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Summary

A formulation has been derived for the flow of non-Newtonian (power-law) fluids

in deformable, fractured porous media. The formulation is enhanced with a sub-grid

scale model to accurately represent the flow of the power-law fluids inside the cracks.

The resulting equations have been discretised using standard (Lagrangian) finite ele-

ment shape functions as well as with Non-Uniform Rational B-Splines (NURBS),

which have been cast into a standard finite element datastructure using Bézier extrac-

tion. The effect of the power-law index on the velocity inside the fracture and on

the total fluid flow through the porous medium has been analysed for a typical

boundary-value problem. It is shown that large differences between non-Newtonian

and linearised Newtonian fluids can occur for the fluid velocity inside the fracture.

This can significantly influence the total fluid transport through the domain. A mesh

sensitivity study has been carried out as well, and shows that markedly smaller ele-

ment sizes are required in order to obtain accurate results for the local flow inside

the fracture, compared to the element sizes necessary for obtaining accurate results

inside the porous medium away from the fracture. Moreover, a comparison has been

made between the results obtained using standard Lagrange polynomials and those

obtained using NURBS. It is shown that while both discretisation methods are able to

accurately simulate the deformations and pressures in the porous medium, the higher

interelement continuity of NURBS is mandatory for obtaining correct values of the

fluid velocities inside the fracture, especially near the tips.

KEYWORDS:

poroelasticity, fracture, non-Newtonian fluids, power-law fluids, isogeometric analysis

1 INTRODUCTION

Fluid flow in porous media is of major importance for a large number of geomechanical problems. Examples are underground

oil flow and recovery, and the spreading of pollutants. Applications outside geo-engineering include blood flow, and fluid flow

through filters. In most cases, the flow field is not only influenced by the properties of the fluid and the microstructure of the

porous medium, but also by the possible presence of fractures, either pre-existing, or induced.

In one of the early models for simulating flow and deformation in fractured or fracturing porous media, the continuum was

discretised using finite elements, while the fluid flow inside the (single) fracture was approximated using a finite difference

method1. Alternatively, the use of zero-thickness hydromechanical interface elements has been suggested, initially for modelling
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fluid-filled pre-existing fractures2,3. For propagating cracks remeshing can be used, where hydromechanical interface elements

are still used for modelling the flow in the fracture4,5. Alternatively, extended finite elements can be used to model pre-existing

fractures as well as freely propagating fractures6 or shear bands7.

Different from the approach pioneered by Boone and Ingraffea1, where the porous continuum and the crack were modelled as

different domains, a multi-scale approach can be adopted which builds on the observation that the width of the crack is several

orders of magnitude smaller than its in-plane dimensions or the dimensions of the porous bulk material. The advantage is that an

extra mesh to simulate the fluid flow inside the fractures is not required. Yet, it allows to simulate the effects of fractures on the

fluid flow while keeping a relatively coarse mesh, thus enabling the simulation of large domains. This assumption was used in

zero-thickness hydro-mechanical interface elements, either for pre-existing faults2,3, or for propagating cracks using remeshing

techniques4,5. A subgrid scale model to capture the fluid flow in the fracture has been formulated departing from the assumption

that the in-plane dimensions of the fracture are large compared to its width8. Unsurprisingly, the result is an expression closely

related to Reynolds’ equation, including the cubic dependence on the fracture width. However, since the approach assumes the

fluid pressures in the crack and in the bulk material to be equal, leak-off, as for instance encountered when pressurising a crack

(e.g., in hydraulic fracturing), cannot be modelled. To enable the inclusion of a pressure difference in the formulation by using

an interface permeability, a generalised subgrid scale was introduced9,10,11. A different approach to represent the added fluid

transport inside the fractures was published by Khoei and co-workers12,13,14.

A further complication is that in relevant applications the fluid behaviour is often non-Newtonian. This requires the problem

either to be approximated, to be linearised, or to have the nonlinear effects included in the formulation. Not much work been done

on the flow of non-Newtonian fluids in porous media15,16, or on the modelling of non-Newtonian fluid flow inside pressurised

fractures17. Yet, the potential impact of including non-Newtonian fluid flow on the propagation speed and direction of fractures

has been demonstrated18. Further simulations of non-Newtonian fluids in porous media with pre-existing cracks, albeit restricted

to non-deformable porous media, have shown the influence of these cracks on the pressure gradient, which in turn influences

the behaviour of the fluid inside the porous medium19.

