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ARTICLE

Genome-wide association study in frontal fibrosing
alopecia identifies four susceptibility loci including
HLA-B*07:02

Christos Tziotzios et al.#

Frontal fibrosing alopecia (FFA) is a recently described inflammatory and scarring type of hair

loss affecting almost exclusively women. Despite a dramatic recent increase in incidence the

aetiopathogenesis of FFA remains unknown. We undertake genome-wide association studies

in females from a UK cohort, comprising 844 cases and 3,760 controls, a Spanish cohort of

172 cases and 385 controls, and perform statistical meta-analysis. We observe genome-wide

significant association with FFA at four genomic loci: 2p22.2, 6p21.1, 8q24.22 and 15q2.1.

Within the 6p21.1 locus, fine-mapping indicates that the association is driven by the HLA-

B*07:02 allele. At 2p22.1, we implicate a putative causal missense variant in CYP1B1, encoding

the homonymous xenobiotic- and hormone-processing enzyme. Transcriptomic analysis of

affected scalp tissue highlights overrepresentation of transcripts encoding components of

innate and adaptive immune response pathways. These findings provide insight into disease

pathogenesis and characterise FFA as a genetically predisposed immuno-inflammatory dis-

order driven by HLA-B*07:02.
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F
rontal fibrosing alopecia (FFA) is a recently reported liche-
noid and scarring inflammatory skin disorder associated
with widespread cutaneous inflammation and irreversible

hair loss, which occurs predominantly in women of post-
menopausal age (Fig. 1)1,2. Since FFA was first identified by
Kossard in 1994, there has been rapid increase in reported inci-
dence culminating in intense clinical and public interest in the
condition. FFA is often referred to as a dermatological epidemic
with possible environmental trigger(s) implicated3. Nevertheless,
the pathogenesis of FFA also includes a genetic component, as
evidenced by frequent familial segregation4–11.

FFA is considered to be a clinical sub-variant of lichen planus,
a more common inflammatory skin condition of unresolved
aetiology, while also representing a variant of the prototypic
primary lymphocytic cicatricial (or scarring) alopecia lichen
planopilaris (LPP). A key molecular event in the pathology of
scarring hair loss has been postulated to be the immune privilege
collapse at the level of the immunologically shielded hair follicle
bulge, which is home to epithelial hair follicle stem cells (eHFSC):
T-cell mediated inflammatory presence culminates in stem cell
apoptosis and irreversible alopecia12. Dissection of the genetic
basis of FFA and its interplay with environmental risk factors,
therefore, could provide insight into the molecular profile of
lichenoid inflammation, scarring and mechanisms of immune
privilege collapse. Furthermore, the identification of environ-
mental triggers that interact with FFA genetic susceptibility loci
could ultimately contribute to disease prevention by avoidance of
exposures in genetically predisposed individuals (Supplementary
Note 1).

To date there have been no systematic investigations into the
molecular genetic basis of FFA or any other lichenoid inflam-
matory disorder. We hypothesise that common genetic variation
contributes to FFA susceptibility and undertake a genome-wide
association study and meta-analysis of two independent Eur-
opean cohorts of females with FFA and controls and investigate
transcriptomic and metabolomic involvement in the disease.

Results
Genome-wide association study. We undertook a genome-wide
association analysis across 8,405,903 common variants in a UK
cohort of 844 FFA female cases and 3760 female controls.
Inspection of the quantile-quantile plot indicated adequate con-
trol of confounding bias (λGC(MAF>0.05)= 1.03; Supplementary
Table 2; Supplementary Figure 3). We observed genetic variants
with genome-wide significant association (P < 5.0 × 10−8) with
FFA at three genomic loci; 6p21.1, 2p22.2 and 15q26.1 (Table 1).
We estimate the genome-wide SNP heritability for FFA as 46.66%
(SE= 3.00%).

In an attempt to replicate the observed associations at each of
the three loci and identify additional FFA susceptibility loci, we
performed a genome-wide association study across 7,964,651
common variants in our independent Spanish cohort comprising
172 affected females and 385 controls. We observed allelic
associations with FFA at each of the three loci that had been
implicated in FFA susceptibility in the UK cohort. The direction
and magnitude of the effect of these associations was consistent
between the UK and Spanish cohorts (Table 1). To identify
further loci harbouring variation contributing to FFA risk we
performed a statistical meta-analysis of the association summary
statistics from the UK and Spanish cohorts. This revealed a single
additional risk locus at 8q24.22, again with a consistent direction
and magnitude of effect in both studies (Fig. 2 and Table 1) and a
number of loci at which there is suggestive evidence of association
(P < 5 × 10−5; Supplementary Table 3).

