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Abstract

Arsenic (As) contamination in groundwater is a signifidaalth and environmental concern
worldwide because of its wide distribution and toyicithe fate and mobility of As is greatly
influenced by its interaction with redox-active mingrhhses, among which green rust (GR), dn Fe
Fe" layered double hydroxide mineral, plays a crucial rblewever, the controling parameters of
As uptake by GR are not yet fully understood. To il tiep, we determined the interfacial reactions
between GR sulfate (GRs) and aqueous inorganic As(lll) and As(V) through batch atsorp
experiments, under environmentally-relevant groundwateditions. Our data showed that, under
anoxic conditions, GR, is a stable and effective mineral adsorbent for the rahwdvAs(lll) and
As(V). At an initial concentration of 10 mgi.As(lll) removal was higher at alkaline pH conditions
(~ 95% removal at pH 9) whie As(V) was more efficiently reew at near-neutral conditions (>
99% at pH 7). The calculated maximum As adsorption citi@aon GRo, were 160 mg ¢ (pH 8-9)
for As(lll) and 105 mg g (pH 7) for As(V) The presence of other common groundwater ions such as
Mg?* and PQ@* reduces the efficiency of As removal, especially ab fugic strengths. Long-term
batch adsorption experiments (up to 90 days) revead\drinteracted GR, remained stable, with
no mineral transformation or release of adsorbed As speciesalDeer work shows that G, is

one of the most effective As adsorbents among iron (dxytwide phases.

Keywords: arsenic; adsorption; green rust; groundwater treatment; iron (oxyhydr)oxide; layered

double hydroxide
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1. I ntroduction

Elevated levels of dissolved arsenic (As) in ground- @rimking waters remain a significant
global environmental and public health concern bexaof the widespead occurrence and
distribution, as well as toxicity and mobiity of Al the environment (Vaughan, 2006)In
groundwaters, As is commonly presexs inorganic oxyanions arsenite 4&s"'Os;) and arsenate
(HsAsVO,), with the former being the more toxic form (Hughes, 20®8arma and Sohn, 2009).
Based on their acid dissociation constants, As(lll) forrasngutral species JAs"'O; at moderaty
reducing conditions (pK .3 = 9.23, 12.13, 13.40) while As(V) is present a#\$Y0,” and HASO,*
(PKar23 = 2.20, 6.97, 11.53) in oxidized environments (Fengusod Gavis, 1972; Inskeep et al.,
2002) However, it is important to note that the relativelyw redox transformation kinetics allows
both As(lll) and As(V) to persist under both anoxic and oxinditions (Masscheleyn et al., 1991).

Green rust (GR) minerals are redox-active phases, whiohgoto the family of F&Fe"
layered-double hydroxides (LDHSs). Their ability to tr@atremove toxic metals from groundwater
has been investigated (Usman et al.,, 2018), yeffuhdamental adsorption properties or uptake
capacities of metals on GR phases have stil not lopantified. The high potential of GR as a
material for groundwater remediation stems from its struicéuna redox properties. GR is composed
of positively charged brucite-like layers of octahedradprdinated FeFe" hydroxides that alternate
with negatively charged interlayers of anions and watelecules, as well as monovalent cations
(Christiansen et al., 2009). These brucite-like layard mterlayer regions are held together by
hydrogen bonding and electrostatic forces. GR is typioapresented by the general formula,'{ize
wFE' Y (OH)*[(x/n) A" mH,OJ*, where A is the intercalated anion such@s CO,* and S@*, and
x is the molar fraction of Fg [Fe"]/[Fewa] (GEhin et al., 2002). These properties allow GR to
remove toxic metal contaminants by adsorption (JonasdnSherman, 2008; Mitsunobu et al., 2009),
reduction (Christiansen et al., 2011; O'Loughin et 2003; Skovbjerg et al., 2006), interlayer
intercalation (Refait et al., 2000), and substitutibistauctural Fe in the octahedral sheets (Ahmed et
al., 2008; Refait et al., 1990).

Considering the worldwide health implications of As-eonihated ground- and drinking

waters (World Health Organization, 2017), it is pararhdoat we understand the removal efficiency
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of As through interactions with various mineral subsgathere is an imminent challenge regarding

the development, testing and validating the usedslnef adequate mineral phases that have high
metal-specific uptake capacities, strong binding &éfiand excellent stabilties. Adsorption-based

technologies are promising groundwater cleprstrategies because of their facile implementation,
relative cost-effectiveness and high removal efficienagué_et al., 2017). However, to optimize the

efficiency of subsurface remediation strategies, the ittieres between inorganic As species and the
surfaces of redox-active minerals such as GR must béifgpechin detail.