While many applications involve non-Newtonian fluids and the effects can be important, no formulations exist for a

deformable, poroelastic medium, including the effect of the fluid transport inside fractures. The aim of this paper is to present

a formulation which encompasses these effects. In this contribution the flow inside the porous medium will be approximated

using the generalised Darcy law20. The flow inside the cracks will be simulated using a subgrid scale, continuous pressure

model, where the fluid pressure is assumed to be continuous across the crack, similar to the formulation for Newtonian fluids8.

The influence of the power-law index on the behaviour of the fluid inside the poroelastic bulk material and inside the fracture

will be analysed, and we will show the influence of including the non-Newtonian effects compared to linearising the fluid and

approximating it as Newtonian. Attention will also be given to mesh sensitivity, and we will show the difference between using

isogeometric shape functions compared to traditional Lagrangian shape functions.

2 GOVERNING EQUATIONS

We consider a domain Ω which consists of a porous material and is divided into two parts by a discontinuity Γd , Figure 1. To

represent a crack Γd must be C−1 discontinuous in the displacements. For modelling the fluid pressure across the discontinuity,

various possibilities exist10,11. The simplest possibility, which has been adopted here, is to assume that the pressure is C0

continuous at Γd , which implies that the velocity of the fluid is discontinuous across Γd .

2.1 The porous bulk material

We consider quasi-static processes and assume that the deformations in the solid occur fast compared to the fluid flow. These

assumptions allow a description of the domain Ω by the hydro-static momentum balance:

( ⋅ � = 0 x ∈ Ω (1a)

u = u x ∈ Γu (1b)

n ⋅ � = t x ∈ Γt (1c)

nd ⋅ � = tΓd
x ∈ Γd (1d)
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FIGURE 1 Schematic overview of the domain Ω with the internal discontinuity Γd . The local coordinate system s, n is used for

the fracture, and ℎ is the fracture height.

with u the displacements of the porous material, u the prescribed displacements on the boundary Γu, while t and tΓd
are the

tractions on the external boundary Γt and the internal discontinuity Γd , respectively. n is the normal vector of Γt, and nd that of

the discontinuity, Γd .

The total stress � in a fully saturated porous material is defined as:

� = �s − �pI (2)

where I is the second-order unit tensor, � is the Biot coefficient, and p the pressure of the interstitial fluid in the porous material.

The stress inside the solid material, �s, is assumed to be linearly related to the strain via:

�s = D ∶ " (3)

with D the elastic fourth-order stiffness tensor of the porous material and " = ∇su the infinitesimal strain of the porous material,

∇s denoting the symmetrised gradient operator.

The fluid pressure is obtained from the mass conservation of the solid and fluid subject to the appropriate boundary conditions:

1

M

)p

)t
+ �( ⋅ u̇ + ( ⋅ q = 0 x ∈ Ω (4a)

p = p x ∈ Γp (4b)

n ⋅ q = q x ∈ Γq (4c)

nd ⋅ q = nd ⋅ qd x ∈ Γd (4d)

with p being the pressure of the interstitial fluid, q = nf (v− u̇) the flux of the fluid within the porous material, and u̇ and v being

the velocities of the solid and fluid, respectively, nf is the porosity, p the prescribed pressure on Γp, q the prescribed inflows on

Γq , qd the fracture inflow on Γd and M the Biot modulus.

Within non-Newtonian fluids the power law model is the most widely used. In it, the shear stress is defined as:

� = �0

(
)v

)y

)n

(5)

with �0 the consistency factor or base viscosity and
)v

)y
the shear rate in the fluid. n is the power-law fluid index with n < 1

representing shear-thinning fluids, n = 1 defining Newtonian fluids, and n > 1 for shear-thickening fluids. In a one-dimensional

context the fluid flux of power-law fluids inside porous media can be cast in the following explicit format20,21,22:

q = k∗
f

(
Δp

ΔL

) 1

n

(6)

with Δp a pressure difference applied over a distance ΔL. The effective permeability k∗
f

is defined as:

k∗
f
=

n

3n + 1

(
50

3
k

) 1+n

2n (
2C�0

)− 1

n n
n−1

2n

f
(7)
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with k the intrinsic permeability of the porous material and C a constant normally taken as
50