We sought to further investigate the allelic basis for the
observed FFA association at 6p21.1, which is located within the
MHC region. We undertook imputation of classical MHC Class I
alleles and evaluated the association of each allele with FFA. The
strongest evidence of association was observed for the
HLA-B allele HLA-B*07:02 (PMeta= 9.44 × 10−117, OR= 5.22
(4.53–6.01); Supplementary Table 4), indicating that this is the
most likely classical HLA allele to be underpinning the observed
SNP associations in this region. Although full characterization of

a b

c d

Fig. 1 Clinical features of frontal fibrosing alopecia. Scalp with frontal hairline recession (a) involving the temporal areas bilaterally (b), as well as eyebrows

(c). Histopathology (d) shows two hair follicles with focal interface changes, and a moderately dense perifollicular lymphoid cell infiltrate with perifollicular

fibrosis, characteristic of FFA (×200)
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the role of HLA genes in FFA is complicated by the complex
linkage disequilibrium structure across the region, a sequential
conditional analysis with both SNPs and imputed HLA alleles
indicates that there may be at least a further two independent
HLA-alleles that contribute independently to disease risk
(Supplementary Figure 3 and Supplementary Tables 4A and 4B).

To further investigate causal genes and alleles at the three
remaining FFA susceptibility loci, we performed Bayesian fine-
mapping of the association signals. This process identified a single
putative causal variant with a posterior probability >0.5 of being
the causal variant underlying the association signal at two of the
three loci (Fig. 3 and Supplementary Table 5). At 2p21.2,
rs1800440, is likely to be the causal variant underlying the
association signal with a posterior probability of 0.98 (Fig. 4). The
FFA protective allele is a missense allele (c.1358A>G p.
Asn453Ser) in the CYP1B1 gene, which introduces a serine
residue in the haem binding domain of the enzyme. In silico
pathogenicity prediction tools predict that this allele has a
deleterious effect on the function of the protein (SIFT= 0.015;
CADD= 32)13,14, which is corroborated by published functional
investigations of the p.Asn453Ser substitution15. At the 8q24.22
locus, rs760327 is the most likely causal allele (posterior
probability= 0.68). The variant is located within intron 1 of the
ST3GAL1 gene encoding the homonymous galactoside sialyl-
transferase enzyme, which has been studied in the context of T
cell homeostasis16,17. At 15q.26.1, statistical fine mapping was
unable to clearly resolve the causal variant at this locus
(Supplementary Table 5), though the most likely causal variant
rs34560261 (posterior probability= 0.4) is located within intron 1

of SEMA4B. Co-localization with skin eQTLs (Supplementary
Figure 5) provides evidence that the same variant(s) underlying
the observed FFA association at this locus are also associated with
variation in the expression of SEMA4B in the skin (Pcoloc= 0.99),
providing support that SEMA4B may be the causal gene at this
locus.

Plasma metabolomic analysis. At the 2p22.2 locus statistical fine
mapping of the causal allele to a functional missense variant in
CYP1B1 implicates variation in xenobiotic and endogenous
hormone metabolism18–22 as a potential mechanism influencing
disease susceptibility. To evaluate if there are systematic differ-
ences in metabolomic profiles between FFA cases and controls we
compared levels of plasma metabolites in 52 treatment-naïve FFA
cases and 35 ethnicity-, gender-, age- and BMI-matched healthy
controls (Supplementary Figure 6). We did not observe differ-
ences in the distribution of individual metabolite levels between
cases and controls of the magnitude detectable by this experiment
following multiple-testing correction (Supplementary Table 6),
nor did we observe any enrichment of xenobiotic or endogenous
hormone metabolites in the extremes of the distribution of
observed mean differences.