Su and Wilkin (2005) examined the interaction of As(I11jl &s(V) with synthetic green rust
carbonate (GRs) and monitored the changes in the aqueous phided results showed that As(V)
removal rates using GRBs; were higher compared to As(lll) due to the higher affinityiroh
(oxyhydr)oxides for As(V) than the more toxic As(lll). The meausim of adsorption of As species
onto GR mineral phases (e.g., &FGR-03, GRs4) has also been investigated previously using X-ray
absorption spectroscopy (XAS) (Jonsson and Sherman, Rad@lall et al., 2001; Wang et al., 2010).
In these studies, As(lll) and As(V) were found to both fornetidte binuclearC) and monodentate
mononuclear %) inner-sphere complexes on the ke@tahedra at the edges of #BR crystal
However, the fundamental adsorption parameters (e.g.cteffef pH, adsorbent loading, ionic
strength, potentially competing ions), as well asrfaimum uptake capacity and critical adsorption
kinetics necessary for understanding interactions between GR and groundwaters have never
been evaluated in detail

Herein, we aim to close this gap through an in-daptiestigation on the interfacial
interactions between freshly-precipitated green rustteuffaRso,) and aqueous inorganic As species
We evaluated the performance of §gRRas an effective adsorbent for the removal of arsenite [Als(l11)
and arsenate [As(V)ldy examining adsorption reactions as a function of pHordest loading, ionic
strength, varying initialAs concentrations, time and the presence of potentigiyfering ions in
groundwater. Our results reveal that Ris a highly effective adsorbent for the removal of As

species from groundwater.
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2. M aterials and methods
2.1 Mineral synthesis and characterization

GR with interlayer sulfateGRso04) Was synthesized in an anaerobic chamber (95% M H,
Coy Laboratory Products, Inc.) at room temperature us@gdiprecipitation method (Géhin et al.,
2002) In brief, separate Fe(ll) (0.3)vand Fe(lll) (0.1 M) solutions were prepared from reagent
grade (NH).Fe(SQ),-6H,0 and Fg(SO); salts (VWR) and deoxygenated Mili-water (~18.2 MQ
cnt). GR synthesis was initiated by mixing the Fe(lll) andlfeolutions (pH ~2) under constant
stirring at 350 rpm. Subsequently0.3 M NaOH solution was slowly titrataato the mixed F&Fe'
solution until the pH reached 8. Base addition reduit the precipitation of aark blue-green
suspension, which was stirred and aged further for one Tiba suspension was then washed with
O,-free Mili-Q water to remove excess solutes. The yoéithe washe®Rso, Slurry was determined
based on the difference between the total Fe condentaditan aliquot of the suspension dissolved in
0.3 M HNG; and the dissolved Fe concentration in the supernattar fitration through a 0.2-um
syringe fiter. The Fe ion concentration was anahfzg@hductively coupled plasma optical emission
spectrometry(ICP-OES). Each batch dBRso, slurry (~8.2 g ) was prepared fresh and kept in the
anaerobic chamber adsorption experiments for a maxinias o

The sold GRso, samples were analyzelby X-ray powder diffraction (XRD), nitrogen
sorption, transmission electron microscopy (TEM), setéerea electron diffraction (SAED), energy
dispersive X-ray spectroscopy (EDX), electron energy-dpesctroscopy (EELShigh angle annular
dark field scanning transmission electron microscopy (BEASTEM), X-ray photoelectron
spectroscopy (XPS) and Mdossbauer spectroscopy to degertmiir structure, particle sizes
morphologies, surface properties, as well as redox ardchdmical composition. Detailed

information on all phase characterigasi can be found in the Supporting Information (Text S1).

2.2  Adsorption experiments
All batch adsorption experiments were carried out ificiie at room temperature inside the
anaerobic chamber using headspace crimp vials véattwishedGRso4 Suspensions (S/L = 4 g').

reacted with 10 mg L aqueous As(lIlor As(V) solutions. The mixed samples were shaken at 250



116  rpm for 24 h followed by the separation of solids andemgtants by fitration through 0.2@n
117  syringe fiters. The obtained liquid phases were fib{pH ~2 with Merck Suprapur® grattiNOs)

118 and stored at 4°C until analysis. The elemental cotiggo®f the liqguid phases was determined
119  following the method described in Schuessler et allgR@sing an axial ICP-OES Varian 720ES.
120 Ful details of all tested parameters [e.g., varying (@Ho 9), adsorbent loading (solid to solution
121  ratio, S/L 2 to 6 g 1), ionic strength (IS* 0.5 to 0.005 M), competing iofG&*, Mg?*, PQ,;*) and
122 time (5 min to 90 days)] for the batch adsorption erpents and analytical methods can be found in
123 the Supporting Information (Text S1, Table S1).