24

22. Since k∗
f

only depends on

material properties of the solid and the fluid, its value is constant. An implicit form for multi-dimensional cases has been

formulated and used as well23,15:

(p = −
�0

k∗
|q|n−1 q (8)

with k∗ defined as:

k∗ =
1

2C

(
50k

3nf

) n+1

2
(

n nf

3n + 1

)n

(9)

Equation 8 can be rewritten in an explicit format:

q = −k∗
f
|(p|∑∞

i=1
(1−n)i

(p (10)

Assuming 0 < n < 2, which is valid for most fluids, this equation can be simplified to24:

q = −k∗
f
|(p| 1

n
−1

(p (11)

Finally, the conservation of mass as in equation 4a is combined with the explicit expression for the flux of the power-law fluid

(equation 11), which results in:
1

M

)p

)t
= −�( ⋅ u̇ + k∗

f
( ⋅

(
|(p| 1

n
−1

(p

)
(12)

2.2 Fluid-transporting fractures

The traction at the internal discontinuity, tΓd
, is assumed to be composed of an effective traction, td and the fluid pressure p

acting on the walls, similar to the decomposition of the total stress in the bulk material, eq. 2:

tΓd
= td − pnd (13)

The traction td can be obtained from a cohesive-zone model25, but in the examples shown has been assumed zero (td = 0) for

the complete fracture. To solve the equations in an incremental-iterative manner, eq. 13 needs to be linearised. Noting that the

traction is a function of the crack opening JuK the result is:

dtΓd
= DddJuK − nddp (14)

with the stiffness matrix:

Dd =
)td

)JuK
(15)

Zero-thickness hydromechanical interface elements were used to model the initial crack, but also inserted for the crack exten-

sion a priori. In order to prevent adding a nonphysical compliance to these non-fractured elements, the stiffness matrix is then

given by:

Dd =

[
kn 0

0 ks

]
(16)

with the dummy stiffness parameters kn and ks being assigned high values. Since the traction - crack-opening relation is normally

set up in the local s, n - coordinate system, it has to be rotated to the global coordinate system. With R the rotation matrix

between both coordinate systems the stiffness matrix which enters the global momentum balance reads:

Dd = RTDdR (17)

The flow inside the fracture is described in a similar manner as for Newtonian fluids8. The pressure difference over the fracture

is assumed to be small compared to the pressure gradients in the surrounding porous medium. This allows the assumption of a

uniform pressure in the normal direction inside the fracture. Furthermore, it is assumed that the fluid inside the fracture reacts

fast to changes in the pressure compared to the fluid inside the porous media. This allows the fluid inside the fracture to be at a

steady state. A schematic overview of the fracture, including the local (s, n) coordinate system and the definition of the fracture

height ℎ, is given in Figure 1.

Combining the momentum balance of the fluid in the fracture in the s-direction for a two-dimensional configuration,

−
)p

)s
+

)�

)n
= 0 (18)
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with the constitutive relation for power-law fluids, equation 5, yields:

0 = −
)p

)s
+

)

)n

(
�0

(
)v

)n

)n
)

(19)

Herein, p is the pressure inside the fracture, equal to the pressure of the fluid at the boundary of the surrounding porous medium,

and v is the tangential velocity inside the fracture. Integrating equation 19 and assuming the velocity at the walls to be equal to

the velocity vf inside the porous medium (no slip assumption) results in an expression for the fluid velocity profile inside the

fracture:

v(n) =
n

n + 1
�
−

1

n

0

||||
)p

)s

||||
1

n
−1 )p

)s

(
||n||

1

n
+1

−
(
ℎ

2

) 1

n
+1
)

+ vf for −
ℎ

2
≤ n ≤ ℎ

2
(20)

Since the velocity profile only depends on the deformation and the pressure of the surrounding porous material, it can be used

to describe the flow inside the fracture without adding pressure degrees of freedom. The velocity vf at the wall is approximated

from the generalised Darcy’s relation inside the porous bulk material and reads:

vf = −
k∗
f

nf

||||
)p

)s

||||
1

n
−1 )p

)s
+ u̇s (21)

with u̇s the velocity of the solid tangential to the fracture at the wall.