Transcriptomic analysis. To further investigate genes and
biological pathways involved in FFA pathobiology we per-
formed transcriptome sequencing in lesional scalp skin from
seven treatment-naïve postmenopausal FFA cases and com-
pared to transcriptome profiles from scalp skin in seven

Table 1 Genome-wide significant loci for UK, Spain and meta-analysis

UK cohort Spanish cohort Meta-analysis

Locus Gene Position (hg19) SNP ID RA PA RAF Cases RAF Controls OR (95% CI) P OR (95% CI) P OR (95% CI) P

2p22.2 CYP1B1 38,298,139 rs1800440 T C 0.87 0.81 1.62 (1.38–1.90) 5.89x10−9 1.81 (1.28–2.58) 0.00090 1.65 (1.43–1.91) 2.44x10−11

6p21.1 HLA-B 31,320,562 rs2523616 T C 0.47 0.19 4.69 (4.07–5.40) 8.52x10−101 4.97 (3.52–7.02) 8.09x10−20 4.73 (4.15–5.39) 7.60x10−119

8q24.22 ST3GAL1 134,503,229 rs760327 G C 0.46 0.39 1.32 (1.18–1.47) 1.18x10−6 1.50 (1.14–1.97) 0.00357 1.34 (1.21–1.49) 2.15x10−8

15q26.1 SEMA4B 90,734,426 rs34560261 T C 0.22 0.17 1.52 (1.32–1.76) 8.47x10−9 1.51 (1.03–2.21) 0.03257 1.52 (1.22–1.74) 8.12x10−10

Each SNP was tested for association by logistic regression using an additive regression model; total N= 5161 biologically independent subjects (Ncases= 1044 and Ncontrols= 4145)

RA risk allele, PA protective allele, RAF risk allele frequency, OR odds ratio, RAF risk allele frequency, CI confidence interval
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Fig. 2 Manhattan plot showing the P values for the meta-analysis genome-wide association study. Each SNP was tested for association by logistic

regression using an additive regression model; the interrupted line indicates the threshold for genome-wide significance (P= 5 × 10−8); the y axis has been

collapsed for better illustration of all genomic signals; the continuous line represents the threshold for suggestive significance (P= 1 × 10−5); N= 5161

biologically independent subjects (Ncases= 1044 and Ncontrols= 4145)
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healthy matched controls. Differences in transcript abundance
between cases and controls in these bulk tissue samples was
observed for 117 genes with a greater representation of tran-
scripts from 80 genes in affected tissue and 37 genes with
reduced representation of their respective transcripts (Sup-
plementary Tables 7–9; Supplementary Figure 7). Of these,
only C2, within the MHC at 6p21.33, is located within 1 Mb of
any of the FFA associated loci and only two of the 117 genes

(CCL19 and EPSTI1) are located within 1 Mb of any variant
with moderate evidence of association (P < 5 × 10−5) with FFA.
Investigation of the enrichment of gene sets and pathways
indicate that immune genes are over-represented amongst the
differentially expressed genes (DEGs) (Supplementary
Tables 8–12). Notably, four of the 10 most extreme DEGs are
genes that have an established role in the interferon gamma
(IFNγ) pathway.
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Discussion
We have identified four genomic loci, at which genetic variation is
robustly associated with the lichenoid inflammatory and scarring
dermatosis FFA in two independent cohorts of European
ancestry.

The strongest effect on FFA susceptibility is observed at 6p21.1
which is located within the MHC region. Through imputation of
classical HLA alleles we implicate the Class I allele HLA-B*07:02
as conferring a five-fold increase in risk of FFA. The highly
polymorphic HLA genes and their encoded proteins play a key
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role in self and non-self immune recognition and are known to
determine susceptibility to numerous infectious and auto-
immune disorders23. HLA-B*07:02 itself has previously been
reported to be associated with HIV progression but has not been
implicated in the susceptibility to human disease24. The hair
follicle bulge region and the outer root sheath express low levels
of HLA-A, HLA-B and HLA-C and these are key to rendering
immune privilege25,26. HLA-B*07:02 may facilitate the process of
hair follicular autoantigen presentation culminating in the auto-
inflammatory lymphocytic destruction of the hair follicle bulge
and its resident epithelial hair follicle stem cells. Investigation of
differentially expressed genes between affected and unaffected
scalp tissue further highlights the importance of genes encoding
the components of innate and adaptive immunity and, notably,
the IFNγ pathway, which is an important regulator of antigen
presentation. Also relevant to a putative role of T cell dysfunction
in FFA, the lead variant at the 8q24.22 locus is located in intron 1
of ST3GAL1, which encodes a membrane bound sialyltransferase.
Changes in cell surface glycan structures have been implicated in
human T cell lymphocyte activation and maturation27 and
ST3GAL1 itself has been implicated in immunity by home-
ostatically controlling CD8+T cells16,17.