124

125 23 Adsorption kinetics and isotherms

126 Kinetic rates ofAs adsorption were determined at pH 8 using an idisatoncentration of 10
127  mg L* and an adsorbent loading of 4 g.The mixtures were shaken for 5 min, 10 min, 15 ntn, 3
128 min, 1 h,2 h,4 h, 8 h, 16 h and 24 h after whighgblids were separated from the supernatant and
129 analysed as described above. Adsorption isotherms eltaged at room temperature and at pH 7
130  and 8-9 using an adsorbent loading of 4gihitial As concentrations up to 1,000 mg land contact
131  time of 24 h The obtained equilibrium adsorption data were fittedhto Langmuir and Freundlich
132 isotherm models (Limousin et al., 2007).

133

134 3. Results and discussion

135 31 Synthesis and characterization of R

136 The morphology, size and chemical composition of siethesizedGRso4 particles were
137  characterized by TEM imaging and analytical spectpgc The micrographs (Fig. 1a) of the
138  synthesized material revedl a well-defined hexagonal plate-like morphology typiaal GRso,
139  (Géhin et al., 2002). The diameter of particles varielvben 50 and@® nm while the estimated
140  thickness of the particles calculated by the log-rétidative) method (Malis et al., 1988) from the
141  low loss EEL spectra was around 16 to 20 nm. The Sp&ifern (Fig. 1a inset) shows the distinctive
142 hexagonal c-axis spot pattern of a single crystakdgRAhmed et al., 2010). The elemental

143 composttion (Table S2), which was calculated from tBXEpectra, is comparable to the theoretical
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values based on the chemical formula,,Fe",(OH);,SO,-8H,O (Simon et al.,, 2003). The
mineralogy of the freshly-precipitated material was comfarthroughXRD patterns (Fig. S1) to be
pure GRos as evidenced through the typical sharp and symmétaisal (00l) reflections
corresponding to the interlayer distances betweendhd-&' octahedral hydroxide sheets (Simon et
al,, 2003). No other iron (oxyhydr)oxide phases weretifgh in the freshly-precipitated G,
samples.

The oxidation state of Fe can be determined by theSHEe Ls;-edge position and shape,
where octahedrally coordinated Fe(lll) has a peak energg e¥Y. higher than octahedraly
coordinated Fe(ll) (Brown et al., 2017). Separate peakbubdid to Fé&" (709 eV)and Fe’* (710.8
eV) within the primary L; peak are resolvable when EEL spectra are acquired at higher resolution
EELS (< 0.3 eV). Using the EELS resolution of the microscope used for this work (0.8 ¢V), the
Fe(l)/Fe(lll) ratio was estimated by comparing our experimesgpectra to reference spectra
collected under the same conditions. Theoretical tepewere calculated by stoichiometrically
combining the intensity-normalized spectra of the Fe standards for hedenbergite (octahedraly
coordinated F&) and hematite (octahedrally coordinated@)eThis resulted in a theoretical spectrum
for GRso4 (Where Fe(II)/Fe(IIT) = 2) which allowed for the direct comparison between the Repkak
shape and position in our sample and the theoredmattrum (blue line in Fig.1b; Fig. S2a). This
revealed that the shape of the Feeldge for the GR,, sample matched the linear reference fit for a
Fe(l)/Fe(lll) ratio of 2, with minor differences. This is evidedcby the changes in shape and
posttion of the k peak in the theoretical spectrum as the GR compobiticomes more Fe(lll)-rich.
This is also clearly shown in Fig. S2, where the nbtzal spectra for Fe(ll)/Fe(lll) ratios from 1 to
0.2, and the residual of each fit are shown. Thesetsesiggest that our sample had a Fe(Il)/Fe(lll)

ratio corresponding to 2.
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168
169  Fig. 1. (a) TEM image of Gk, with SAED pattern of a single particle in inset. (b)Lzg-edge EEL

170  spectrum of Gk, sample (ldcK), linear reference fit (blue) and residual spactforange).