We complement the constitutive relation and the momentum balance by the mass balance in the fracture:

)�f

)t
+ ( ⋅

(
�fv

)
= 0 (22)

where �f is the fluid density. Since the fluid velocity inside the fracture is much higher than that inside the porous medium, the

compressibility of the fluid inside the fracture can be neglected. For two-dimensional configurations this assumption reduces

eq. 22 to:
)v

)s
+

)w

)n
= 0 (23)

where w is the velocity in the normal direction. Integrating this equation over the height of the fracture results in the velocity

jump normal to the fracture:

JwKf = w

(
ℎ

2

)
−w

(
−
ℎ

2

)
= −

ℎ

2

∫
−

ℎ

2

)v

)s
dn (24)

Substitution of the velocity for a power-law fluid from eq. 20 into this equation subsequently results in:

JwKf =
2

2n + 1

(
ℎ

2

) 1

n
+2

�
−

1

n

0

||||
)p

)s

||||
1

n
−1 )2p

)s
2
+
(
ℎ

2

) 1

n
+1

�
−

1

n

0

||||
)p

)s

||||
1

n
−1

)ℎ

)s

)p

)s
− ℎ

)vf

)s
(25)

In order to relate the expression for the crack inflow/outflow to that for the fluid flow inside the porous medium, we depart

from the definition for the fluid flux inside the porous material:

nΓd
⋅ qd =

1

2
Jn ⋅ qK =

1

2
nf Jwf −wsKporous (26)

with JwsK the velocity jump of the solid normal to the fracture and Jn ⋅ qK the fluid flux jump normal to the fracture. Next, the

velocities of the solid and the fluid inside the porous medium are related to those inside the fully open fracture via:

Jwf Kporous =
1

nf
Jwf Kfracture (27)

JwsKporous =
1

nf
JwsKfracture (28)

Using these definitions and exploiting equation 26 results in the coupling between the flow inside the porous material and that

inside the fracture:

nΓd
⋅ qd =

1

2

(
Jwf K − JwsK

)
(29)

with Jwf K defined in eq. 25 and

JwsK =
)ℎ

)t
(30)

the rate at which the fracture opens. The jump in the wall velocity accounts for the fluid being absorbed into the fracture when

it opens, and being re-inserted into the porous medium when it decreases.
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3 DISCRETISATION

The weak form of the momentum balance is obtained by multiplying equation 1a with the test function � for the displacements

and using the divergence theorem. This results in:

∫
Ω

(� ∶ (�s − �pI)dΩ − ∫
Γd

� ⋅
(
td − pnd

)
dΓ = ∫

Γt

� ⋅ t dΓ (31)

Similarly, equation 4a is transformed into a weak format by first substituting the expression for the fluid flux from equation 11,

and multiplying the result by the test function for the pressure, � :

∫
Ω

��( ⋅ u̇ dΩ + ∫
Ω

k∗
f
|(p|1∕n−1 (� ⋅ (p dΩ + ∫

Ω

1

M
�ṗ dΩ + ∫

Γd

�nd ⋅ qd dΓ = −∫
Γq

�q dΓ (32)

Equations 31 and 32 have been discretised using traditional Lagrange shape functions, which are commonly used in finite

element analysis, and also with Non-Uniform Rational B-Splines (NURBS), which have been proposed for use in IsoGeometric

Analysis (IGA). To make the latter class of functions compatible with standard finite element data structures, Bézier extrac-

tion has been used26, which allows the ensuing derivation to be carried out in a uniform manner. It has been argued that the

higher-order continuity properties of NURBS are beneficial in poromechanical problems, since they allow for a straightforward

satisfaction of the local mass balance at element boundaries27,28. In a subsequent section we will quantify this advantage for a

typical poromechanical boundary value problem.

We next assemble the shape functions for the displacements of the solid in matrix N s and those for the fluid pressure in Nf :

u =

nel∑
e=1

N el

s
uel (33)

p =

nel∑
e=1

N el

f
pel (34)

The standard finite element shape functions have a C0-interelement continuity. As alluded to, NURBS can have higher-order

continuity as NURBS of order p have a Cp−1-interelement continuity. Since the fracture inflow formulation from eq. 25 contains

second derivatives of the pressure, cubic NURBS are exploited for the fluid pressure in order to obtain a continuous fracture

inflow profile. This is impossible with Lagrangian interpolants. Therefore, quadratic shape functions are used since they satisfy

the necessary variational requirements. In either case the strain-nodal displacement operator B is used to map the displacements

onto strains at element level:

"el = Buel (35)

In order to prevent spurious pressure oscillations, the inf-sup condition29 imposes the necessary condition that the shape func-

tions for the displacements are an order higher than those for the fluid pressure. In the finite element simulations, quadratic shape

functions were however used for the displacements as well as for the fluid pressure. It was checked that no noticeable pressure

oscillations occurred. When using NURBS, compliance with the inf-sup condition can be accomplished using p-refinement30.