At 2p22.2 we observe strong evidence that the causal variant
underlying the association at this locus is a missense variant in
CYP1B1, a ubiquitously expressed gene encoding the Cytochrome
P450 1B1 microsomal enzyme, also known as xenobiotic mono-
oxygenase and aryl hydrocarbon hydroxylase. This enzyme con-
tributes to the oxidative metabolism of oestradiol and oestrone to
their corresponding hydroxylated catechol oestrogens28–30.
Functional investigation of allelic variation in CYP1B1 has shown
that the FFA protective p.Asn453Ser allele increases the rate of
CYP1B1 degradation leading to reduced intracellular CYP1B1
levels15. Given the established role of CYP1B1 in sex hormone
metabolism, alongside the female preponderance of FFA and its
rapid and recent increase in incidence, it is plausible to speculate
that an increase in exposure of females to a CYP1B1 substrate,
whether endogenous or exogenous, may contribute to the
development of FFA. The temporal relationship between
the introduction of oral contraceptives in the 1960s and the
appearance of FFA in the published literature in the 1990s should
be fully explored with a well-designed gene-environment inter-
action study. Nevertheless, no striking differences in such sub-
strates nor any other metabolites were identified in our
metabolomic study although this may reflect the limited power of
this initial investigation to observe more subtle disruption of this
metabolic pathway. It should be noted that CYP1B1 has also been
implicated in human immune cell regulation31,32 and the
potential that FFA susceptibility at the 2p22.2 is mediated
through immune pathways cannot be excluded.

In summary, in this exploration of the molecular genetics of
FFA susceptibility we identify common alleles at four genomic
loci that contribute to disease risk. The putative biological impact
of this genetic variation indicates that the disease is a complex
immuno-inflammatory trait underpinned by risk alleles in MHC
Class I molecule-mediated antigen processing and T cell home-
ostasis and function. The insight into the pathobiology of FFA
from the genetic susceptibility loci combined with the observation
that there is an increase in transcripts encoding components of
the IFNγ pathway in affected scalp tissue suggest that drugs such
as JAK inhibitors, some of which have already proved effective in
alopecia areata33 and trialled in lichen planopilaris34, may prove
to be efficacious for FFA.

Methods
Clinical resource. Ethical approval was granted by the Northampton NRES
Committee, UK (REC 15/EM/0273) and the study was conducted in accordance

with the Declaration of Helsinki (https://www.wma.net/policies-post/wma-
declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-
subjects/). We ascertained two independent cohorts of highly clinically consistent
female cases of classic FFA, diagnosed by specialist dermatology clinics in the UK
and Spain. All recruited cases were of European ancestry and diagnosed with FFA
on the basis of the following clinical and histopathological features (recently
proposed as diagnostic criteria)35: (1) cicatricial alopecic involvement of the
frontal, temporal/parietal hair margin; (2) bilateral eyebrow loss; (3) clinical, tri-
choscopic (or histological) evidence of lichenoid perifollicular inflammatory pre-
sence; (4) facial or body hair loss; (5) absence of multifocal scalp involvement and
other signs suggestive of classic LPP or its Graham-Little-Piccardi-Lasseur
subvariant.

All research participants provided written informed consent for participation in
the study. The individual depicted in Fig. 1 provided informed consent for
publication of her clinical images.

Genotyping and genome-wide association analysis. For the UK cohort,
genome-wide genotyping of cases was undertaken using Infinium OmniEx-
pressExome BeadChip array (Illumina) and an unselected female control cohort
from the English Longitudinal Study of Aging (ELSA) project (http://www.elsa-
project.ac.uk), genotyped on the Infinium Omni2.5M BeadChip array (Illumina).
We retained variants that were assayed with the same probe design on both gen-
otyping arrays and excluded variants with a call rate of <99% or which deviated
from Hardy–Weinberg Equilibrium (P < 10−4). Individuals with a call rate of <99%
or extensive heterozygosity were also excluded. A subset of 46,789 variants in
linkage equilibrium (r2 < 0.2 between each pair) was used to evaluate relatedness
between individuals using the KING software package (KING; version 2.1.1).
Individuals were thus removed from the study such that no two individuals had
estimated relatedness closer than third degree (Kinship coefficient > 0.0442).
Principal component analysis of the same set of 46,789 variants was performed and
individuals outlying the main cluster (implying non-European ancestry) were also
excluded from further analysis.