171

172 The surface chemistry of the synthesizeds§zRvas analyzed by XPS and the wide scan
173 spectrum (Fig. 93evealed photoelectron peaks of Hg O 1sandS 2p at binding energies of 710.7
174 531.9 andl688 eV, respectively. The F&p,,» and2p,,; photoelectron peaks (Fig.)2a&ere observed
175 at 724.0 and 710.7 eV, respectively. The value ofRb&p,;; peak maxima was shifted to slightly
176  higher binding energy comparedddsR with interlayer carbonate (GBs, 709.4 eV), which also has
177  an Fe(Il)/Fe(lll) ratio of 2 (Mullet et al., 2008). This indicade slightly higher Fe(lll) content in our
178  synthesized GR, However, the presence afcharacteristic Hgl) satelite peak at 726.7 eV aad
179  Fe(lll) satelite peak at 731.0 eV confirmed the presencetbf Be(ll) and Fe(lll) inour sample at
180  the desired ratio of. Z’he peak shape and positions of the2pg, and2p,,; photoelectron peaksere

181 also similar to previously reported XPS spectra fors§gRNedel et al.,, 2010). Furthermore, the
182  relative contributions of the deconvolutedl®peaks at 530.2, 531.8 and 532.6 eV (Am).tBat were
183 assigned to Fe-O, O-H and adsorbed wélable S3), respectivelyyere in agreement with values
184  obtained by Mullet et al. (2008). The2p doublet (Fig. 2c) at 168.8 eV confemithe presence of
185 SO in the interlayer region.

186 The iron chemistry of the synthesiz€Rso, Was characterized by Méssbauer spectroscopy
187  which revealed two apparent doublets (Fig. S3), bth wicertain line broadening of the outer

188  doublet and a slight asymmetry of its line shafee.improved fit shown in Fig2d was obtained by
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using three doublets DD, and B (hyperfine parameters, see Tabt®.3n this fit, doublets Pand

D, correspond to high spin Fe(ll) cations in the brucite-lictahedral sheets whiolblet D,
corresponds to high spin Fe(lll) cations (Géhin et al.2R00he relative areas of the doublets in the
Mossbauer spectrum allowed us to calcuati€e(ll)/Fe(lll) ratio in the Gk, Sample of 2.09, which

is in agreement with the ratio of 2 fnoour EELS data (Fig. 1b, Fig S2), as well as lteratiata
(Géhin et al., 2002; Simon et al., 2003). Howeveshdauld be noted thalhe¢ Mossbauer spectra for
GRsos reported in literature are usualy fitted withe Fe(ll) doublet (Fig. S3, Table S5) instead of
two doublets (Fig2d). It is worth noting nevertheless, that in @iRso, the two doublets Dand B
revealed the same isomer shift, but these difesomewhat in their quadrupole splitting$£g),
thereby suggesting the presence of two inequivale(ht) Btes. The component with the largetdi,
was attributed to Fe(ll) ions far away from the anions (G&mihRuby, 2004), whereas the presence
of a component with smatledEq suggested the presence of(IResites containing anions in their
environment. Such components have been previousiéradis in Mossbauer spectra ®R samples

with other interlayer anions like carbonate or chloriderot for sulfate (Génin and Ruby, 2004).
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Fig. 2. (a-c) High resolution XPS spectra of g2 (a) Fe2p, (b) Olsand (c) p spectra. (dy’Fe

Moéssbauer spectrum of G&, recorded at 20 K and fitted with three doublets.

3.2 Influence of environmental parameters on As removal

The effect of pH, adsorbent loading (solid to liquitioraS/L), ionic strengti{IS*) and the
presence of other potentially interfering aqueous grouteiwians were investigated to determine
their influence on the adsorption of As speciesGiRsos. The removal efficiencies of GB, for
As(lll) and As(V) at an initial concentration of 10 mg! land under the above mentioned varying

conditions are shown in Fig. 3.
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Fig. 3. Removal of 10 mg £ As(lll) and As(V) upon interaction with G, after 24 h as a function
of: (@) pH (S/IL = 4 g L2, 1IS* = 0.05 M), (b) adsorbent loading, S/L (pH 7, IS* 88 M), (c) ionic
strength, 1S* (pH 7, S/L = 4 g1) and (d) presence of competing groundwater ions (at phdl 85t =
0.05 M): pure GRo4 (N0 competing ion)Ca* (100 mg L), Mg?* (50 mg L) or PQ3* (10 mg LY).
Error bars represent standard deviations of triplicate emeets (< 5% relative). Note: IS* here is
defined as the ionic strength based on a 10x and dib@izn from the initial 0.5 M IS of the GR,

suspension (further details, see in Supporting Informdioa S1).

