 
(or volume forms) but genuine p-forms in a multidimensional space of independent variables. The varia-
tional principle involves variations not only with respect to the field variables, but also with respect to the 
geometry in the space of independent variables. In this paper we consider a quantum analogue of this new 
variational principle by means of quantum propagators (or equivalently Feynman path integrals). In the case 
of quadratic Lagrangians these can be evaluated in terms of Gaussian integrals. We study also periodic re-
ductions of the lattice leading to discrete multi-time dynamical commuting mappings, the simplest example 
of which is the discrete harmonic oscillator, which surprisingly reveals a rich integrable structure behind 
it. On the basis of this study we propose a new quantum variational principle in terms of multiform path 
integrals.
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1. Introduction

Discrete integrable systems [1] have started to play an increasingly important role in deepen-
ing the understanding of integrability as a mathematical notion, thereby forging new perspectives 
in both analysis (e.g. the discovery of difference analogues of the Painlevé equations), geome-
try (the development of discrete differential geometry, [2]) and algebra (e.g. the development 
of cluster algebras through the so-called Laurent phenomenon). In physics, at the quantum 
level, discrete integrable systems appear in connection with random matrix theory and quan-
tum spin models of statistical mechanics, and in aspects of relativistic many-body systems [3], 
but more directly in approaches to establish integrable quantum field theories on the space-time 
lattice [4].

Integrable systems are important not only because they can be treated by exact and rigorous 
methods, but also because they appear to be universal: they have a rare tendency of emerging 
in a large variety of contexts and physical situations, such as in correlations functions in scaling 
limits, random matrices and in energy level statistics of even chaotic systems. Furthermore, their 
intricate underlying structures gave rise to new mathematical theories, such as quantum groups 
and cluster algebras, revealing novel types of combinatorics. Thus, one could argue, letting these 
systems “speak for themselves” the stories they tell us will lead us to new principles and in-
sights, even perhaps about the structure of Nature itself. One such story is about their variational 
description in terms of a least-action principle and its connection to one of the key integrabil-
ity features, multi-dimensional consistency (MDC). The latter is the phenomenon that integrable 
equations do not come in isolation, but tend to come in combination with whole families of equa-
tions, all simultaneously imposable on one and the same field variable (the dependent variable 
of the equations). Such equations manifest themselves as higher or generalized symmetries, as 
hierarchies of equations or as compatible systems, their very compatibility being the signature of 
the integrability. In fact, it is this very feature that forms a powerful tool in the exact solvability of 
such equations through techniques such as the inverse scattering transform (a nonlinear analogue 
of the Fourier transform), Lax pairs and Bäcklund transformations.

This story about the variational description of integrable systems started with the paper [5], 
where the Lagrangian structure of a class of 2D quadrilateral lattice equations was studied, 
which are integrable in the sense of the MDC property. It was shown that for particularly 
well-chosen discrete Lagrangians for those equations, embedded through the MDC property 
in higher-dimensional space-time lattice, the Lagrangians obey a closure property, suggesting 
that these Lagrangians should be viewed as components of a discrete p-form that is closed on 
solutions of the quad equations. This remarkable property led to the formulation of a novel least-
action principle in which the action is supposed to attain a critical point not only w.r.t. variations 
of the field variables, but also the action being stationary w.r.t. variations of the space-time sur-
faces in the higher-dimensional lattice of independent discrete variables on which the equations 
are defined. This allows one to derive from this extended variational principle not one single 
equation (in the conventional way on a fixed space-time surface) but the full set of compatible 
equations that possess the MDC property. Furthermore, this property was also shown to extend to 
corresponding integrable differential equations defined on smooth surfaces in a multidimensional 
space-time of independent continuous variables, as well as on systems of higher dimension and 
of higher rank, [6–8] as well as to many-body systems [9–11]. Further extensions and deepening 
understanding of these results were obtained in a number of papers, cf. [12–14].

A natural question is whether the Lagrangian multiform structure described above extends 
also to the quantum regime, since, after all, a canonical quantization formalism for reductions of 
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quadrilateral lattice equations and higher-rank systems, using non-ultralocal R matrix structures, 
was already established some while ago [15,16], as well as for a quantum lattice Hirota type 
system [17], cf. also [18]. However, the natural setting for a Lagrangian approach in the quantum 
case is obviously the Feynman path integral [19], which has remained curiously unexplored in 
the context of integrable systems theory where there has been a predilection for the Hamiltonian 
point of view. However, when dealing with discrete systems, e.g. systems evolving in discrete 
time, the Hamiltonian view point is no longer natural, and the Lagrangian point of view may 
become preferable. The further advantage is that in discrete time, path integrals are no longer 
marred by the infinite time-slicing limit which causes such objects to be notoriously ill-defined 
in general. Thus, first steps to set up a path integral approach for integrable quantum mappings,1

i.e. integrable systems with discrete-time evolution, were undertaken in [21,22]. However, the 
main aim of the present paper is to arrive at an understanding of the Lagrangian multiform struc-
ture on the quantum level. In order to achieve that, and to avoid analytical complications arising 
from the nonlinearities, we restrict ourselves in this initial treatment to the case of quadratic 
Lagrangians, associated with linear multidimensionally consistent equations. Although this may 
seem restrictive, the quadratic case is surprisingly rich and exhibits most of the properties of the 
wider classes of nonlinear models when it comes to the MDC aspects. Those reveal themselves in 
the way the lattice parameters govern the compatible systems of equations, and it is there where 
even these linear equations exhibit quite non-trivial features. In fact, an interesting role rever-
sal between discrete independent variables and continuous parameters allows the corresponding 
quantum propagators to be interpreted at the same time as discrete as well as continuous path 
integrals. The periodic reductions are particularly noteworthy, since they lead to propagators that 
can be readily computed, and it is here that the humble quantum harmonic oscillator makes its 
reappearance in quite a new context.

The outline of the paper is as follows. In section 2 we describe the classical quad equation, 
i.e. a 2-dimensional partial difference equation defined on elementary quadrilaterals, and its La-
grangian 2-form structure. In section 3, we consider its periodic reductions on the classical level, 
and construct commuting flows for the lowest period cases. The simplest (3-step) reduction leads 
to the harmonic oscillator, but even this case there is a non-trivial Lagrangian 1-form structure 
on the classical level. Next, in section 4 we consider the quantization of the reductions through 
discrete-time step path integrals which at the same time provides a natural discretization of the 
underlying continuous-time model in terms of the lattice parameters. The MDC property here is 
reflected in a path-independence property of the propagators. This leads us to suggest a quan-
tum variational principle which we expect may extend to models beyond the quadratic case. 
In section 5 we return to the quad lattice case, which resembles a quantum field type of situa-
tion, and we establish surface-independence of the relevant propagators, suggestive of a quantum 
variational principle in the field theoretic case. Finally, in section 6 we discuss some possible ram-
ifications of our findings, and how they connect to some ongoing questions regarding quantum 
mechanics and foundational aspects.

2. Linearised lattice KdV equation

Our starting point is a 2 dimensional quadrilateral lattice equation, whose dependent variable 
u(n, m) is defined on lattice points labelled by discrete variables (n, m), which are variables 

1 The notion of quantum mapping is essentially due to M.V. Berry et al., [20].
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Fig. 1. An elementary plaquette in the lattice.

shifting by units, and with lattice parameters p and q , each associated with the n and m directions 
on the lattice respectively. We adopt the shift notation by accents ̃ and ̂ , i.e. for u := u(n, m), 
we have ̃u := u(n + 1, m), ̂u := u(n, m + 1). The equation of interest in this paper is in the linear 
quadrilateral equation:

(p + q)(̃u − û) = (p − q)(u − ̂̃u) . (1)

This quadrilateral equation is supposed to hold on every elementary plaquette across a 2 dimen-
sional lattice; the elementary plaquette is shown in Fig. 1. This is something of a “universal” 
linear quad equation, being the natural linearisation of nearly all the integrable quad equations of 
the ABS list [23]. Although for the sake of the present study it is not really relevant, we mention 
that (1) admits a scalar inhomogeneous Lax representation of the form2

ϕ̃ = u + p + k

p − k
(ϕ − ũ) , ϕ̂ = u + q + k

q − k
(ϕ − û) , (2)

where ϕ is an auxiliary field variable and k a spectral parameter. The compatibility condition ̂̃ϕ = ˜̂ϕ leads to the linear equation (1) for the main field u. The latter equation can be derived via 
discrete Euler-Lagrange equations on the three-point Lagrangian

L(u, ũ, û) = u(̃u − û) − 1

2

p + q

p − q
(̃u − û)2 ;

̂̃(
∂L

∂u

)
+

̂(
∂L

∂ũ

)
+

˜(
∂L

∂û

)
= 0, (3)

where, for the action, we sum across every plaquette in the lattice:

S=
∑

(n,n)∈Z2

L(un,m,un+1,m,un,m+1) . (4)

Note that the Lagrangian (3) is also the natural linearisation of the Lagrangians for the non-linear 
quad equations of the ABS list from which (1) can be derived.

In fact, the standard variational principle on (3) produces two copies of (1). In order to regain 
precisely the linearised KdV equation, we must make use of the multiform variational principle 
introduced in [5,12]. (1) can be consistently embedded into a multidimensional lattice, with di-
rections labelled by subscripts i, j, k. Across an elementary plaquette in the i − j plane, (1) takes 
the form:

(pi + pj )(ui − uj ) = (pi − pj )(u − uij ) , (5)

2 Similar Lax representations in the continuous case of PDEs were considered in [24,25] to study initial boundary-value 
problems for linear PDEs.
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where ui indicated u shifted once in the i direction on the lattice, and pi is now the lattice 
parameter associated to the i direction. This equation has multidimensional consistency, which 
can be checked by establishing closure around the cube [26] - field variables at any point in the 
multi-dimensional lattice can be calculated via any route in a consistent manner.

The variational principle proposed in [5] was elaborated further in [12], where the system of 
generalised Euler-Lagrange equations was derived, cf. also [13]. The action being defined as the 
sum of Lagrangians on elementary plaquettes across a 2-dimensional surface σ , embedded in the 
multidimensional space, to derive the equations of motion, we demand the action be stationary 
not only under the variation of the field variables u, but also under the variation of the surface 
σ itself. For this to hold, we require closure of the Lagrangian: if we consider the combination 
of oriented Lagrangians on the faces of a cube, we require that on the equations of motion, the 
Lagrangians sum to zero. In other words,

�1L23(u) + �2L31(u) + �3L12(u)

=L23(u1) −L23(u) +L31(u2) −L31(u) +L12(u3) −L12(u) = 0 , (6)

where we have used the shorthand Lij (u) := L(u, ui, uj ; pi, pj ), and the final equality in (6)
holds only when we apply (5). According to [12], such a system must be described by a La-
grangian of the form L(u, ui, uj ; pi, pj ) = A(u, ui; pi) − A(u, uj ; pj ) + C(ui, uj ; pi, pj ); 
where we require Cij to be antisymmetric under interchange of i and j . Notice that the La-
grangian (3) is already in this form. By using the multidimensional consistency, a set of Euler-
Lagrange equations are derived, which simplify on a single plaquette to:

∂

∂ui

(
A(u,ui;pi) − A(ui, uij ;pj ) + C(ui, uj ;pi,pj )

)
= 0 . (7)

This yields precisely the equation (1). This structure allows us to describe the multiple consistent 
equations (5) in a single Lagrangian framework - that of the 2-form. This is then the appropriate 
variational structure to describe multi-dimensionally consistent systems [5].