Herein, quartic shape functions have been used for the solid displacements.

We next use the interpolations for the displacements and for the fluid pressure, eqs 33 and 34, and the B matrix to discretise

the weak form of the momentum balance, eq. 31. This results in:

f ext − f int − f d = 0 (36)

with external force f ext defined in a standard manner as:

f ext = ∫
Γt

N stdΓ (37)

The internal force which results from the bulk, f int, is given by:

f int = ∫
Ω

BT�s dΩ − ∫
Ω

�BTmNfp
el dΩ (38)
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with m = [1 1 0]T . The fracture is discretised using interface elements11,28,30, and a mapping is introduced which relates the

displacements at the interface Γd to the jump in the displacement at the interface:

JuKel = Ndu
el (39)

Use of this identity at the internal discontinuity Γd allows the term in the momentum balance which pertains to this discontinuity

to be written as:

f d = ∫
Γd

NT

d
RTDdRNdu

el dΓ − ∫
Γd

NT

d
nΓd

Nfp
el dΓ (40)

where the linearisation of eq. 14 and the global stiffness matrix at the interface, eq. 17, have been used.

The time derivatives in the mass balance are discretised using a backward finite difference scheme with a constant time-step

size of Δt. This results in the discretised form of eq. 32:

qext − qint − qd = 0 (41)

with the external fluid flux qext given by:

qext = −Δt∫
Γq

NT

f
qdΓ (42)

while the internal fluid flux qint reads:

qint = ∫
Ω

�NT

f
mTB

(
ut+Δt − ut

)
dΩ + ∫

Ω

Δtk∗
f

|||(Nfp
el|||

1

n
−1 (

(Nf

)T
(Nfp

el dΩ + ∫
Ω

1

M
NT

f
Nf

(
pt+Δt − pt

)
dΩ (43)

Since the fluid fluxes at the top and bottom walls of the fracture correspond to the same pressure degrees of freedom, the fluid

flux must be applied twice to the degrees of freedom. Using equation 29 with equation 30 for the fluid inflow due to fracture

opening results in:

qd = ∫
Γd

2ΔtNT

f

(
1

2

(
JwKf − JwKs

))
dΩ (44)

with

JwKs =
nΓd

⋅Nd

(
ut+Δt − ut

)

Δt
(45)

and JwKf given by eq. 25. The pressure p and the height ℎ of the fracture in the integration points, and their derivatives are

computed according to:

p = Nfp
el (46a)

)p

)s
= (Nfp

el (46b)

)2p

)s
2
= (

2Nfp
el (46c)

ℎ = nd ⋅Ndu
el (46d)

)ℎ

)s
= nd ⋅ (Ndu

el (46e)

)vf

)s
= −

k∗
f

nfn

|||(Nfp
el|||

1

n
−1

(
2Nfp

el (46f)

The velocity of the solid in eq. 21 has been neglected in eq. 46f since this term is assumed to be small, and its spatial gradient

is likely negligible.

While all terms in eq. 36 are linear, eq. 41 contains non-linear terms. Therefore, these equations are linearised in a Newton-

Raphson sense:

⎡
⎢⎢⎣
K +

)f d

)u
−Q −

)f d

)p

−QT −C −H

⎤
⎥⎥⎦

⎡
⎢⎢⎣
du

dp

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣
f ext

−qext

⎤
⎥⎥⎦
−

⎡
⎢⎢⎣

f int + f d

−
(
qint + qd

)
⎤
⎥⎥⎦

(47)
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4m

p=0MPa

10m

p=0.5MPa

30
o 10m

FIGURE 2 Overview of the geometry and boundary conditions.

with the sub-matrices defined as:

K = ∫
Ω

BTDB dΩ (48a)

Q = ∫
Ω

�BTmNf dΩ (48b)

C = ∫
Ω

1

M
NT

f
Nf dΩ (48c)

H = ∫
Ω

Δtk∗
f

n

|||(Nfp
el|||

1

n
−1 (

(Nf

)T
(Nf dΩ (48d)

)f d

)u
= ∫

Γd

NT

d
RTDdRNT

d
dΓ (48e)

)f d

)p
= ∫

Γd

NT

d
nΓd

Nf dΓ (48f)

The tangential stiffness terms which stem from the fracture flow, eq. 44, have been neglected, since they are assumed to be small

and result in lengthy terms.