At all pH values testedhe As(V) removal efficiencies (Fig. 3a) were higher congbdoe
As(lll). This is likely because of the higher adsorptidfindy of the pentavalent species on iron
(oxyhydro)oxide surfaces. No significant differences in As@moval efficiencies between pH 7, 8

and 9 were observede. within analytical uncertainties < 2%). Although there were no significant
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differences in removal efficiencie€Rso4 can effectively remove As(V) at a relatively wide range o
pH conditions that can be found in contaminated gheaters (Nickson et al., 2000; Smedley and
Kinniburgh, 2002; Zahid et al., 2008n contrary, the removal efficiency of As(lIy GRsos Was
significantly affected by pH, which is the oppositewdiat was expected. With piAs(lll) removal
efficiency (50.1 £1.5% at pH 7) increased by more 8@ at pH 8 (83.7 + 0.9%) and another 10%
increase was measured at pH 9 (94.6 £ 0. B&¢h surface polymerization of As(lll) complexes has
been previously suggested fBR; and GRoz by XAS analysis (Ona-Nguema et al., 2009; Wang et
al., 2010). Usually, the influence of pH &3 adsorptiorby iron (oxy)hydroxides is controlled by two
factors: (1) the speciation of th&s in solution and (2) the point of zero charge (PZC) of the
adsorbent. Over the pH range tested here, As(lll) wil nesist as HAsO,° and HAsO; species
while As(V) is present as #AsO, and HAsQ? species (Jain et al., 1999). FaRso, with a PZC of
8.3 (Guilbaud et al., AB), the net surface charges wil be negative at pH >aBdBpositive at pH <
8.3. As a result of electrostatic repulsion causedibjas negative charges, one would expect the
removal of both As(lll) and As(V) speciésdecreaseasthe pH is increased from 8 to 9, which was
not observed irour study. Particularly, for As(lll), the biggest increase in removal waserved
between pH 7 and 8 with a lesser change betweerd® gfrig. 3a.) Similar trends have been
observed for As interacted with @& (JOnsson and Sherman, 2008) and ferrinydrite (Jain,et al.
1999; Raven et al., 1998). An increased As(lll) adsormibrigher pH can be attributed to the
possible formation of multi-nuclear complexes on théases of GRo..

With increased adsorbent loading from 2 to 44 the removal efficiency of As(lll) also
increased by ~15% from 34.6 £ 2.7 to 50.1 + 1.5% (Bl). This increase was caused by the larger
number of active surface sites available for As(Ill) complefdesere et al., 2017However, with
further increase in loading to 6 ¢ Lthe efficiency decreased to 39.2 + 6.2fathe case of As(V), no
significant difference (< 0.3% relative) in removal efficiencies were observedrgnhe adsorbent
loadings tested (Fig.b3

The removal efficiencies for both As species decrgagth increasing ionic strength, 1S*
(Fig. 3c) For As(V), this decrease was only about 10% (from >&99.1 + 0.4%) as ionic strength

increased from 0.005 to 0.5 M. On the other hand,ithibitory effect was more pronounced for

11
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As(Ill) where the removal efficiency decreased 58.9 + 3.2%naonic strength of 0.005 M to 37.8 =
0.4% at an ionic strength of 0.5 M, although the di/ezenoval was lower compared to As(V). The
decrease in As removal at higher IS* can be caused byldlecase in available surface sites of
GRsos This results from potential aggregation of GRparticles due to disturbances in the
electrostatic double layer (Shipley et al., 2009).hédgh the presence of ionic species in the
supernatant can also decrease the removal effigiéreylissolved solutes in our experiments (e.qg.,
Fe?*, NH,*, Nat, Ct and S@* ions) have been shown to have littie no effect on As adsorption
(Asere et al., 2017; Guo and Chen, 2005; Gupta,&i04819).

Common aqueous groundwater ioran compete for the available active surface sites on
GRso4 (Folens et al., 2016; Leus et al., 2018). Weettie effect of relevant dissolved potentially
interfering ions in the water matrix through competitadsorption experiments witha?* (100 mg L
1), Mg?* (50 mg L) or PQ?* (10 mg L) and As (10 mg L) to the GRo, suspension at pH 8. The
concentrations of the competing ions were chosen lasdtw average aqueous ion concentrations in
As-contaminated groundwaters in Bangladesh and West Bémdja (Nickson et al., 2000; Zahid et
al,, 2008) and mining-contaminated groundwater qig&sedley and Kinniburgh, 2002; Wiliams et
al,, 1996). The comparison (Fig. 3d) revealed nofsignt change in the removal of As(lll) and
As(V) resulting from the presence of €aons. On the other hand, the presence of*Muns
decreased the removal efficiency by 6.7 + 1.0% for As(l1) 205 + 2.1% As(V) compared to the
Mg?* free systemHowever, analysis of the liquid phases by ICP-OES redethiat Mg* was not
adsorbed on GRy, but remained solvated in the supernatdhis decrease in As removal can be
caused by the high ionic potentilMg?*, allowing it be solvated by water molecules (Lightst et
al, 2001) and resultingn the formation outer-sphere hydrated MMgomplexes. Such aqueous
complexes could potentialy reduce the accessiaityactive surface sites of GR for As
adsorption The presence of P® ions also resulted in the inhibition é&fs adsorption, where the
removal efficiency for As(lll) and As(V) decreased by 7.3 + a8 24.5 £ 1.8%, respectively.
Phosphate, with a tetrahedral molecular geometry amao® the structure of As®, can also form
complexes in the same later@l() and (00 GR surfaces sites where As complexes bind (Bocher et