In fact, the Lagrangian (3) is the almost unique quadratic Lagrangian with a 2-form structure 
(i.e. exhibiting the closure property). Considering the general form for a three-point Lagrangian 
2-form and equation of motion (7), we restrict our attention to quadratic Lagrangians and have 
the general form:

Lij (u,ui, uj ) =
(

1
2aiu

2 + ciuui

)
−

(
1
2aju

2 + cjuuj

)
+

(
1
2biju

2
i − 1

2bjiu
2
j + δij uiuj

)
, (8)

where we require δji = −δij . Here, subscripts on coefficients indicate dependence on the lattice 
parameters pi and pj . This Lagrangian yields the equation of motion: ciu − cjuij = (aj −
bij )ui − δij uj . This is a quad equation, and as such we require it to be symmetric under the 
interchange of i and j . This leads to the conditions ci = cj = c, constant, aj − bij = δij .

Noting that the Lagrangian (8) already obeys the closure relation (6) on the equations of 
motion above, we use our freedom to multiply by an overall constant to let c = 1, and hence the 
general Lagrangian is given by:

Lij (u,ui, uj ) = u(ui − uj ) − 1
2δij (ui − uj )

2 + 1
2ai(u

2 − u2
j ) − 1

2aj (u
2 − u2

i ) . (9)

We can see this has the same form as (3), but with a more general dynamical, anti-symmetric
parameter δij , and the free parameter ai that does not effect the equations of motion.



6 S.D. King, F.W. Nijhoff / Nuclear Physics B 947 (2019) 114686
Fig. 2. Periodic initial value problem on the lattice equation.

3. One dimensional reduction: the discrete harmonic oscillator

3.1. Periodic reduction

Reductions of lattice equations to integrable symplectic mappings have been considered since 
the early 1990s [27–30]. Here, we are considering a linearised version of the lattice KdV equation 
as our starting point, and follow the same reduction procedure as has been considered previously 
for non-linear quad equations. The reduction is obtained by imposing a periodic initial value 
problem, where the evolution of the data progresses through the lattice according to a dynam-
ical map, or equivalently a system of ordinary difference equations, which is constructed by 
implementing the lattice equation (1). We begin with initial data u0, u1 and u2, and let ̂u2 = u0, 
according to Fig. 2. This unit is then repeated periodically across an infinite staircase in the 
lattice. This is the simplest meaningful reduction we can perform on the lattice equation.

Applying the linear lattice equation (1) to each plaquette, we can write equations for the 
dynamical mapping (u0, u1, u2) → (̂u0, ̂u1, ̂u2):

û0 = u1 + s(̂u1 − û2) , û1 = u2 + s(u0 − u1) , û2 = u0 ; s := p − q

p + q
. (10)

This is a finite-dimensional discrete system. We introduce the reduced variables x := u1 − u0, 
y := u2 − u1 and, by eliminating y, write the second order difference equation:

x̂ + 2bx + x̂ = 0 , b := 1 + 2s − s2 , (11)

where the underhat x̂ indicates a backwards step. This equation can be expressed by a 
Lagrangian-type generating function, with the equation arising from discrete Euler-Lagrange 
equations:

L(x, x̂) = xx̂ + bx2 ,
∂̂L

∂x
+ ∂L

∂x̂
= 0 , (12)

and so is symplectic, dx̂ ∧ dŷ = dx ∧ dy. The map also possesses an exact invariant3:

Ib(x, x̂) = x2 + x̂2 + 2bxx̂ , (13)

the invariance of which, i.e., Ib(x, ̂x) = Ib(x̂, x) can be readily checked by direct computation.

3 Unlike in the nonlinear case of [27,29], in the linear case the invariants of the reduced system cannot be readily 
computed by using the Lax pair (2), which turns out to be ineffective for deriving integrals of the motion. Consequently, 
also a classical and quantum R-matrix formulation has not yet been found for the linearised lattice KdV system, while 
for the nonlinear case a quantum R matrix structure was presented in [31]. The construction of the analogue of the latter 
for the linear case is under investigation by the authors.
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Fig. 3. The variables ui extend from the plane in a third direction.

The equation (11) is a discrete harmonic oscillator. It is not difficult to see that the most 
general solution to (11) is given by

xm = c1 sin(μm) + c2 cos(μm) ; cosμ = −b , (14)

where m is the discrete variable. This has a clear relation to the solution for the continuous 
time harmonic oscillator. This solution can alternatively be written as xm = Aλm + Bλ−m, λ =
−b + √

b2 − 1. By considering derivatives with respect to the parameter b, we can then derive 
the equations:

dx

db
= m

1 − b2 (bx + x̂) ,
dx

db
= − m

1 − b2 (bx + x̂) , (15)

Eliminating ̂x yields the second order differential equation in b:

(1 − b2)
d2x

db2 − b
dx

db
+ m2x = 0 . (16)

A remarkable exchange has taken place: the parameter and independent variable of the discrete 
case, b and m, have exchanged roles to become the independent variable and parameter of a 
continuous time model. Note that (16) can be simplified by taking μ := cos−1(−b) as the “time” 
variable, so that: d2x/dμ2 + m2x = 0. This is the equation for the harmonic oscillator, with a 
quantised frequency ω = m.

3.2. Commuting discrete flow

Recall that the linear lattice equation (5) can be embedded in a multidimensional lattice. From 
the periodic reduction in the plane (Fig. 2) we consider the embedding within a three dimensional 
lattice. The third lattice direction has lattice parameter r , and we introduce shifted variables ui , 
as shown in Fig. 3.

To derive the mapping, we now use the lattice equations (5):

(q + r)(̂u − u) = (q − r)(u − û) , (r + p)(u − ũ) = (r − p)(u − ũ) ,

which, in terms of the ui , yield

u0 = u1 + t (u1 − u0) ,

u1 = u2 + t (u2 − u1) ,

u = u + t ′(u − u ) .

where
t := p−r

p+r
,

t ′ := q−r
q+r

.
(17)
2 0 0 2



8 S.D. King, F.W. Nijhoff / Nuclear Physics B 947 (2019) 114686
Fig. 4. A curve 	 in the discrete variables.

Again, we use reduction variables (x, y), which yield the map (x, y) → (x, y). This map can be 
written in a matrix form, from which it can be shown to be area preserving, dx ∧ dy = dx ∧ dy. 
Eliminating y again produces a second order difference equation in x:

x + 2ax + x = 0 , with 2a := (2t + 1 − t2) − t ′(2t − 1 + t2)

1 − t2t ′
. (18)

This equation has the same form as (11), that of a discrete harmonic oscillator, along with invari-
ant Ia(x, x) = x2 + x2 + 2axx.

We can write both maps (x, y) → (̂x, ̂y) and (x, y) → (x, y) in matrix form: ̂x = S x, x = T x, 
x := (x, y)T . It is then clear that the two maps commute, (̂x, ̂y) = (̂x, ̂y), since we have [S, T] =
0. This last relation relies on the parameter identity, stt ′ = s − t + t ′, which is easily shown using 
the definitions for s, t and t ′.

Our equations are slightly simplified by introducing the parameters P := p2 + pq , Q := q2

and R := r2, in terms of which a = (P − R)/(P + R), b = (P − Q)/(P + Q). By returning to 
earlier evolution equations in terms of x and y and eliminating y in a different manner, we derive 
“corner equations” for the evolution, linking x, ̂x and x; or ̂x, x and ̂x respectively. Thus:(

P − Q

q
− P − R

r

)
x = P + R

r
x − P + Q

q
x̂ ,(

P − Q

q
− P − R

r

)
x̂ = P + R

r
x̂ − P + Q

q
x . (19)

Thus we have multiple equations of motion (11), (18), (19) all holding simultaneously on the 
same variable x.

3.3. Lagrangian 1-form structure

A recent development in understanding discrete integrable systems with commuting flows has 
been the Lagrangian multiform theory [12,5,9,10,32,11,14]. A system with two or more commut-
ing, discrete flows can be described by a Lagrangian 1-form structure, which provides a way to 
obtain a simultaneous system of equations for a single dependent variable from a variational prin-
ciple. Thus, the Lagrangians generating the flows x → x̂ and x → x should form the components 
of a difference 1-form, each associated with an oriented direction on a 2D lattice.

The action functional is then defined as a sum of elementary Lagrangian elements over an 
arbitrary discrete curve 	 in the 2D lattice, as shown in Fig. 4.

S[x(n);	] =
∑

Li (x(n), x(n + ei )) . (20)

γ (n)∈	
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The usual variational principle demands that, on the equations of motion, the action S be sta-
tionary under the variation of the dynamical variables x. In addition, we also demand that S be 
stationary under variations of the curve 	 itself. This principle leads to the compatibility of equa-
tions of motion and corner equations, under the condition of closure of the Lagrangians. That is, 
on the equations of the motion, the action should be locally invariant under changes to the curve 
	 and therefore:

�L := La(̂x, x̂) −La(x, x) −Lb(x, x̂) +Lb(x, x̂) = 0 , (21)

where this last equality holds only on the equations of motion.
In the model we are considering, we already have compatible flows with consistent corner 

equations, and so it is natural for us to seek a Lagrangian form exhibiting closure. However, 
if we naively seek to satisfy the closure relation (21) with any simple Lagrangian yielding the 
equations of motion, we will find that this does not suffice - we must seek a more specific form. 
By considering the general form for the quadratic Lagrangians:

La = α
(
xx + (a − a0)x

2 + a0x
2) , Lb = β

(
xx̂ + (b − b0)x

2 + b0x̂
2) , (22)

we can apply the closure �L = 0 as a condition. Recall that we require closure only on the 
solutions to the equations of motion, so we apply the corner equations (19) to �L, and then 
compare coefficients of the remaining terms. Demanding that α, a0 and β, b0 be independent of 
Q and R respectively, we find the conditions on the coefficients:

α = P + R

r
γ , β = P + Q

q
γ ,

a0 = r

P + R
f (P ) + 1

2
a , b0 = q

P + Q
f (P ) + 1

2
b , (23)

where γ is some overall constant, and f (P ) is a free function of P . f does not make any 
contribution to what follows, and so we ignore it: we let a0 = a/2 and b0 = b/2.

This yields the Lagrangians:

La(x, x) = 1

r

(
(P + R)xx + 1

2
(P − R) (x2 + x2)

)
,

Lb(x, x̂) = 1

q

(
(P + Q)xx̂ + 1

2
(P − Q)(x2 + x̂2)

)
. (24)

By construction, these obey the condition �L = 0 on the equations of motion, and also yield the 
equations of motion (11) and (18) by the usual variational principle. This eliminates a great deal 
of the usual freedom in choosing our Lagrangian: the closure condition mandates a specific form 
of the Lagrangian.

In fact, not only the equations (11) and (18) arise from a variational principle on this action, 
but also the corner equations (19). We have four elementary curves in the space of two discrete 
variables, shown in Fig. 5.4 Across each curve, we can define an action, and then a variation with 
respect to the middle point, which leads to an equation of motion.