In the Spanish cohort, FFA case genotyping was performed using the Infinium
OmniExpressExome BeadChip array (Illumina). Genotypic data for unaffected
controls were obtained from 1061 individuals from the INfancia y Medio Ambiente
(INMA) project (Valencia, Sabadell and Menorca, Spain http://www.proyectoinma.
org) genotyped on the Omni1-Quad BeadChip (Illumina). Genotype calling,
quality control and imputation were undertaken following the same protocol as
described for the UK cohort across all variants that are assayed on both genotyping
arrays with the same probe design.

Following quality control, genome-wide imputation was performed for both
cohorts using the Michigan Imputation Server, with the Haplotype Reference
Consortium (HRC) reference haplotype panel (www.haplotype-reference-
consortium.org). All variants with an imputation info score <0.7 or a minor allele
frequency of <0.005 were excluded from downstream analysis. This process of data
generation and QC resulted in a combined total of 7,039,930 variants successfully
genotyped or imputed in a combined total of 1016 cases and 4145 controls.

Genome-wide association testing was performed on all variants with MAF >
0.005 using a logistic Wald association test (EPACTS), including the first five
principal components as covariates. Association testing was performed based on
844 affected females and 3760 female controls from the UK cohort and separately
for 172 affected females and 385 female controls from the Spanish cohort.
Association summary statistics were subsequently combined for 7,039,930 variants
across the UK and Spanish cohorts via a standard error-weighted meta-analysis
using METAL36. To evaluate potential confounding bias due to population
stratification or residual cryptic relatedness we calculated the genomic inflation
factor (λGC) for variants with MAF > 0.05 and the LD score regression intercept for
each cohort and the combined meta-analysis37.

Causal variant identification and evaluation. For the UK and Spanish case-
control cohorts, imputation of classical HLA alleles to two- and four-digit reso-
lution was performed with the SNP2HLA tool, based on the genotypes of 1297
MHC region single nucleotide polymorphisms (SNPs) genotyped in both phases38.
In the UK cohort, dosage-based association testing was performed in PLINK v1.9
for all 208 alleles that were well imputed (r2 > 0.9), using a logistic regression
framework that included the same covariates as the full GWAS39. Replication of
specific variants of interest was undertaken in the Spanish replication cohort in the
same way, and standard-error weighted meta-analysis was performed using the
meta package in R40. To test for multiple independent association signals, stepwise
conditional analysis was performed: at each round of testing, the dosage of the
HLA allele achieving the lowest discovery phase association p-value in the previous
round was added to the list of covariates. This process was iterated until no allele
achieved genome-wide significance (PMeta < 5 × 10−8). To ascertain which specific
variants underlie the observed allelic associations, a similar stepwise analysis was
performed using imputed HLA-region SNPs in place of HLA alleles. To verify that
no additional genome-wide significant independent signals remained after the final
iteration, we also tested for association of the HLA-region SNPs in the full GWAS
dataset after conditioning on all independently-associated HLA alleles.

At 2p22.2, 8q24.22 and 15q26.1, fine-mapping was undertaken to identify
putative causal variant(s) underlying the observed association signal41. For each
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locus, we constructed a credible set of variants considered most likely to be causal
based on evidence for association as quantified by their Bayes factor42.

In order to explore the correlation between genetic variation and tissue
expression, eQTL colocalization analysis was performed between the observed FFA
association signals and sun-exposed skin cis-eQTL data from the Gene-Tissue
Expression (GTEx) project database43. Candidate skin eQTLs were identified by
looking into whether any variant within the FFA risk loci was associated with
varied expression of nearby genes. Bayesian testing for colocalization between the
FFA association signal and the skin eQTL signal was undertaken using a set of
overlapping variants for the two datasets, employing the R package coloc tool44,
with a defined prior probability of colocalization of P= 10−5.

Heritability estimation. FFA heritability explained by genome-wide SNPs (MAF
> 0.01) was estimated using the genomic-relatedness-based restricted maximum-
likelihood (GREML) approach, implemented in the software tool package GCTA45.
Heritability estimates were expressed on the liability scale using an estimated
prevalence of FFA of one in 5000.