al.,, 2004).This can resulin a competition betweeQ,* and As species on the available &R
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binding sites, thereby explaining the reeldcAs removal efficiency. Remarkably, the phosphate
removal efficiency was > 90% for both the As(lll) and As(V) petitive adsorption experiments.
This likely results from the higher affinity of iron (oxyhydxides for phosphate compared to As, as
indicated by its higher sorption equilbrium constéRoberts et al., 2004), and the slow exchange of
intially adsorbed phosphate on the &gRsurface sites with the competing As species (Hongahedo

Stanforth, BO1)

3.3  Adsorption kinetics

The rate of As removal over 24 h was determined at gby Beasuring the adsorption
kinetics in batch experiments at initia$ concentration of 10 mgLAs(lll) or As(V), S/L of 4 g Lt
and an ionic strength of 0.05 M. After fitting the kinedata with various adsorption models, the best
fit (R* > 0.9999) resulted from the pseudd-@rder kinetic model (Ho, 2006). The linearized plots fo
the pseudo? order kinetic model are shown in Fig. 4. The caledladsorption rate constants;(k
Table S6) revealed that the uptake of both As spe@esvery fast. Full adsorption (> 99% removal)
of As(V) was achieved within 30 min of contact with &Rwhile As(111) reached equilibrium after 4
h. The more rapid removal of As(V) was caused by the gdrobinding affinity of pentavalent over
the trivalentAs species to iron (oxyhydr)oxides (Roberts et al., 2004¢s&Hast adsorption uptake

rates show that G3, can efficiently remove As(lll) and As(V) within a short time.
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Fig. 4. Pseudo-2 order kinetic data and model fits for the adsorptioA®Epecies on GR.. Initial
concentration is 10 mgLat pH 8, S/L ratio of 4 gt and I1S* of 0.05 M.Error bars represent
analytical uncertainty (< 5% relative) based on replicate measurements of QC solutions analyzed

together with the samples (Table S1).

34 Long-term batch adsorption experiments

At an initial As concentration of 10 mg'l. GRso, remained stable during the course of the
90-day monitoring of batch adsorption experiments. Neeritton (oxyhydr)oxide mineral phases
were identified in XRD patterns of these long-term dmated and As-interacted samples (Fig. 5a).
The TEM images and SAED patterns (Fig. 5b) also sHothat theGRso,4 particles in the 90-day
long interacted samples maintained their well-defitleid hexagonal plate-like morphology and
crystal structure. These observations were also confioyéte fact that the long-term monitoring of
aqueous As in the supernatant (Fig. S6) revealedtahnitial adsorbed As was not released back
into the aqueous phase. Previous studies have shatvadsorbed As can slow down or inhibit the
transformation of GR minerals to other iron (oxyhydr)oxideshsas magnetite (Su and Wilkin, 2005;
Wang et al., 2014), which explains the stabilitythe# As-interacted GR, even after 90 days in our
study. In addition, our results are also consisterit lmitg-term batch experiments of Su and Wilkin

(2005), who showed thats-interacted GRo; remained stable for up to 60 days.
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Fig. 5. (2) XRD patterns and (b-c) TEM images (inset: SAED patt&)o, interacted with 10 mg-L
L As(lll) and As(V) after 90 days. XRD peaks of &sRwere assigned based on published diffraction
data (Simon et al., 2003). The broad amorphous humg2@t B comes from the XRD sample

holder.

3.5  Adsorption isotherms and mechanism

The As adsorption isothermat all tested pH values are shown in Fig. Ejuilibrium
adsorption data were fitted to Langmuir and Freundiichherm models and the calculated fitting
parameters for both models are shown in Table S7. Bas#wditting, the adsorption of As species
on GRyo,4 is best described using the Langmuir model, indicadingmogenous monolayer binding of
As surface complexes at the solid/water interface (Léwad,e2017). Using the Langmuir adsorption
model, we determined the maximum As adsorption cagador both As species onto &R (Table

1). At alkaline pH, the maximum adsorption capaditds(lll) was 2.2 times higher than the value at
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337  neutral pH, while As(V) had 1.5 times higher maximuraaxgtion capacity at pH 7 compared to pH
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341  Fig. 6. Langmuir adsorption isotherms of As species ondaRa-b) Adsorption of As(lll) at pH 7
342 and 8-9, respectively. (c-d) Adsorption of As(V) at pHnd 8-9, respectivelError bars represent
343 analytical uncertainty (< 5% relative) based on replicate measurements of QC solutions analyzed
344 together with the samples (Table S1).