The action and Euler Lagrance equation for curve 5(i) are

S =La(x, x) +Lb(x, x̂) ,
∂S

∂x
= 2

[(
P−R

r
+ P−Q

q

)
x + P+R

r
x + P+Q

q
x̂
]

= 0 , (25)

4 Such elementary curves defining a complete set of discrete EL equations were first considered in [33].
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Fig. 5. Simple discrete curves for variables m and n.

which is compatible with equations (19). Similarly, for curve 5(ii):

S =La(x, x) +La(x, x) ,
∂S

∂x
= 2

[
2P−R

r
x + P+R

r

(
x + x

)] = 0 , (26)

which is equation (18) (i.e. this is a “standard” Euler-Lagrange equation). Curves 5(iii) and (iv) 
yield similarly (11) and the other part of (19). We therefore have, for the specific choice of La-
grangians described, a consistent 1-form structure, yielding the equations of motion and corner 
equations, and obeying a Lagrangian closure relation. The discrete harmonic oscillator then, de-
spite its simplicity, nonetheless has an underlying structure of a Lagrangian one-form expressing 
commuting flows: this is the simplest example yet discovered of such a structure.

Recall the invariants, it is straightforward to show using the equations of motion that both in-
variants are preserved under both evolutions, Îb = Ib = Ib , Ia = Îa = Ia . It is not clear, however, 
that these invariants are necessarily equal: Ib has an apparent dependence on Q, and Ia on R, that 
must be resolved. Taking our special choice of Lagrangians (24), we can then define canonical 
momenta, and rewrite our invariants in those terms. Writing Xa as the momentum conjugate to 
x in La , and Xb similarly for Lb, we find:

Xa = −∂La

∂x
= −P + R

r
x − P − R

r
x ,

Xb = −∂Lb

∂x
= −P + Q

q
x̂ − P − Q

q
x . (27)

As a direct consequence of the corner equation (19) we then have precisely that Xa = Xb =: X. 
In other words, we can define a common conjugate momentum for both evolutions. If we then 
write our invariants in terms of x and X we find after multiplication by a constant (which clearly 
does not change the nature of the invariants) that

Ia = Ib = 1

2
X2 + 2Px2 . (28)

Note that in this form Ia, Ib appear Q and R independent, and are nothing other than the Hamil-
tonian for the continuous harmonic oscillator, with angular frequency ω = 2

√
P . This form is 
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Lagrangian dependent. A different choice of Lagrangian yields different conjugate momenta that 
are no longer equal, and where the equivalence of the invariants is no longer apparent. Requir-
ing equality of the invariants turns out to be an equivalent condition to demanding Lagrangian 
closure.

The compatibility of the two discrete evolutions and their corner equations (guaranteed by 
the Lagrangian 1-form structure) allows us to consider a joint solution to the equations xm,n. 
We allow m to label the hat evolution, and n to label the bar evolution, such that x = xm,n, 
x̂ = xm+1,n, x = xm,n+1, and so on. Requiring xm,n to obey (11), (18) and (19), we have the joint 
solution for the evolutions:

xm,n = c1 sin(μm + νn) + c2 cos(μm + νn) ; b = − cosμ , a = − cosν . (29)

In the same way as the parameter b generates a continuous flow compatible with the discrete 
evolution (16), so we can find a continuous flow in the parameter a:

(1 − a2)
d2x

da2 − a
dx

da
+ n2x = 0 . (30)

Now the joint solution (29) guarantees the compatibility of the a and b flows with the commuting 
discrete evolutions. The compatibility of the continuous flows can be further verified by checking 
the relation d

da
dx
db

= d
db

dx
da

using (15) and similar equations for a. The continuous time-flows are 
generated by the usual Euler-Lagrange equations on continuous time Lagrangians of the form

Lb(x, xb) = 1

2m

√
1 − b2

(
∂x

∂b

)2

− m

2
√

1 − b2
x2 ;

La(x, xa) = 1

2n

√
1 − a2

(
∂x

∂a

)2

− n

2
√

1 − a2
x2. (31)

Using the corner equations (19) these Lagrangians exhibit continuous multiform compatibility, 
obeying the relations

∂La

∂xa

= ∂Lb

∂xb

,
∂

∂a

(
∂Lb

∂x

)
= ∂

∂b

(
∂La

∂x

)
. (32)

So, by considering the discrete parameters a, b now as continuous variables, we find a 
continuous-time 1-form structure.

As in [34], the harmonic oscillator continues to display surprising new features. On the 
discrete level, we discover compatible flows that can be expressed through the structure of a 
Lagrangian form, even for this very simple case. This deeper structure then extends beyond the 
discrete case also into compatible continuous flows and we have an interplay between these dis-
crete and continuous one-form structures. Having endowed the harmonic oscillator with these 
multi-dimensional structures, how are they revealed in the quantum harmonic oscillator case?

3.4. Higher periodicity

The periodic reduction defined in section 3.1 is part of a more general family of peri-
odic staircase initial value problems [27,29,35]. In general, we define 2P initial conditions, 
u0, u1, . . . , u2P−1 such that u0 = û2P−1, along a staircase as shown in Fig. 6. The linearised 
KdV equation (1) defines a dynamical map (u0, u1, . . . , u2P−1) → (̂u0, ̂u1, . . . , ̂u2P−1). As be-
fore, we introduce reduced variables x1, . . . , xP−1, y1, . . . , yP−1 and can eliminate the yi to give 
a P − 1 dimensional system of second order difference equations in terms of the xi variables.
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Fig. 6. The periodic staircase for period P .

The P = 2 case yields a 1 dimensional mapping that is entirely equivalent to the case we have 
considered in section 3.1, except the lattice parameters combine in a slightly different way to 
give the coefficient of the harmonic oscillator.

The P = 3 case is the next case of interest, as here we find a system of coupled harmonic 
oscillators in x1 and x2, with two commuting invariants and a similar commuting flow structure. 
In a similar manner to (11) we can derive equations for a discrete flow in variables x1 and x2:

x̂1 + x̂2 + x1̂ +s(2x1 + x2) = 0 , x̂2 + x1̂ +x2̂ +s(x1 + 2x2) = 0 . (33)

As in section 3.2, we can also derive a commuting flow for the evolution:

(1 + t t ′)(x1 + x1) + x2 + t t ′x2 + (t + t ′)(2x1 + x2) = 0 , (34)

(1 + t t ′)(x2 + x2) + t t ′x1 + x1 + (t + t ′)(x1 + 2x2) = 0 . (35)

Commutativity of these evolutions can be easily shown from the first order form (with x and y
variables) by writing each evolution in matrix form; the resulting matrices commute. The evolu-
tion then also possesses corner equations, which can be derived using the eliminated y variables. 
These allow us to write closed form Lagrangians, such that �L = 0 (21) on the equations of 
motion (33), (34), (35):

L1(x, x̂) = x1(̂x1 + x̂2) + x2x̂2 + 1
2 s(x2

1 + x1x2 + x2
2 + x̂2

1 + x̂1x̂2 + x̂2
2) , (36)

L2(x, x) = 1 + t t ′

1 − t t ′
(x1x1 + +x2x2) + 1

1 − t t ′
(x1x2 + t t ′x2x1)

+1

2

t + t ′

1 − t t ′
(x2

1 + x1x2 + x2
2 + x2

1 + x1x2 + x2
2) , (37)

recalling the relation of s, t, t ′. A Lagrangian 1-form structure as in section 3.3 follows. Note that 
L2 represents a Bäcklund transform with parameter r .
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The Lagrangians (36), (37) allow us to define the momenta conjugate to x1, x2 writing Xi =
−∂L1/∂xi ,

X1 = −(̂
x1 + x̂2 + 1

2 s(2x1 + x2)
)
, X2 = −(̂

x2 + 1
2 s(x1 + 2x2)

)
, (38)

with respect to which we have the invariant Poisson structure {xi, Xj } = δij , preserved under the 
mappings. We could also write expressions for Xi using L2, with equality of these expressions 
producing the corner equations.

We can additionally derive two quadratic invariants of the mapping I1, I2, which are invariant 
under both maps. The canonical structure of (38) allows us to show the critical integrability 
property that the two invariants are in involution with each other, with respect to the canonical 
Poisson bracket: {I1, I2} = 0 where

I1 = x1X1 − 2x1X2 + 2x2X1 − x2X2 ,

I2 =
(

1 − 3
4 s2

)
(x2

1 + x1x2 + x2
2) + X2

1 − X1X2 + X2
2 . (39)

The invariance and involutivity of these can be shown by direct calculation. I1 and I2 will thus 
generate two commuting continuous flows to the mapping.

For both the hat and the bar evolutions (33), (34), (35) it is possible to write explicit solutions, 
and indeed we can find a joint solution to the discrete evolutions:

x2(m,n) = a cos(μ+m + ν+n) + b sin(μ+m + ν+n)

+ c cos(μ−m + ν−n) + b sin(μ−m + ν−n) , (40)

where cosμ± = −3s/4 ± 1
2

√
1 − 3s2/4 and

cosν± = − 3(t + t ′)(1 + t t ′)
4(1 + t t ′ + t2t ′ 2)

± 1

2

(
1 − t t ′

1 + t t ′ + t2t ′ 2

)2 √
1 + t t ′ + t2t ′ 2 − 3

4 (t + t ′)2 .

(41)

We find x1(m, n) similarly as a linear combination of shifts of x2. By considering derivatives 
with respect to the parameters s and t (recalling t ′ is not independent of s, t ), we can therefore 
derive commuting continuous flows from the solution structure (40). We observe then again the 
interchange between continuous and discrete parameters and variables, as in the lower periodic 
case. We expect this will lead to a continuous Lagrangian 1-form structure, but defer further 
investigation to a later paper.

4. The quantum reduction

In section 3.3, the discrete harmonic oscillator model, arising as a special reduction from the 
linearised lattice KdV equation (1), albeit a simple linear model nonetheless displays commuting 
discrete flows. In the classical case, the Lagrangian 1-form structure captures these commuting 
flows in a variational principle. A natural question is: what is the quantum analogue for such a 
structure? Since the harmonic oscillator is well known and understood, it forms a good first toy 
model for investigating Lagrangian form structures at the quantum level.

Integrable quantum mappings, arising from the quantisation of mapping reductions from lat-
tice equations, were constructed and studied within the framework of canonical quantization and 
(non-ultralocal) R-matrix structures in [15,20,36,31,37]. In a pioneering paper [38] Dirac took 
the position that the Lagrangian approach to Physics is the more natural one and proposed the 
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first steps towards incorporating the Lagrangian into quantum mechanics, a route that was later 
pursued by Feynman leading to his concept of the path integral [39]. Concurring with Dirac’s 
point of view, we seek here to understand the extended Lagrangian multiform variational princi-
ple on the quantum level, leading naturally to problem of finding a path integral version of that 
formalism in order to capture its natural quantum analogue. To make first steps in that direction 
the simple case of the quantum mappings derived in the previous section is a good starting point, 
exploiting the well-known formal techniques of path integrals, cf. e.g. [19,40,41]. As we will 
point out later there are some similarities with ideas developed by Rovelli in [42,43] who also 
uses the harmonic oscillator to develop ideas on reparametrisation invariant discretisations within 
the path integral framework, in particular the natural emergence of conservation of the energy of 
the continuous model within a time-slicing discretisation.