The changes in the displacements, du, and in the pressure, dp are added to the total displacements and the total pressure

after each iteration, after which the new internal forces, fluxes, and the new tangential stiffness matrix are computed. The main

difference between the equations for non-Newtonian fluids compared to those for Newtonian fluids27, is that not only qd is

non-linear, but also the fluid diffusion matrix H .

4 SIMULATIONS FOR NON-NEWTONIAN FLUIDS

A typical boundary value problem is now used to show the effect of non-Newtonian fluids. The problem30 consists of a square

10m × 10m plate, see Figure 2. The central part contains a 4m fracture at a 30◦ angle. This fracture is assumed to be stationary.

The bottom is constrained in the vertical direction, while the sides are contrained horizontally. A pressure difference of 0.5MPa

is applied between the top and bottom. It is noted that a constant pressure difference will result in a constant fracture opening,

independent of the actual fluid flow through the domain.
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TABLE 1 Permeability, non-Newtonian fluid index, and base viscosity

k[m2] n[−] �0[mPas
n]

0.6 34.7096

0.7 14.2732

0.8 5.8782

0.9 2.4235

1 ⋅ 10−8 1.0 1.0

1.1 0.4129

1.2 0.1706

1.3 0.0705

1.4 0.0291

k[m2] n[−] �0[mPas
n]

0.6 20.3925

0.7 9.5782

0.8 4.5056

0.9 2.1218

7 ⋅ 10−10 1.0 1.0

1.1 0.4716

1.2 0.2225

1.3 0.1050

1.4 0.0496

k[m2] n[−] �0[mPas
n]

0.6 5.5011

0.7 3.5853

0.8 2.3402

0.9 1.5291

1 ⋅ 10−12 1.0 1.0

1.1 0.6544

1.2 0.4284

1.3 0.2806

1.4 0.1838

The properties of the solid material have been taken as: Young’s modulus E = 9.0MPa, Poisson’s ratio � = 0.4, porosity

nf = 0.3, Biot modulus M = 1.0 ⋅ 1018MPa, and the Biot coefficient � = 1.0. Three different permeabilities have been used in

the simulations: k = 1.0 ⋅ 10−8m2, k = 7.0 ⋅ 10−10m2, and k = 1.0 ⋅ 10−12m2, see Table 1). The values for the dummy stiffness

of the interface elements are kn = ks = 1.0 ⋅ 105MPa.

The fluid viscosity for the Newtonian case (n = 1) was taken as � = 1 ⋅ 10−3Pas. This viscosity results in a fluid flux of

0.5m∕s, 35mm∕s, and 0.05mm∕s for the cases of a high, medium and low permeability, respectively. The power-law fluid index

n was varied between 0.6 and 1.4. The base viscosity �0 was chosen such that all cases with a non-Newtonian fluid result in the

same fluid flux as for the Newtonian fluid. This was achieved using eqs 6 and 7, resulting in the following ratio between the base

viscosity for the non-Newtonian fluid and the viscosity of the Newtonian fluid:

�
1

n

0

�
=

n

3n + 1

(
50

3

) 1+n

2n

k
1−n

2n (2C)−
1

n n
n−1

2n

f

(
Δp

H

) 1

n
−1

(49)

with Δp the applied pressure difference of 0.5MPa and H the height of the domain. Effectively, the Newtonian fluid is then the

linearised equivalent of the non-Newtonian fluids. The resulting base viscosities are given in Table 1 as a function of the fluid

index n and the permeability k.

The simulations have been carried out for fifty time steps of each Δt = 1s, when a steady-state situation had been reached.

A mesh was used composed of 80 × 40 Bézier elements with NURBS basis functions. As will be detailed in Section 5, this

discretisation gives accurate results with respect to the displacements, pressures and the fluid velocities measured in the centre of

the fracture, and gives a good approximation of the jump in velocity over the fracture. The results are presented for a steady-state

situation.