345

346 The spatial distribution of the adsorbed As(IIl) on the GR particles, at an initial concentration
347  of 500 mg L', was examined using HAADF-STEM imaging coupled with EDX mapping (Fig. 7).
348 The EDX elemental map (Fig. 7d) and associated intensity profile (Fig. 7g) show higher
349  concentrations of As can be found near the GR particle edges (ca. two times higher than the 001 GR

350  surface). In addition, the HAADF-STEM image (Fig. 7a) alone shows increased intensity at the GR
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particle edges which we interpret to be associated with increased As concentration. These results,
combined with the adsorption isotherm resutrengthen previous findings that suggested that
As(Il) and As(V) form monodentate mononucleaw)(and bidentate binucleafQ) inner-sphere
complexes on the GR particle edges (Jonsson and Shex@@®, Wang et al., 2010However, the
maximum adsorption capacity for As(lll) determined in therent study could also indicate that
surface complexation may not be limited to thesgRarticle edges but, as mentioned before, may
also result from the presence of multi-nuclear arsenitgolexes (Ona-Nguema et al., 2009; Wang et

al., 2010).
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Fig. 7. (a) HAADF-STEM overview of GRgo, interacted with 500 mg L' of As(IIl) and the

corresponding (b) EDX elemental maps for (b) Fe (light blue), (c) S (yellow), (d) As (magenta) and
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(e) combined Fe and As. (f) The EDX spectrum of (a). The Si signal comes from the use of headspace
crimp vials while C and Cu peaks come from the TEM grid. (g) The EDX signal intensity profile
shows the change in concentration of Fe and As along the integrated line drawn across the marked

area in green (e).

In addition to surface complexation, previous studieith gelenate have shown that
tetrahedral oxyanions (e.g., SQ can also be removed by GR phases by interlayer indtioral
(Refait et al., 2000). In our study intercalation of As(lljdaAs(V) in the interlayer region of GR
would have resulted in changes in the basal spaiiog the ionic radius of As® (2.11 A) and
AsO,* (2.48 A) are different to that of $©(2.30 A) (Goh et al., 2008). However, XRD patterns of
GRso4 interacted with As(Ill) and As(V) at 10 mg!L(Fig. 5a) and 500 mgL (Fig. S7) did not
exhibit shifts in the basal (001) reflections (~10.93 B)accommodate such intercalations. The
intercalation of As(lll) and As(V) in our study, might haveeh inhibited because $Ocannot be

readily exchanged in layered double hydroxides (de Ray,e2001; Miyata, 1983).

3.6 Environmental significance of GR minerals in As-teominated environments

Using the adsorption isotherm modeling data, we @egb the calculated adsorption
capacities for As species on &R and with literature data for all described iron (oxyhyddes
oxyhydroxysulfates and sulffides, which have also beealuated for their efficiency as mineral
substrate for the treatment of As contaminated groundwedeurces (Table 1).

Our data show clearly that GR is among the most effective adsorbents among all the
phases listed in Table 1. This finding has importampiications for the fate and mobilty of As in
anoxic groundwaters where 3 exists. To the best of our knowledge, this is the $isdy to report
the adsorption isotherms of As(lll) and As(V) for &R as well as the in-depth examination of
critical adsorption parameters for As removal. We havevshbat at circum-neutral and slightly
alkaline pH conditions, GR,4 can efficiently adsorb large amounts of As(lll) and As(V)kinga
GRso4 One of the best performing iron-bearing mineral phasésrins of As adsorption. For As(lI1)

at slightly alkalne pH, GRy, is only outperformed by ferrihydrite (Table 1 entry 5) and
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schwertmannite (Table 1 entry 6) (Davidson et al., 2088)rihydrite and schwertmannite are poorly
ordered, highly reactive and thermodynamically metdestabn-bearing mineral phases which can
transform at ambient conditions to more thermodynarmicddible crystaline iron (oxyhydr)oxides
such as goethite and hematite, fast at alkalineitmorsdbut slow at near-neutral pH values (Brinza et
al.,, 2015; Burton et al., 2008; Davidson et al., 2008 et al., 2013; Yee et al., 2006). Moreover,
comparing our data with other Fe-bearing phases (Tgbihdws that among mixed-valent and
redox-active iron (oxyhydr)oxides and sulphides s&Fexhibits an unprecedented As(lll) uptake and
also remains stable for long time periods. Even comptredagnetite (Table 1 entry 4) and iron
suffides (e.g., troiite, pyrite; Table 1 entries 7-9)tthae crystaline and highly stable in reduced
environments, our GR,; showed higher adsorption capacities. This exceptidsa adsorption
capacity makes GR, a novel and potentially highly environmentally-relet mineral substrate for

As sequestration in near-neutral pH and reducedjtulglioxidized groundwater systems.