4.1. Feynman propagators

Beginning from our Lagrangian Lb (24) we write the conjugate momenta X := Xb (27) and 
X̂ = ∂Lb/∂x̂. In canonical quantisation, position x and momentum X become operators x and 
X, such that [x, X] = ih̄. The momentum equations (27) become operator equations of motion:

x̂ − x = q

P − Q
X̂ − 2P

P − Q
x , X̂ − X = − 4Pq

P − Q
x + 2P

P − Q
X̂ . (42)

To understand the discrete time evolution we wish to express the evolution (x, X) → (̂x, ̂X), in 
terms of a time-evolution operator Ub, such that x → x̂ = U−1

b xUb, X → X̂ = U−1
b XUb. This is 

a canonical approach to discrete quantisation, see for example [15]. Considering (42), it is not 
hard to see that an appropriate choice of Ub is given by:

Ub = eiV (x)/2h̄eiT (X)/h̄eiV (x)/2h̄ = exp

(
iP x2

h̄q

)
exp

(
iqX2

2h̄(P + Q)

)
exp

(
iP x2

h̄q

)
. (43)

In other words, a separated form for Ub exists, but it is required to have three terms. Note that 
(43) is not a unique form for Ub.

In discrete time, the one time-step propagator is then given by Kb(x, n; ̂x, n + 1) =
n+1〈̂x|x〉n = 〈̂x|Ub|x〉, where we have moved in the second equality from time-dependent, 
Heisenberg picture eigenstates to time-independent, Schrödinger picture eigenstates. Since we 
have an explicit form for Ub, we can calculate this expression by inserting a complete set of 
momentum eigenstates:

〈̂x|Ub|x〉 =
∫

dXeiV (̂x)/2h̄〈̂x|X〉eiT (X)/h̄〈X|x〉eiV (x)/2h̄ ,

=
(

i(P + Q)

2πh̄q

)1/2

exp

{
i

h̄q

(
(P + Q)xx̂ + 1

2 (P − Q)(x2 + x̂2)
)}

,

=
(

i(P + Q)

2πh̄q

)1/2

exp

[
i

h̄
Lb(x, x̂)

]
. (44)

The second line results from a Gaussian integral: the linearity of our system justifies taking the in-
tegration region over the whole real line (we make some assumptions here on the Hilbert space). 
The final line recalls the Lagrangian (24). This is what might be expected for a “one-step” path 
integral (such as in [44,21]) noting that this approach also specifies the normalisation constant.
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This is sufficient to define the discrete-time path integral. By iterating (44) over N steps, we 
can write precisely the propagator for our discrete system:

Kb(x0,0;xN,N) =
(

i(P + Q)

2πh̄q

)N/2 N−1∏
n=1

∞∫
−∞

dxn eiS[x(n)]/h̄ ,

S[x(n)] =
N−1∑
n=0

Lb(xn, xn+1) . (45)

In this discrete case, equation (45) gives a precise definition to the path integral notation:

Kb(x0,0;xN,N) =
x(N)=xN∫
x(0)=x0

[Dx(n)] eiS[x(n)]/h̄ . (46)

Notice in particular that the normalisation associated to the measure is here unambiguous. In 
our quadratic regime, we can now calculate this explicitly. Details are given in Appendix A, 
but we first expand our quantum variables around the classical path, where the classical action 
can be evaluated as Scl = √

P [2x0xN − (x2
0 + x2

N) cosμN ]/ sinμN . Evaluating the discrete path 
integral as a series of N Gaussian integrations, and recalling the normalisation constant in (45), 
we calculate the propagator:

Kb(x0,0;xN,N) =
(

i
√

P

πh̄ sin(μN)

)1/2

× exp

{
i
√

P

h̄ sin(μN)

(
2x0xN − (x2

0 + x2
N) cos(μN)

)}
. (47)

Note that this has the same form as the propagator for the continuous time harmonic oscillator. 
Dependence on the parameter b is evident through cosμ = −b. We note, then, that the propagator 
is common to both the discrete flow and to the interpolating continuous time flow.

Using the operator equations of motion (42), it is easy to see that we have an operator invari-
ant:

Ib = 1

2
X2 + 2P x2 = 1

2

(
−h̄2 ∂2

∂x2 + 4Px2
)

, (48)

This is, of course, simply the operator version of the classical invariant (28), and is precisely 
the Hamiltonian for the continuous time harmonic oscillator, where 4P = ω2. Note that Ib is Q
independent, and so it is clear that the same process applied to the bar evolution generated by La

will give the same result. In other words, both discrete quantum evolutions share the same invari-
ant, which is the harmonic oscillator. The invariant can also be considered from the perspective 
of path integrals and the unitary operator following the method of [21]; this is elaborated in 
Appendix B. We can relate Ib (48) to the evolution operator Ub (43) in principle by a Campbell-
Baker-Hausdorff expansion ([45,46]); an explicit form is given by algebraic manipulation:

Ub = exp

[
1

h̄
√

P
arctanh

(
i
√

P

q

)
Ib

]
. (49)

So we can see clearly how the discrete quantum evolution relates to a continuous time flow.
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Fig. 7. The solid line shows path (i) for K� , and the dashed line path (ii) for K�. The white circles represent variables 
that are integrated over.

4.2. Path independence of the propagator

In equation (47) we have established the propagator for an evolution in one discrete time 
variable; but we have in the classical case two compatible discrete flows (24). The one-step 
propagator in the hat direction is given in (44), whilst in the bar direction it is easily deduced by 
the same method:

Ka(x, x;1) =
(

i(P + R)

2πh̄r

)1/2

exp

[
i

h̄
La(x, x)

]
. (50)

We remark that, as we have here a second time direction, we might plausibly introduce a second 
h̄ parameter. We ignore such considerations for the time being and allow h̄ to be the same in both 
time directions. In general, if we begin at a time co-ordinate (0, 0) and evolve along integer time 
co-ordinates to a new time (N, M), the propagator could depend not only on the endpoints, but 
also on the path 	 taken through the time variables, see Fig. 4. We associate to the path an action 
S	 := S[x(n); 	] (20). We can then define a propagator for the evolution along the time-path 	, 
made up of the one-step elements (44), (50):

K	

(
xb, (N,M);xa, (0,0)

) := N	

∏
(n,m)∈	

∫
dxn,m exp

[
i

h̄
S	[x(n)]

]
, (51)

where we have integrated over all internal points xn,m on the curve 	. Here N	 represents the 
product of normalisation factors from the relevant elements of (44), (50).

We begin by considering the simple case of an evolution of one step in each direction. There 
are two routes to achieve this, as shown in Fig. 7. Either we evolve first in the hat direction, 
followed by an evolution in the bar direction, or vice versa. In path (i), we evolve first according 
to the hat evolution Lb, and then according to the bar evolution La . We evaluate the propagator 
as:

K�(x, x̂) =
(

(P + Q)(P + R)

(−2πih̄)2qr

)1/2 ∞∫
dx̂ exp

{
i

h̄

(
Lb(x, x̂) +La(̂x, x̂)

)}
. (52)
−∞
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Fig. 8. The path for action S� . In the propagator, we integrate over the variables at the white circles. Note the minus sign 
on the backward step, −La (̂x, ̂x).

For the alternative path (ii) we evolve first by the bar evolution La , and then the hat evolu-
tion Lb:

K�(x, x̂) =
(

(P + Q)(P + R)

(−2πih̄)2qr

)1/2 ∞∫
−∞

dx exp

{
i

h̄

(
La(x, x) +Lb(x, x̂)

)}
. (53)

These are both resolved by substituting Lagrangians (24) and evaluating the Gaussian integral. 
The result is totally symmetric under interchange of the parameters q and r , as are (52) and (53); 
so that

K�(x, x̂) = K�(x, x̂) . (54)

We find the same propagator for either path. It is an obvious corollary of this result that, so long 
as we take only forward steps in time, the propagator KN,M(xa, xb) is independent of the path 
taken in the time variables.

We could also consider a path in the time variables allowing backward time steps. As in the 
classical case, we can construct an action for such a trajectory, using an appropriate orientation 
for the Lagrangians. In the quantum case we perform a path integral over this action, integrating 
over all intermediate points. As Ub generates a time-step in the b direction (section 4.1), U−1

b

generates the backward evolution.
Considering once more the simplest case, we imagine a trajectory around three sides of a 

square, shown in Fig. 8. Including the normalisation factors from (44) this is described by the 
propagator,

K�(x, x̂) = (P + Q)1/2(P + R)

(2πh̄)3/2(−iq)1/2r

∞∫
−∞

dx

∞∫
−∞

d̂x exp
(

i
h̄
La(x, x) +Lb(x, x̂) −La(̂x, x̂)

)
.

(55)

This is easily calculated by Gaussian integrals, and yields:
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Fig. 9. (i) shows the loop in discrete variables. (ii) is what remains after collapse of the loop.

K�(x, x̂) =
(

i(P + Q)

2πh̄q

)1/2

exp

(
i

h̄
Lb(x, x̂)

)
= Kb(x, x̂;1) . (56)

So we regain exactly our one step propagator from (44). Remarkably, we again achieve La-
grangian closure, but now on the quantum level. Recall that classically Lagrangian closure 
depended upon the equations of motion: here we have left the equations of motion behind, and 
yet this key result still holds.

We could also consider the possibility of a loop in the discrete variables, illustrated in Fig. 9(i). 
We imagine some unspecified incoming and outgoing actions Sin(xa, x1) and Sout (x5, xb), a 
simple loop in discrete steps, and five integration variables x1, . . . , x5. Note that we assign two 
integration variables to the same vertex, as it is visited twice by the path: the following calculation 
will justify this choice as the correct one.

We then consider the action for the loop, Sloop = Lb(x1, x2) + La(x2, x3) − Lb(x4, x3) −
La(x5, x4), noting the orientations on the Lagrangians. With normalising factors from (44) and 
complex conjugations in the backward steps, we then have:

Kloop(xa, xb) = P + Q

2πh̄q

P + R

2πh̄r

∫
dx1 . . .

∫
dx5 exp

i

h̄

{
Sin + Sloop + Sout

}
. (57)

The x2 and x4 integrals are evaluated as in (52) yielding,

Kloop(xa, xb) = (P + Q)(P + R)

2πh̄(P − qr)(q + r)

∫∫∫
dx1dx3dx5 exp

i

h̄

{
Sin(xa, x1) + Sout (x5, xb)

− (P + Q)(P + R)

(P − qr)(q + r)
(x1 − x5)x3

+ 1

2

(
P − qr

q + r
− P(q + r)

P − qr

)
(x2

1 − x2
5)

}
. (58)

The quadratic term in the exponent in x3 disappears, and so the integral dx3 yields a Dirac delta 
function: δ(x1 − x5). Combined with the integral over x5 this forces x5 = x1 (as expected) and 
we finally conclude,

Kloop(xa, xb) =
∫

dx1 exp
i

h̄

{
Sin(xa, x1) + Sout (x1, xb)

}
. (59)

Diagrammatically, this is equivalent to the disappearance of the loop, shown in Fig. 9(ii). Loops 
in the discrete variables therefore “close” and do not effect the overall propagator.
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Proposition 1. For the special choice of Lagrangians (24), the propagator along the time path 	
(51) is independent of the choice of 	, depending only on the end points.

Proof. Equations (54), (56) and (59) together show that the propagator is unchanged under el-
ementary deformations of the curve 	. Since we have a simple topology, a curve 	1 can be 
deformed into any other curve 	2 (with the same endpoints) by a series of elementary deforma-
tions. The proposition follows.