Figure 3 shows the direction and magnitude of the flow inside the porous medium. To show the effect of the fracture on the

fluid flux, the difference in velocity between the fractured and non-fractured results is shown in figure 4. This shows how the

presence of a fracture can influence the fluid flow. Even though the magnitude of the flux difference can be different depending

on the used parameter set, e.g. shear thinning or shear thickening, similar effects are observed. The fracture reinforces the fluid

flow in the bottom left and top right corners, thereby increasing the total fluid flow. Since the fracture transports fluid, there is

less fluid inside the porous medium tangential to the fracture. This effect of the fracture is similar for all other cases (not shown

here), only the magnitude of the fluid flux varies. It is noted that the fracture opening is approximately equal for all cases due to

the prescribed pressure boundary conditions.

The results for a high permeability (k = 1 ⋅10−8) are shown in Figure 5. The fluid velocity in the centre of the fracture, Figure

5a, shows that shear-thickening fluids have much higher velocities compared to shear-thinning and Newtonian fluids. This is

also reflected in the velocity jump normal to the fracture, Figure 5b. The higher velocity inside the fracture implies that more

fluid must enter and leave the fracture, thereby resulting in higher inflow velocities for the shear-thickening fluids. It is noted,

however, that the outflow velocity is significantly lower than the fluid flux of 0.5m∕s which occurs inside the porous medium.

Further, the influence of the fracture on the pressure inside the porous medium remains negligible.

Different from the results for a high permeability, for a lower value of the permeability, k = 7 ⋅ 10−10, only a small influence

of the fluid index on the velocity in the centre of the fracture is observed, see Figure 6b. As a consequence, the velocity jump in

Figure 6c is also less dependent on the fluid index. The slightly larger influence compared to the velocity in the centre is caused
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100 mm/s

0.1 mm/s

(a) Shear-thinning fluid (n=0.6).

100 mm/s

0.1 mm/s

(b) Shear-thickening fluid (n=1.4).

FIGURE 3 Fluid flux for the low permeability case (k = 1 ⋅ 10−12) at steady state (t=50s). Black arrows represent the fluid flux

inside the porous media and red arrows represent the fluid velocity in the centre of the fracture.

100 mm/s

0.1 mm/s

(a) Shear-thinning fluid (n=0.6).

100 mm/s

0.1 mm/s

(b) Shear-thickening fluid (n=1.4).

FIGURE 4 Difference in the fluid flux due to the presence of the fracture for the low permeability case (k = 1 ⋅ 10−12) at

steady state (t=50s). Black arrows represent the difference in fluid flux inside the porous media and red arrows represent the

fluid velocity in the centre of the fracture.
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(b) Jump in velocity normal to the fracture

FIGURE 5 Results for k = 1 ⋅ 10−8m2 at steady state (t=50s)

by the fact that the inflow not only depends on the maximum velocity, but also on the shape of the fluid flow profile. For shear-

thinning fluids the flow profile has a shape which rather looks like a square, while shear-thickening fluids have a more triangular

profile. Therefore, for a lower value of the fluid index slightly more fluid is transported compared to higher values of the fluid

index fluids while the velocity at the centre has the same value. Similar to the case of a high permeability the velocity jump is

small compared to the fluid flux inside the porous medium (35mm∕s), thus limiting the influence of the fracture on the pressure

inside the porous medium, see Figure 6a.

Compared to a high permeability, the fluid velocity for the simulations with k = 1 ⋅ 10−12 exhibit an inverse influence of

the fluid index, see Figure 7b. Shear-thinning fluids have higher velocities compared to those computed for Newtonian fluids,

while shear-thickening result in lower velocities. This is also reflected in the velocity jump normal to the fracture in Figure

7c, with a much higher inflow for shear-thinning fluids than for shear-thickening fluids. Different from the other two cases, the

velocity jump normal to the fracture is of the same magnitude as the fluid flux inside the porous medium (0.05mm∕s). Here,

the imposed pressure difference causes the fracture to have a considerable influence on the pressure inside the porous medium

which surrounds the fracture, see Figure 7a. For shear-thinning fluids, this influence is sufficiently large to considerably change

the pressures and pressure gradients, see Figure 8. These large changes correspond to the results of Figure 4a, where the large

differences indicate significant changes in the fluid pressure gradients due to the fracture.