Table 1. Comparison ofAs adsorption capacities dBRso, With common iron (oxyhydr)oxides

oxyhydroxy sulfates and sulfides.

Particle Adsorption capacity (mg ‘Y
Entry size Surface area Tested
No. Adsorbent (nm) (m? ghe pH As(lln As(V) Reference
Lenoble et al.
1 Goethite - 39 9 22.0 4.0 (2002)
Tang et al.
2 Hematite 5 162 7 95.0 47.0 (2011)
3 Maghemite 7-12 169 - 67.0 95.4 Lin et al. (2012)
Yean et al.
4 Magnetite 12 99 8 134.9 1723 (2005)
Raven et al.
5 Ferrihydrite - 202 5 552.9 222.1 (1998)
Burton et al.
6 Schwertmannite - 280 9 280.4 166.5 (2009)
Wolthers et al.
7 Mackinawite 2 350 7 9.7 32.2 (2005)
Bostick and
8 Troilite - 3 7 17.3 - Fendorf (2003)
Bostick and
9 Pyrite - 41 7 1.0 - Fendorf (2003)
Su & Wilkin
10 GRcos 100300 - 75 123.0 - (2005)
Su & Wilkin
- 105 43.8 6.91 (2005)
11 GRso4 50500 25 7 74.0 104.5 This work
8-9 160.3 69.6 This work
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aSpecific surface area determined by the Brunaimmett-Teller (BET) model? Estimated from Davidson et
al. (2008) cMeasured nitrogen sorption isotherm can be fourfgn S5.

Previous studies have shown that GR phase®xidize As(lIl) to As(V) (Su and Puls, 2004;
Su and Wikin, 2005) Although not investigatedh this study, possible redox transformation can
heavily impact the toxicity and mobility of As inilsoand groundwaters. As(lll) oxidation by GR
mineral phases would be a favorable process as it wesldt in a less toxic and less mobile As(V)
species (Vaughan, 2006). On the other hand, redwftids(V) to the far more toxic As(lll) and the
potential re-release into groundwaters because of ther laffinity of As(lll) for ferric iron
(oxyhydr)oxides would be far more damaging (Roberts e2@04). Further studies are needed to
confirm the potential of As(lll) oxidation in the presené&& and to determine the geochemical and
thermodynamic driving forces in this reaction.

As for redx-active mineral adsorbents, arsenic can stil be rettd®m GRo, Since its
sequestration is highly dependent on pH conditiowts radox environment. Sudden changes in pH or
Eh of the system may cause potential release of sumiammebiized As species back into the
groundwater either by dissolution or oxechange driven transformation of GR phases (Cundy et al.,
2008) Iron mineral phases such as goethite and magnetiieh are common transformation end-
products of GR, are, however, far less reactive and effetiiveral substrates for As sequestration

(Table 1), which can lead to remobilization of As iouhdwaters.

4, Conclusions

In this work, we investigated the interfacial reactiigtween GRBy4 and As species. An
extensive batch adsorption study was performed to egaifie influence of various critical
environmental parameters such as initial concentragtibh, adsorbent loading, ionic strength and
presence of potentially interfering ions on As removag. helve successfully demonstrated that&R
is an effective and stable As(Ill) and As(V) mineral adsorbentpared to other iron (oxyhydr)oxide
phases. GR, demonstrated remarkable maximum adsorption capafuitiess(l1l) and As(V) ofup

to 160 and105 mg g, respectively. This exceptional Askorption reactivity makes GR a potentially
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novel and environmentaly-relevant mineral substrate tfe@ sequestration of As in reduced
groundwater systems. The removal of As is also higHlydppendent- high As(lIl) removal was
obtained at higher pH while As(V) removal was found éorbore favourable at circum-neutral
conditions. GRo4 exhibited fast As uptake rates at alkaline conditi@ommon groundwater species
such as Mg and PQ@*- were found to affect the efficiency of Askorption ontdGRsc4 Overall, our
results clearly highlight importance of redox-active GRemal phases in removing As species from

aqueous solutions and their potential crucial roldnénremediation of contaminated groundwaters.
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methods and data and agueous concentration anafysisg-term batch experiments can be found in
the Supporting Information. Supplementary data assdcwié this article can be found in the online

version.
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