The proposition now allows us to calculate the general propagator for N steps in the hat 
direction and M steps in the bar direction, compare (51). We denote such a propagator from 
xa to xb by KN,M(xa, xb). As a consequence of the path independence, it is then clear that 
we can calculate this as KN,M(xa, xb) =

∫
dxKN,0(xa, x)K0,M(x, xb). In other words, we can 

consider taking first all the hat-steps, followed by all the bar-steps. Taking our discrete propagator 
from (47), we can then carry out the integral as another Gaussian, but in fact the result follows 
immediately from the group property of the propagator, using its shared form with the continuous 
time case, so:

KN,M(xa, xb) =
(

i
√

P

πh̄ sin(μN + ηM)

)1/2

× exp

{
i
√

P

h̄ sin(μN + ηM)

(
2xaxb − (x2

a + x2
b) cos(μN + ηM)

)}
, (60)

which bears a clear relation to the continuous time case.

4.3. Uniqueness

The time-path independence for the propagator of section 4.2 is a special property of our 
choice of Lagrangian (24) that does not hold in general. As classically the Lagrangian 1-form 
obeys the closure condition (21), so in the quantum case we have time-path independence of 
the propagators as a natural quantum analogue. Whilst classically this closure holds only on the 
equations of motion, in the quantum case the path-independence occurs as we perform the path 
integral over intermediate variables. It emerges that, for given oscillator parameters a and b, there 
is a fairly unique choice of Lagrangians exhibiting time-path independence.

Consider the generalised oscillator Lagrangians of equation (22) and define propagators 
around two corners of a square, as in equations (52) and (53). Here we allow a and b to be 
free oscillator parameters.

K�(x, x̂) =N�

∞∫
−∞

dx̂ exp

{
i

h̄

(
Lb(x, x̂) +La(̂x, x̂)

)}
, (61)

K�(x, x̂) =N�

∞∫
−∞

dx exp

{
i

h̄

(
La(x, x) +Lb(x, x̂)

)}
. (62)

N� and N� are undetermined normalisation constants. These paths are illustrated in Fig. 7.
We demand equality of the exponents in these two expressions, once the integral has been 

carried out; in other words we demand K�(x, ̂x) = K�(x, ̂x), up to a normalisation. Calculating 
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these propagators via a Gaussian integral, we then derive conditions for time-path-independence 
on our coefficients, which can be found in Appendix C. We find the necessary conditions on the 
coefficients:

a0 = 1

2
a + f

2α
, b0 = 1

2
b + f

2β
, α = γ√

a2 − 1
, β = γ√

b2 − 1
. (63)

As in (23) the constant f makes no contribution and we ignore it. The general Lagrangians 
(22) are therefore restricted to a symmetric form, with a specified overall constant given by the 
oscillator parameters a, b. Note that taking a = (P − R)/(P + R), b = (P − Q)/(P + Q) leads 
us to exactly the conditions of (23) and the Lagrangians (24). In conclusion:

Proposition 2. For given oscillator parameters a and b, the Lagrangians (24) are the unique 
Lagrangians, up to constants γ and f (23), such that the multi-time propagator is path indepen-
dent.

In other words, demanding time-path independence of the propagator is the natural quantum 
analogue of the closure relation on the Lagrangian.

4.4. Quantum variational principle: Lagrangian 1-form case

Consider a quantum mechanical evolution from an initial time (0, 0) to a new time (N, M), 
along a time-path 	: shown in Fig. 4. We can consider a propagator for the evolution K	(xb; xa)

defined in (51). We have shown that, in the special case of Lagrangians (24), the propagator 
defined above is independent of the path 	 (it depends only on the endpoints); but that this is not 
true in general. For a generic Lagrangian, K	 will depend on the time-path chosen, as shown in 
section 4.3.

Classically, the system is defined as the critical point for the variation of the action over not 
only the dependent variables, but also over the independent variables, i.e., it is a critical point 
with respect to the variation of the time-path. This not only yields all the compatible equations of 
motion for the system, but also selects certain “permissible” Lagrangians which obey a closure 
relation (21). This then yields a system of extended EL equations of which the Lagrangian can 
be considered to be the solution, cf. [9].

In the quantum case, we consider the dependence of the propagator on all possible (discrete) 
time-paths 	 between fixed initial and final times. In general, there are an infinite number of 
possible time paths from (0, 0) to (N, M), including shortest time-paths as well as those with 
long “diversions,” or loops, as illustrated in Fig. 10. For a generic Lagrangian, as we vary the 
time path, each 	 yields a different propagator (51) viewed as a functional of the path. In the 
special case of the Lagrangian (24), however, the propagator K	 is independent of the path 
taken through the time variables, and so remains unchanged across the variation of the time-path 
	. This suggests that this path independence property is the natural quantum analogue of the 
Lagrangian closure condition (21).

Pushing this idea one step further: viewing the propagator as a functional of the Lagrange 
function, the Lagrangian itself can be thought of as representing a critical point (in a properly 
chosen function space of Lagrange functions) for the path-dependent propagator, with regard to 
variations of the time-path. We suppose we can vary the path in such a way that the critical point 
analysis selects the path independent Lagrangian from the space of possible Lagrangians (this 
was the point of view put forward in [12] in the classical case). In a quantum setting this princi-
ple would be represented by a “sum over all time-paths” scenario, i.e. by means of posing a new 
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Fig. 10. Three possible paths in the time-variables. Path (a) is a direct path. Path (b) extends for some distance in the m
direction before returning. Path (c) includes a loop in the time variables.

quantum object of the form as was proposed in the continuous time-case in [32]. As a functional 
of the Lagrangian such an object would have a singular point for those Lagrangians which pos-
sess the quantum closure condition, i.e., those where the contributions of the path-independent 
propagators over which one integrates all contribute the same amount. How to control the singu-
lar behaviour of such an object is a matter of ongoing investigation.

5. Quantisation of the lattice equation

In section 2 we introduced the linear lattice equation (5), and in the subsequent sections looked 
at a special type of reductions (associated with periodic initial value problems) leading to com-
muting dynamical maps and their quantum counterparts. This is obviously by far not the only 
type of reduction of the 2D lattice system to a finite number of degrees of freedom system: for 
example, another class is given by symmetry reductions leading to self-similar solutions.5 Thus, 
the quantisation of the full lattice case of the MDC system associated with (5) is interesting in 
its own right, which would be the simplest example of the quantisation of a Lagrangian 2-form 
structure. This approach involving a path integral approach, would complement the quantisation 
of (nonlinear) lattice models that has been previously considered from the canonical (quantum 
inverse scattering method) perspective, cf. e.g. [4,48].

Classically, we suppose the equation (5) to hold on all plaquettes in the multidimensional 
lattice at the same time. The equation is generated by the oriented Lagrangian:

Lij (u,ui, uj ;pi,pj ) = u(ui − uj ) − 1

2
sij (ui − uj )

2 , sij = pi + pj

pi − pj

. (64)

5 Such reductions are often connected to non-autonomous (i.e. explicitly time-dependent) equations of the motion, and 
the latter arise also in connection with random matrix ensembles. In particular, the linear case should be related to the 
case of Gaussian ensembles (see, e.g., Chapter 1 of [47]).
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The Lagrangian itself is a critical point of the classical variational principle over surfaces: it obeys 
the closure property on the classical equations of motion, such that the surface can be allowed to 
freely vary under local moves. Indeed, it is also fairly unique, as seen in (9).

How might we proceed to quantise such a system? A canonical approach is to transform (5)
into an operator equation of motion, but we are concerned here with a Lagrangian approach. The 
clear analogy is to quantum field theory: we have a discretised space-time and a Lagrangian in 
two dimensions over field variables u(n) indexed by a discrete vector n. We imagine some space-
time boundary ∂σ enclosing a multi-dimensional surface σ made up of elementary plaquettes 
σij . We can then construct an action by summing the directed Lagrangians over the surface, as 
we would classically:

Sσ =
∑

σij ∈σ

Lij (u,ui, uj ) , (65)

where we define the shorthand Lij (u) := L(u, ui, uj ; pi, pj ).
We then consider the propagator Kσ(∂σ), where all interior field variables on the surface are 

integrated over. The propagator depends, in principle, on the surface σ and is a function of the 
field variables on the boundary ∂σ , which form some boundary value problem (see a similar 
point made in [43]):

Kσ (∂σ) =
∫

[Du(n)]σ eiSσ [u(n)]/h̄ =Nσ

∏
n∈σ

∫
du(n) eiSσ [u(n)]/h̄ . (66)

We will see as we go on that this object is subject to infra-red divergences, as particular surface 
configurations produce integrations yielding volume factors. Since our main statements involves 
only the combinatorics of the exponential factors involving the action arising through Gaussian 
integrals, we tacitly assume Kσ can be renormalised by an appropriate choice of normalisation 
factor Nσ . Kσ (∂σ) describes a propagator in the sense of a surface gluing procedure: two prop-
agators Kσ1 and Kσ2 are combined to a new propagator by multiplication and integration over 
all variables living on the shared boundary ∂σ1 ∩ ∂σ2. Thus, the one-step surface gluing can be 
written symbolically as

Kσ1∪σ2 =
∫

∂σ1∩∂σ2

Kσ1 ∗ Kσ2

:= N∂σ1∩∂σ2

⎡⎣ ∏
n∈∂σ1∩∂σ2

∫
du(n)

⎤⎦ Kσ1(∂σ1).Kσ2(∂σ2) , (67)

where the integral is over appropriately chosen coordinates of the joined boundary. Iterating the 
gluing formula is tantamount to setting up a “surface-slicing” procedure for the path integral.

5.1. Motivation: the pop-up cube

Classically, for a Lagrangian 2-form we vary the surface σ so that the Lagrangian and equa-
tions of motion sit at a critical point: the action should be invariant under the variation of not only 
the dependent variables u, but also the variation of the surface itself. As we move to the quantum 
regime, we then naturally ask what happens to our propagator Kσ(∂σ) (66) under variation of 
the surface σ ? We consider the effect of a simple variation of the surface: from a flat surface to a 
popped-up cube, see Fig. 11.
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Fig. 11. A flat surface in (a), compared to a pop-up cube shown in (b).

The contribution to the action given by surface (a) is a single Lagrangian, L12(u). In sur-
face (b) we have five plaquettes, with a contribution to the action given by a sum of oriented 
Lagrangians: Spop[un,m] = L23(u1) +L31(u2) +L12(u3) −L23(u) −L31(u). Note that the ori-
entations lead to the negative contributions. In our path integral perspective (66), in (b) we must 
also integrate over the “popped-up” variables u3, u23, u31, u123. The boundary variables on which 
the contributions depend are u, u1, u2 and u12. So altogether, the contribution to the propagator 
for the pop-up cube is like this:

Kpop =
∫∫∫∫

du3du31du23du123 exp

(
i

h̄
Spop[un,m]

)
. (68)

Now note that Spop[un,m] contains no factor of u123, so that the integral 
∫

du123 produces a 
volume factor V . Equation (68) can then be written in a matricial form:

Kpop = V

∫
d3u exp

i

h̄

(
1

2
uT Au + B tu

+ 1

2

[
s31(u

2
1 − u2

12) + s23(u
2
2 − u2

12) + (u + u12)(u1 − u2)
])

, (69)

where uT = (u3, u31, u23), BT = (−s31u1 − s23u2, −u1 + s23u12, u2 + s31u12), and

A =
⎛⎝ s23 + s31 1 −1

1 −(s12 + s23) s12
−1 s12 −(s12 + s31)

⎞⎠ . (70)

Now, in principle, equation (69) could be solved as a set of three Gaussian integrals, but matrix 
A is in fact singular. The parameter identity for sij (64):

s12s23 + s23s31 + s31s12 + 1 = 0 , (71)

leads to detA = 0. We therefore resolve (69) by carrying out two Gaussian integrals, knowing for 
the third integration variable we shall be left with an exponent that is at most linear. Performing 
Gaussian integrations with respect to u3 and u31, we therefore have:

Kpop = V
2πh̄

s23

∫
du23 exp

i

h̄

(
u(u1 − u2) − 1

2 s12(u1 − u2)
2
)

= V 2 2πh̄

s23
exp

(
i

h̄
L12(u,u1, u2)

)
, (72)

where in the first equality we note that all terms containing u23 have vanished entirely. This is 
now exactly the exponent expected from the diagram (a) in Fig. 11. So, whilst it is clear that 
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Fig. 12. Elementary move (a). We pass between (i) and (ii); white circles indicate variables to be integrated over in the 
move.

there are non-trivial issues to resolve with respect to volume factors and normalisation factors 
in (72),6 in the critical issue of the contribution to the action in the exponent between diagrams 
11(a) and 11(b), the two pictures make the same contribution. In other words, there is some sense 
in which the action is unchanged by the local move that transforms the surface σ by the pop-up 
cube. Inspired by this discovery, we consider a more general situation.