Transcriptomic analysis. We performed transcriptome profiling with RNA-
sequencing of scalp skin from seven cases of European ancestry and seven matched
controls (Supplementary Table 1). All seven cases were clinically evaluated prior to
obtaining skin biopsy from actively inflamed parietal scalp skin for histologic
confirmation of FFA. Samples from cases were only subjected to downstream
processing if they were confirmed to be actively inflamed upon histological eva-
luation. Macroscopically unremarkable parietal scalp skin was also harvested from
healthy controls undergoing plastic facial surgery and all control tissue specimens
were also examined microscopically and confirmed to be histologically normal
(Supplementary Figure 1). Total RNA was isolated from each tissue sample using
the RNeasy Plus Universal kit (Qiagen, Valencia, USA) as per the manufacturer’s
protocol and instructions. Samples with RNA Integrity Number (RIN) < 8 were
rejected from further processing.

Whole transcriptome RNAseq libraries were prepared using the Agilent
SureSelect strand-specific RNA library preparation kit (Agilent, Santa Clara, USA)
and multiplexed sequencing was performed on the HiSeq 2500 platform (Illumina,
San Diego, USA).

Processing of the raw transcriptomic data files was conducted using an
established analytical pipeline (Supplementary Figure 2). EdgeR software package
in the (R-based) Bioconductor was utilized to undertake differential expression
analysis46, following the trimmed mean of M-values (TMM) normalization
method47. Genes with very low expression (defined as genes with counts per
million (CPM) < 1 in at least seven samples) were discarded and not considered for
further differential expression analysis. Transcript abundance was estimated and
compared between the two groups with an exact (Robinson & Smyth) negative
binomial (NB) test in EdgeR (Supplementary Figure 2). The P value distribution
was obtained and Benjamini-Hochberg (BH) adjusted P values were estimated:
genes with a false discovery rate FDR ≤ 0.05 and log fold change LFC ≥ 1 or ≤−1
were considered significantly differentially expressed and extracted. Such
differentially expressed genes were used to generate a heat map using the R package
gplots2 via the START interface48.

Gene set enrichment and pathway analysis (GSEA) was performed as
implemented in GAGE (R package) using C2 (pathways) and C5 (gene ontology)
gene set collections from the Molecular Signatures Database (MSigDB)49,50. The
p values for the gene set enrichment were calculated using default Stouffer test in
GAGE and FDRs were generated using the BH procedure. Differentially expressed
HLA genes were excluded from the analysis because of the challenges of accurately
quantifying the expression levels of these highly polymorphic genes (due to the
difficulty of correctly mapping divergent reads to a single reference genome).

Plasma metabolomic analysis. Fifty-two treatment-naïve post-menopausal
female FFA cases of European ancestry (median age 64; mean BMI 24.7) and 35
matched controls (median age 58; mean BMI 24.5) were recruited. Peripheral
venous blood was collected and centrifuged (at 1300 g for 15 min) to separate
plasma, which was aliquoted and stored at −80 oC until required for further
analysis. Metabolomic profiling of samples was undertaken by Metabolon (Dur-
ham, NC, USA) by subjecting plasma samples to methanol extraction prior to
splitting into aliquots for analysis by ultra-high pressure liquid chromatography/
mass spectrometry (UHPLC/MS)51. Metabolites were identified by automated
comparison of ion features to a reference library of chemical standards followed by
visual inspection for quality control52. Missing values were presumed to be below
the limits of detection and were therefore imputed to the compound minimum.

Metabolomic data analysis was undertaken, having accounted for medicinal
drug-related by-products and discarded unnamed molecules. We constructed a
heat map illustrating group differences at individual and group average level using
MetaboAnalyst 4.053. Univariate comparison of abundance of 947 named small-
molecule (<500Da) metabolites between cases and controls was performed using
the Mann-Whitney U test.

Data availability
Full meta-analysis summary statistics are available at the European Genome-phenome
Archive (EGA) under the collection ID EGAS00001003460. All raw and processed
transcriptomic data are available at the Gene Expression Omnibus (GEO) under the
collection ID GSE125733. All other data that support the findings of this study are
available from the corresponding author upon reasonable request.
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