5.2. Surface independence of the propagator

In the classical case, there are three elementary configurations of Lagrangians in three di-
mensions, that form the basis of all other possible configurations [12]. We can attach to these 
configurations three elementary moves in the quantum mechanical case that form the basis for 
deformations of the surface σ . These elementary moves are shown in Figs. 12, 13 and 14. Com-
bined with the pop-up cube of Fig. 11 these give a full set of local moves for deforming the 
surface σ .

The first move is shown in Fig. 12. The action and contribution to the propagator (66) for 
Fig. 12(i) are given by:

S(ai) =Lij (u) +Ljk(u) +Lki(u) , K(ai) =N(ai)

∫
du exp

[
iS(ai)/h̄

]
. (73)

In contrast, for Fig. 12(ii):

S(aii) =Lij (uk) +Ljk(ui) +Lki(uj ) ,

K(aii) =N(aii)

∫∫∫∫
duij dujkdukiduijk exp

[
iS(aii)/h̄

]
. (74)

We have some issue in both of these cases with volume factors appearing in the evaluation; but 
we proceed under the assumption that these can be dealt with through some regularisation and 
normalisation. As shown in Appendix D, we then find that the exponents in K(ai) and K(aii)

are the same. With the correct choice of normalisation and regularisation, we have identical 
contributions to the propagator.

We then consider elementary move (b), shown in Fig. 13. We have the action and propagator 
contribution for Fig. 13(i):

6 The asymmetrical factor of s23 in the prefactor is an indicator that renormalisation requires some careful thought.
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Fig. 13. Elementary move (b). White circles indicate integration variables.

Fig. 14. Picture for elementary move (c).

S(bi) =Lij (u) +Lki(u) −Ljk(ui) , K(bi) =N(bi)

∫
dui exp

[
iS(bi)/h̄

]
. (75)

Similarly for Fig. 13(ii):

S(bii) =Lij (uk) +Lki(uj ) −Ljk(u) , K(bii) =N(bii)

∫
dujk exp

[
iS(bii)/h̄

]
. (76)

In this case, no volume factors appear and we find K(bii) = K(bi). So the contributions to the 
propagator are directly identical here.

Lastly, consider elementary move (c) shown in Fig. 14. These bear a clear relation to Fig. 13: 
the element Ljk(u) has been shifted from one diagram to the other, inducing also a slight change 
in the integration variables. For 14(i):

S(ci) =Lij (uk) +Lki(uj ) , K(ci) =N(ci)

∫∫
dujkduijk exp

[
iS(ci)/h̄

]
. (77)

Similarly, 14(ii) is derived from 13(i) with an additional integral over u.

S(cii) =Lij (u) +Ljk(u) +Lki(u) −Ljk(ui) ,

K(cii) =N(cii)

∫∫
dudui exp

[
iS(cii)/h̄

]
. (78)

Once more we find that K(cii) = K(ci) (although this time a volume factor is involved on both 
sides) and the contributions to the propagator are the same.

Proposition 3. The system characterised by Lagrangian (64) is independent of the choice of 
surface σ , up to the choice of normalising constants.
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Proof. The combination of elementary moves above, combined with the pop-up of Fig. 11, al-
lows us to deform any surface σ to another topologically equivalent surface σ ′ by a series of 
elementary moves, without changing the exponent in the propagator. This free deformation gives 
us independence from the surface. �

An obvious consequence is that the propagator (66) depends only on the surface boundary 
∂σ , and the field variables specified there - i.e. it is a function only of the boundary value prob-
lem. Note that since different topologies are specified by changes of the boundary, we have not 
considered these explicitly.

5.3. Uniqueness

The Lagrangian (64) has the property that it produces a propagator (66) which is independent 
of variations of the surface σ . In fact, it turns out that (64) is the unique quadratic Lagrangian 
2-form such that this holds. Consider a general, 3-point, quadratic Lagrangian, imposing anti-
symmetry under interchange of i and j :

Lij (u,ui, uj ) = 1
2aiju

2 + 1
2biju

2
i − 1

2bjiu
2
j + cij uui − cjiuuj + dijuiuj . (79)

For coefficients, a subscript i indicates dependence on the lattice parameter pi , with the ordering 
of subscripts important. The 2-form structure requires aji = −aij , dji = −dij (aij and dij are 
anti-symmetric under interchange of the parameters). Our interest is in the subset of Lagrangians 
that display the surface independence property in the propagator. We therefore look for conditions 
on the Lagrangian such that elementary moves will leave the contribution to the action (i.e. the 
exponent in the propagator) unchanged. We assume that external factors and even volume factors 
can be resolved by renormalisation, so that we only consider that part of the propagator in the 
exponent.

Consider (79) under elementary move (a) - shown in Fig. 12. The contributions to the propa-
gator, K(ai) and K(aii), are calculated according to (73) and (74). For surface independence, we 
require K(ai) = K(aii).

K(ai) is calculated via an integral du, as in (73). In general, the coefficient of u in the exponent 
may be either quadratic, linear, or zero: yielding a Gaussian integral, Dirac delta function, or 
volume factor, respectively. However, a Dirac delta function would force linear dependence of 
field variables at different lattice points: since this is undesirable, we exclude this possibility. 
The remaining cases divide on the totally antisymmetric coefficient aijk := aij + ajk + aki (see 
Appendix E.1 for details). For aijk �= 0 we have a Gaussian integral, and:

K(ai),G =
(

2πih̄

aijk

)1/2

exp
i

h̄

[
1

2

(
bij − bik − 1

aijk

(cij − cik)
2
)
u2

i + cyclic

+
(
dij − 1

aijk

(cij − cik)(cjk − cji)
)
uiuj + cyclic

]
. (80)

Conversely, for aijk = 0, we require the integral to reduce to a volume factor (linear coefficients 
of u in the exponent must disappear) requiring the conditions

aij = ai − aj , cij = ci . (81)

(the coefficient aij must separate into a part depending on pi and a part depending on pj and cij

is a function of pi only). Under these conditions,
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K(ai),V = V exp
i

h̄

[
1
2 (bij − bik)u

2
i + cyclic + dijuiuj + cyclic

]
. (82)

This is a critical point of the variation - a volume factor appears uniquely for this special choice 
of Lagrangian, which can be written as:

Lij (u,ui, uj ) = 1
2aiu

2 + ciuui − 1
2aju

2 − cjuuj + 1
2 (bij u

2
i − bjiu

2
j ) + dijuiuj ,

= Ai(u,ui) − Aj(u,uj ) + Cij (ui, uj ) , (83)

with Cij (ui, uj ) antisymmetric under interchange of i and j . This is the most general classical 
Lagrangian 2-form (7) as found in [12], here specialised to the quadratic case. So we have two 
cases for K(ai): (82) when aijk = 0, and (80) when aijk �= 0.

For K(aii), as in (74), we have four integrations duijdujkdukiduijk . The integral duijk always 
produces a volume factor due to the three-point form of the Lagrangian. As for K(ai), we wish 
to avoid these integrals reducing to a Dirac delta function, and so we have 2 cases. The remain-
ing integrals are either evaluated as three Gaussian integrations, or one integration reduces to a 
volume factor. This rests on the value of detA (see Appendix E.2 for details):

A =
⎛⎝ bjk − bik dki djk

dki bki − bji dij

djk dij bij − bkj

⎞⎠ . (84)

For detA �= 0 (equivalently bij �= −dij ) we have three Gaussian integrations, producing:

K(aii),G = V

√
(2πih̄)3

detA
exp

(
− i

2h̄
BT A−1B

)
exp

i

h̄

(
1

2
ajku

2
i + cyclic

)
, (85)

where BT = (
cjkui − cikuj ,perm (ijk),perm (kj i)

)
. Alternatively, when detA = 0, evaluating 

K(aii) requires two Gaussian integrations. We then require linear terms in the third integrand to 
disappear in order to prohibit the appearance of a Dirac delta function (see Appendix E.2) hence 
we require the conditions

bij = −dij , cij = cji ∀i, j . (86)

So, bij is also anti-symmetric, and cij symmetric. We can then evaluate K(aii) as:

K(aii),V = 2πh̄

(1 − �ijk)1/2 V 2

× exp
i

h̄

[
1

2
ajku

2
i + cyclic − 1

2

dij

1 − �ijk

(cjkui − ckiuj )
2 + cyclic

]
, (87)

where we have introduced the totally symmetric parameter

�ijk := dij djk + djkdki + dkidij + 1 . (88)

Once more there are two cases. For K(aii), when detA = 0, we find (87), and when detA �= 0 we 
have (85).

Comparing now the two configurations of the elementary move, we demand that the exponents 
from each configuration be the same; i.e. both make the same contribution to the propagator. 
More details of this comparison are given in Appendix E.3. We find a solution to the problem at 
the critical point of the system: where some of our integrals become singular. Allowing aijk = 0
and detA = 0, we compare the exponent in (82) with (87). Recalling that at this critical point 
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we have also the conditions (81), (86), we find that we require cij = c, constant, �ijk = 1 − c2, 
aij = 0. Finally, since our Lagrangian is defined only up to an overall multiple, we let c = 1. We 
therefore find the unique quadratic Lagrangian:

Lij (u,ui, uj ) = u(ui − uj ) − 1
2dij (ui − uj )

2 , (89)

along with the condition on dij that �ijk = 0. Comparing (88) with (71) we see that we require 
precisely dij = sij . But then (89) is uniquely the Lagrangian (64). We already know from sec-
tion 5.2 that this Lagrangian also exhibits surface independence for the other elementary moves. 
This principle of surface independence is then sufficient to determine the admissible Lagrangian 
even more uniquely than in the classical case (9) as was treated in [12]. We mention also that in 
the classical case a classification of quadratic, so-called pluri-Lagrangian systems, was given in 
[49] which parallels the multiform variational approach.

Proposition 4. The Lagrangian (64) is the unique quadratic Lagrangian 2-form yielding a sur-
face independent propagator (66).

Proof. (89), with the restriction �ijk = 0 (88), gives us that this is the unique Lagrangian ex-
hibiting surface independence for elementary move (a). We also have from Proposition 3 that 
Lagrangian (64) has surface independence under all other elementary moves.

5.4. Quantum variational principle: Lagrangian 2-form case

This result suggests a quantum variational principle in analogy to the one dimensional case of 
section 4.4. We consider the propagator over a discrete surface σ , Kσ(∂σ), defined in (66). We 
have shown that, for the special choice of Lagrangian (64), the propagator Kσ(∂σ) is independent
of the surface σ . It depends only on the variables sitting on the boundary, ∂σ . Additionally, this 
is a very unique choice of Lagrangian: for a generic Lagrangian, Kσ(∂σ) will depend also on the 
surface σ itself.

Recall that, classically, the Lagrangian 2-form structure arises from a variational principle 
over surfaces as in [12]. An extended set of Euler-Lagrange equations arise as we vary not only 
the dependent field variables un, but also the surface σ . This restricts the class of admissible La-
grangians to those obeying the closure property (6): it is only for such Lagrangians and equations 
of motion that the classical action remains invariant under variations of the surface.

As we move to the quantisation, parallel to what we argued in the 1-form case, we consider 
the variation over all possible surfaces σ with a fixed boundary ∂σ . For a generic Lagrangian, 
as we vary the surface σ the propagator Kσ(∂σ) (66) changes. However, for the special “inte-
grable” choice of Lagrangians (64) the propagator Kσ(∂σ) remains unchanged as we vary the 
surface. This therefore represents a critical (i.e., singular) point for a new quantum object which 
we conjecture to be a “sum over all surfaces” of which the surface-dependent propagator forms 
the summand,7 viewed as a functional in a well-chosen space of Lagrange functions. Once again, 
controlling the singular behaviour of such an object, and arriving at mathematically concise def-
inition is the subject of ongoing investigation. Nonetheless, we conjecture that critical/singular 
point analysis of such an object, leading to the selection of Lagrangians whose propagator are 

7 The sum over surfaces idea has also emerged in the theory of loop quantum gravity but with a different motivation, 
cf. [50,51].
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surface-independent, would form a key ingredient for understanding the path integral quantisa-
tion of discrete field theories that are integrable in the sense of multidimensional consistency.

6. Discussion

In his seminal paper of 1933, [38], Paul Dirac expressed his credo that the Lagrangian for-
mulation of classical dynamics, in comparison to the Hamiltonian one, was more fundamental, 
and he posed the question of a Lagrangian approach to quantum mechanics. In this important 
precursor to Feynman’s development of the path integral [39] the analogy between classical and 
quantum mechanics was emphasized, cf. also [52]. In this context, the related question of what 
would constitute a variational point of view in quantum mechanics was partly, but not fully, an-
swered by those approaches. In the present paper we have attempted to arrive to a more complete 
answer to these questions in the context of integrable systems in the sense of multidimensional 
consistency. This is pursued by setting up a quantum analogue of the Lagrangian multi-form 
approach.

We emphasize once more that so far, within the context of integrable systems theory, the 
Hamiltonian approach was largely favoured while the Lagrangian approach was largely ignored. 
The reason was obvious: the conventional Lagrangian approach seemed unsuitable to capture 
the fundamental aspect of multidimensional consistency. With the introduction of the concept of 
Lagrangian multiforms in [5] that drawback of the Lagrangian approach was overcome, and a 
variational theory of multidimensional consistency is now in full development. This poses then 
also the scientific imperative to develop alongside this new classical theory, a corresponding 
quantum theory, and the present paper forms the very first step in that direction. Although the 
theory seems to apply merely to the context of integrable systems, we believe that, since such 
models have turned out to be quite universal and fundamental, the development of a Lagrangian 
quantum theory of integrable systems will provide novel insights into the nature of quantum 
mechanics (e.g. using integrable models, it may be feasible to investigate more thoroughly the 
analytic aspects of the path integral measure for models beyond the quadratic ones in the mo-
menta).

In the present study we focused on the simplest possible model exhibiting the MDC prop-
erty, the linearised lattice KdV system, leading to a quadratic Lagrangian multiform structure for 
both the reduced case (Lagrangian 1-form) and the full lattice case (Lagrangian 2-form). This 
choice of model was primarily motivated by the ability to perform the corresponding Gaussian 
integrals, to assert the path- respectively surface independence of the corresponding Feynman 
propagators, which constitutes the quantum analogue of the closure property of the Lagrangian 
multiform structure in the classical case of [5]. This forms one of the main postulates of a quan-
tum multiform theory. Further aspects of the theory, e.g. the derivation of multi-time Schrödinger 
equations for the propagators, will be pursued in subsequent work.

There are a number of further points to make in connection with the results obtained in this 
study.

First, although the results were obtained by restricting ourselves to only quadratic La-
grangians, the multidimensional consistency aspects do not essentially rely on the linearity of 
the equations. In fact, most of the combinatorics at the classical level carries through for all La-
grangians associated with nonlinear quad equations in the ABS list, cf. [8]. Due to the suspected 
close analogy between classical theory and quantum theory in the integrable case, it is therefore 
to be expected that some quantization procedure for those models would exist such that the re-
sults obtained here also carry through to the quantum level for those nonlinear models. This may, 
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however, require non-conventional quantization prescriptions in terms of suitable integrals re-
placing the Gaussian integrals used in the quadratic case. Initial results along this direction were 
obtained in [22] and [21]. The choice of Hilbert space (in the canonical quantization picture), 
and of integration measure (in the path integral picture) may be driven by the integrable combi-
natorics of those models. An alternative approach would be to proceed along the route of [53,54]
and to consider the introduction of stochasticity in the quadratic models in order to quantize the 
discrete-time models. However, although there are similarities in some of the discretization as-
pects with the present studies (effectively the role of Bäcklund transforms in the constructions), 
it seems that the point of view in those studies is quite different from the one developed in the 
present paper in particular w.r.t. the multi-time aspects. We also note that although we invoked 
at some points the standard connection with the canonical formalism in terms of operators on 
Hilbert space, the Feynman ideology in our view should enable one to move away from the op-
erator approach altogether and compute the quantum objects purely in terms of the Lagrangian 
formalism. Our hope is that the multiform structure would eventually provide tools to perform 
such computations.

Second, another general feature of the models in question is the role-reversal interplay be-
tween parameters and independent variables and between the discrete and continuous models. 
Thus, the continuous models do not only appear as continuum limits, but more intrinsically as 
additional commuting flows: the classical equations hold simultaneously on a common set of so-
lutions. On the quantum level this property extends in the fact that there is a common propagator 
of the underlying continuous and discrete quadratic models. If this feature is general enough to 
extend to the nonlinear case (which it does in the classical case) there is scope that this property 
can eventually be used to extract information on the time-sliced path integral from the discrete 
finite-step path integral.

Third, turning things around and imposing the path and surface independence of the propa-
gator for a general parameter class of quadratic Lagrangians, we have shown that this quantum 
MDC property leads uniquely to the Lagrangians that arise from the integrable case, in the same 
spirit as in [12]. In fact, the point made in that paper is that the Lagrangians themselves should 
be viewed as solutions of an extended set of Euler-Lagrange equations, which incorporates the 
stationarity under variations with respect to both the field (i.e., dependent) variables as well as 
the geometry in the independent variables. This poses a new paradigm in variational calculus, 
as it signifies a departure from the conventional point of view of most physical theories, namely 
that Lagrangians have to be chosen based on tertiary considerations. In this new point of view, 
the Lagrangians are not necessarily given in advance, but follow from the variational principle 
itself.

We finish by making a few general remarks on further ramifications. In general it is not 
known how to derive a path integral formalism for non-conventional, i.e. non-Newtonian mod-
els, through a time-slicing procedure when Gaussian integrals no longer apply. Nonetheless, in 
integrable systems theories such non-Newtonian models do abundantly appear and often can also 
be readily quantized through the canonical formalism, e.g. the relativistic many-body systems of 
Ruijsenaars-Schneider type, [3]. This poses, in our view, a lacuna in the theory which is imper-
ative to rectify as such integrable quantum systems cannot be simply discarded as potentially 
physical models. Thus, integrable systems can play a role of a litmus test for the completeness 
of a theory, which most reasonably should be applicable to those models for which in principle 
exact and rigorous computations can be performed. However, one may speculate that there is a 
deeper significance for those systems, since they have proved their merit in forming a fruitful 
breeding ground for new concepts and new understandings on a fundamental level. In fact, the 
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ideas exposed in the present paper, based on simple toy problems, have some interesting resem-
blances to proposals that that in recent years have been put forward on the quantization of scaling 
invariant theories [42,43,55]. A particular parallel may be drawn between path and surface inde-
pendence of propagators in our examples, and certain formulations of loop quantum gravity and 
“sum over surfaces”, [50,51]. Furthermore, the interplay between discrete and continuous, which 
is prominent in our examples, may perhaps feed into views that G.’t Hooft has been promoting 
with regard to the quantum nature of the universe, cf. [56].
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Appendix A. Calculating the discrete propagator

A.1. The classical action

We wish to evaluate the classical action for the path beginning at x0, and reaching xN after 
N time steps. Recalling our discrete equation of motion (11) and classical solution we have the 
classical path

xn = 1

sinμN

(
xN sinμN − x0 sinμ(n − N)

)
. (A.1)

The action along the classical path is then:

Scl =
N−1∑
n=0

(
P + Q

q
xnxn+1 + P − Q

2q
(x2

n + x2
n+1)

)

=
√

P

sinμN

[
2x0xN − (x2

0 + x2
N) cosμN

]
, (A.2)

where we have used the identities:

cosμ = −b = −P − Q

P + Q
, sinμ = 2q

√
P

P + Q
. (A.3)

We note two things about this result. First, there is no explicit Q dependence: all Q dependence 
is contained within the parameter μ, which only appears as μN . Second, we can easily extend 
this result to the La (bar evolution) case, by a change of parameter. We replace μ by η, such that 
cosη = −a.

A.2. The discrete propagator

It is left for us to evaluate the discrete path integral:

K̃N (0,0) =
y(N)=0∫

D[yn] eiS[yn]/h̄ . (A.4)
y(0)=0
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In the discrete case, we can consider this via a time slicing procedure without needing to worry 
about the problematic shrinking to zero. So we consider:

K̃N(0,0) =N

∫
dy1 . . .

∫
dyN−1

× exp

{
i

h̄q

N−1∑
n=0

(
(P + Q)ynyn+1 + 1

2
(P − Q)(y2

n + y2
n+1)

)}
, (A.5)

where N is the normalising factor appearing in (45) and with the boundary values y0 = yN = 0. 
This expression is quadratic in all yn variables, and so can be evaluated as N − 1 Gaussian 
integrals. This is most easily achieved by writing the equation in a matrix form (as in [41], for 
example). We define yT = (y1, . . . , yN−1), in order to write

K̃N =N

∫
dN−1y exp(−yT σy) = π(N−1)/2

√
detσ

, (A.6)

with σ the symmetric, tri-diagonal matrix:

σ = i(P + Q)

h̄q

⎛⎜⎜⎜⎜⎜⎝
−P−Q

P+Q
−1/2

−1/2 −P−Q
P+Q

.. .

. . .
. . . −1/2

−1/2 −P−Q
P+Q

⎞⎟⎟⎟⎟⎟⎠ . (A.7)

In the case that all parameters P, Q and q are real valued, the result (A.6) (where the branch 
of the square root is understood to be taken in accordance with the sign of (P − Q)/q) is a 
consequence of standard Fresnel type integrals:

∞∫
−∞

eiαx2
dx =

√
π

|α| esgn(α)πi/4 ,

cf. also [41] in the context of path integrals. (We note that the choice of these parameters allow 
us to move into imaginary time if required.) From (A.6) onward, it remains to calculate detσ . 
The determinant for a tri-diagonal matrix can be found by forming a recursion relation on the 
size of the matrix, and solving as a discrete equation. Let

Xn =

∣∣∣∣∣∣∣∣∣∣
a b

b a
. . .

. . .
. . . b

b a

∣∣∣∣∣∣∣∣∣∣
of size n . (A.8)

Performing the cofactor expansion, we find

Xn = aXn−1 − b2Xn−2 , n ≥ 2 , (A.9)

with initial conditions X0 = 1 and X1 = a. The solution is thus given by

Xn = λn+ − λn−
, where λ± = 1 (

a ±
√

a2 − 4b2
)

, (A.10)

λ+ − λ− 2
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are the roots of the characteristic equation of (A.9). Now, in the case of σ , recall that a =
−(P −Q)/(P +Q) = cosμ and b = −1/2, so that 

√
a2 − 4b2 = i sinμ: this leads to significant 

simplifications of the above expression. Working through these calculations, we then find:

detσ =
(

i(P + Q)

2h̄q

)N−1 sinμN

sinμ
. (A.11)

Putting this together, then,

K̃N =
(

i(P + Q)

2πh̄q

)N/2 ( 2πh̄q

i(P + Q)

)(N−1)/2
√

sinμ

sinμN
, (A.12)

and therefore

KN(x0, xN) =
(

i
√

P

πh̄ sinμN

)1/2

× exp

{
i
√

P

h̄ sinμN

(
2x0xN − (x2

0 + x2
N) cosμN

)}
. (A.13)

Appendix B. Quantum invariants

In [21], the authors investigated quantum systems possessing invariants under a one time-step 
path integral evolution. Begin by considering the evolution in the hat direction, generated by 
Lb(x, ̂x) (24). A wavefunction ψn(x) evolves under this transformation according to

ψn+1(̂x) =N

∫
C

exp

(
i

h̄
Lb(x, x̂)

)
ψn(x)dx , (B.1)

and to look for an invariant we desire ψn and ψn+1 to be solutions of the same eigenvalue 
problem, with the same eigenvalue:

Mxψn(x) = Eψn(x) ⇒ Mx̂ψn+1(̂x) = Eψn+1(̂x) . (B.2)

Mx is a differential operator, and we restrict to considering the second order case:

Mx = p0(x)
∂2

∂x2 + p1(x)
∂

∂x
+ p2(x) . (B.3)

Now,

Eψn+1(̂x) =N

∫
C

exp

(
i

h̄
Lb(x, x̂)

)
(Mxψn(x))dx

=N

∫
C

(
Mx exp

(
i

h̄
Lb(x, x̂)

))
ψn(x)dx + S , (B.4)

where Mx is an adjoint to Mx constructed under integrations by parts, and S is the resulting 
surface term. If we assume ψn and ψ ′

n to vanish at infinity (a reasonable physical assumption) 
then the surface term S vanishes. We can also write,
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Eψn+1(̂x) = Mx̂ψn+1(̂x) =N

∫
C

(
Mx̂ exp

(
i

h̄
Lb(x, x̂)

))
ψn(x) dx . (B.5)

So the condition we require is for Mx exp
(

i
h̄
Lb(x, x̂)

)
= Mx̂ exp

(
i
h̄
Lb(x, x̂)

)
. Following the 

analysis in [21], and using the given Lagrangian, we find this can only hold under the restrictions:

p0(x) = −h̄2C0 , p1(x) ≡ 0 , p2(x) = 4PC0x
2 + C2 , (B.6)

so that

Mx = C0

(
−h̄2 ∂2

∂x2 + 4Px2
)

+ C2 . (B.7)

This is precisely the quantum invariant (48).

Appendix C. Path independence for a general Lagrangian

We calculate the propagators (52) and (53) by a Gaussian integral:

K�(x, x̂) =N�
(

πih̄

βb0 + α(a − a0)

)1/2

exp

{
i

h̄

[(
β(b − b0) − β2

4(βb0 + α(a − a0))

)
x2

+
(

αa0 − α2

4(βb0 + α(a − a0))
x̂2

)
− αβ

2(βb0 + α(a − a0))
xx̂

]}
, (C.1)

and,

K�(x, x̂) =N�
(

πih̄

αa0 + β(b − b0)

)1/2

exp

{
i

h̄

[(
α(a − a0) − α2

4(αa0 + β(b − b0))

)
x2

+
(

βb0 − β2

4(αa0 + β(b − b0))
x̂2

)
− αβ

2(αa0 + β(b − b0))
xx̂

]}
. (C.2)

By comparing the coefficients of x2, ̂x2 and xx̂ in the exponent, we derive conditions for time-
path-independence on our coefficients:

β(b − b0) − β2

4(βb0 + α(a − a0))
= α(a − a0) − α2

4(αa0 + β(b − b0))
, (C.3)

αa0 − α2

4(βb0 + α(a − a0))
= βb0 − β2

4(αa0 + β(b − b0))
, (C.4)

αβ

2(βb0 + α(a − a0))
= αβ

2(αa0 + β(b − b0))
. (C.5)

Note that an immediate consequence of (C.5) is that the multiplicative factors in (C.1) and (C.2)
are the same. Analysis of these three conditions leads to (63).
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Appendix D. Elementary moves

We consider elementary move (a), shown in Fig. 12, in more detail as an illustrative case. The 
action and contributions to the propagator for Figs. 12(i) and (ii) are given in (73) and (74). We 
then have

K(ai) =
∫

du exp
i

h̄

(
u(ui − uj ) − 1

2 sij (ui − uj )
2

+ u(uj − uk) − 1
2 sjk(uj − uk)

2 + u(uk − ui) − 1
2 ski(uk − ui)

2
)

,

= V exp
−i

2h̄

(
sij (ui − uj )

2 + sjk(uj − uk)
2 + ski(uk − ui)

2
)

, (D.1)

where we note that all the u terms have cancelled out, leaving a volume factor. We compare this 
to

K(aii) =
∫∫∫∫

duij dujkdukidijk exp
i

h̄

(
uk(uki − ujk) − 1

2 sij (uki − ujk)
2

+ ui(uij − uki) − 1
2 sjk(uij − uki)

2 + uj (ujk − uij ) − 1
2 ski(ujk − uij )

2
)

,

= V

∫
d3u exp

i

h̄

(
−1

2
uT Au + B tu

)
, (D.2)

where

uT = (uij , ujk, uki) ,

A =
⎛⎝ sjk + ski −ski −sjk

−ski ski + sij −sij
−sjk −sij sij + sjk)

⎞⎠ , (D.3)

BT = (
ui − uj ,uj − uk,uk − ui

)
.

Critically, we note that detA = 0, so again we have a singular integral. Carrying out two integrals 
in turn, so that the third integration produces a volume factor, we therefore have:

K(aii) = V 22πh̄ exp
−i

2h̄

(
sij (ui − uj )

2 + sjk(uj − uk)
2 + ski(uk − ui)

2
)

. (D.4)

Thus, the exponents in K(ai) and K(aii) are the same. With the correct choice of normalisation 
and regularisation, we have identical contributions to the propagator.

Appendix E. Uniqueness of the surface independent Lagrangian

E.1. Elementary move (a), configuration (i)

For Lagrangian (79), the expression for K(ai) is shown in Fig. 12 and given by (73). We then 
have:
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K(ai) =
∫

du exp
i

h̄

[
1
2 (aij + ajk + aki)u

2

+ (
(cij − cik)ui + (cjk − cji)uj + (cki − ckj )uk

)
u
]

× exp
i

h̄

[
1
2 (bij − bik)u

2
i + cyclic + dijuiuj + cyclic

]
. (E.1)

This integral is Gaussian providing the coefficient of u2 does not vanish; i.e. aijk �= 0. In that 
case the integral yields (80).

The other case occurs when aijk = 0 ⇒ aij = ai − aj . To avoid the integral producing 
a delta function (which would threaten the independence of our field variables) we then also 
require terms linear in u to vanish, so that cij − cik = 0 ∀i, j, k ⇒ cij = ci . In other words, cij

must be a function of pi only. These are precisely the conditions (81). If these conditions hold, 
we are left with the contribution to the propagator (82).

E.2. Elementary move (a), configuration (ii)

For K(aii) in Fig. 12(ii), we have a contribution to the propagator given by (74). For La-
grangian (79) this gives us:

K(aii) = V

∫∫∫
d3u exp

i

h̄

(
1

2
uT Au + B tu

)
exp

i

h̄

[
1

2
(ajku

2
i + cyclic)

]
, (E.2)

with A and B as in (84) and (85), and uT = (uij , ujk, uki). Clearly, when detA �= 0 this can 
be evaluated as a trio of Gaussian integrals, giving (85). We must consider the critical point 
detA = 0 separately. The condition detA = 0 is a functional equation connecting the bij with 
the dij . Considering the rows of A in (84), it is clear that detA = 0 if bij = −dij , our first 
condition of (86). In this case we must carry out the two remaining Gaussian integrals in turn. 
First, integrating over duij in (E.2):

K(aii),V = V

(
2πh̄

i(djk + dki)

)1/2 ∫∫
dujkduki exp

i

h̄

[
1

2

1 − �ijk

djk + dki

(ujk − uki)
2

+
(
ckiuj − cjiuk + dki

djk + dki

(cjkui − cikuj )
)
(ujk − uki)

+
(
(cjk − ckj )ui + (cki − cik)uj + (cij − cji)uk

)
uki

]
exp

i

h̄

[
1

2

(
ajku

2
i + cyclic + 1

djk + dki

(cjkui − cikuj )
)]

, (E.3)

with �ijk given in (88). Here it is clear that we can shift our integration by the substitution
v = ujk − uki . Thus, to avoid a delta function integral for duki and gain the volume factor we 
desire, we require also all terms linear in uki in the exponent to vanish. Hence we require: cij −
cji = 0 ∀i, j . This is the second condition of (86). Evaluation of the second Gaussian integral 
then gives us (87).

E.3. Elementary move (a): comparing results

In the generic case (aijk �= 0, detA �= 0) we compare equation (80) with (85). Comparing 
coefficients of u2 and uiuj in the exponent, this gives the functional equations:
i
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bij − bik − 1

aijk

(cij − cik)
2 = ajk + 1

detA

{(
d2
ij − (bki − bji)(bij − bkj )

)
c2
jk

+ (
d2
ki − (bjk − bik)(bki − bji)

)
c2
kj

+ 2
(
dij dki − djk(bki − bji)

)
cjkckj

}
, (E.4)

dij − 1

aijk

(cij − cik)(cjk − cji)

= 1

detA

[(
(bki − bji)(bij − bkj ) − d2

ij

)
cjkcik − (

dij djk − dki(bij − bkj )
)
cjkcki

+ (
djkdki − dij (bjk − bik)

)
ckickj − (

dij dki − djk(bki − bji)
)
cikckj

]
. (E.5)

It is not at all obvious that a solution to these equations, under the constraints, exists.
However, in the special case aijk = 0, detA = 0 we compare the exponent in (82) with (87). 

This gives equations from the coefficients of u2
i and uiuj :

bij − bik = ajk − 1

1 − �ijk

(dij + dki)c
2
jk , dij = dij

1 − �ijk

cjkcki . (E.6)

Combined with the constraints (81), (86), this yields the Lagrangian (89).
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