The total fluid flux through the domain is computed by integrating the vertical flux on the top and bottom boundaries. These

fluxes are used to determine the increase in fluid flow due to the presence of the fracture, as follows:

qenℎ =
qfrac − q0

q0
⋅ 100% (50)
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(c) Velocity jump normal to the fracture

FIGURE 6 Results for k = 7 ⋅ 10−10m2 at steady state (t=50s)

with qfrac the total fluid flux calculated at the top and bottom boundaries for the case with a fracture, and q0 for the case without.

The results are shown in Figure 9. For the cases with the two higher permeabilities, the total fluid flow is not influenced markedly

by the fracture. In contrast, for a low permeability the fracture causes an increase in the total fluid flow of up to 2.793% for shear-

thinning fluids. While for a high permeability the fluid flow increases with an increasing value of the fluid index, the opposite

occurs for a low permeability. This is consistent with the results for the flow inside the fracture, which also show this effect.
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(c) Jump in velocity normal to the fracture

FIGURE 7 Results for k = 1 ⋅ 10−12m2 at steady state (t=50s)

We finally note that the simulations for non-Newtonian fluids were carried out for a constant permeability and that all non-

Newtonian fluids linearise to the same Newtonian fluid. Therefore, the simulations also show the effect of including the behaviour

of a non-Newtonian fluid compared to linearising the fluid behaviour. It was shown for k = 7 ⋅ 10−10 that the influence on the

velocity at the centre can be small. However, for low and high permeabilities, large effects were observed regarding the fluid

velocity. Furthermore, these effects were mirrored, with a high velocity for shear-thickening fluids for the high permeability

case, while a higher velocity was observed for a low permeability case for the shear-thinning fluid. The difference between the
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FIGURE 9 Increase in total fluid flux through the domain due to the presence of the fracture. The values have been normalised

with the results for a Newtonian fluid, qenℎ,n=1 = 7.770 ⋅ 10−5% for k = 1 ⋅ 10−8m2, qenℎ,n=1 = 1.139 ⋅ 10−3% for k = 7 ⋅ 10−10m2

and qenℎ,n=1 = 0.6486% for k = 1 ⋅ 10−12m2

linearised Newtonian and non-Newtonian fluids can also be observed in the total fluid flux through the domain, with increases

in fluid flux between 2.793% for n = 0.6, while the increase for Newtonian fluids was only 0.6486% and shear-thickening fluids

showed an even lower increase, down to 0.2837% for n = 1.4.

5 MESH SENSITIVITY STUDY FOR NURBS BASED FINITE ELEMENTS

Simulations using different meshes were done in order to determine the required element size for obtaining accurate results

regarding displacements, pressures, and the fluid velocity normal and tangential to the fracture. These simulations were done for

k = 1 ⋅ 10−12, since this permeability showed the largest influence of the fracture on the pressure in the bulk material in Section

4. The upper and lower limits of fluid index, n = 0.6 and n = 1.4 respectively, were used in these simulations.

NURBS basis functions were used, with quartic shape functions for the displacements and cubic shape functions for the fluid

pressure. The following Bézier extracted element meshes were used: 20 × 10, 40 × 20, 60 × 30, 80 × 40, 100 × 50, 120 × 50,

140×50, and 160×50. Only the number of elements in the horizontal direction was varied for meshes finer than 100×50, since
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FIGURE 10 Mesh sensitivity when using NURBS shape functions. Results are shown along the discontinuity for a steady state

(t=50 s) for k = 1 ⋅ 10−12.

it was assumed that 50 elements in the vertical direction was sufficient. For the sake of visibility, the results from the 80 × 40,

120 × 50 and 140 × 50 meshes are not shown in the figures.

The results are shown in Figure 10. The pressure distribution in Figure 10a shows only minor differences between the 20×10

and the 40 × 20 meshes. Further refinement of the mesh results in no visible difference compared to the 40 × 20 mesh. This

indicates that a coarse mesh is sufficient to accurately represent the influence of the fracture on the pressure inside the bulk

material.
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FIGURE 11 Velocity jump normal to the fracture, enlarged around the right crack tip

The fracture opening is given in Figure 10b. The centre of the graph shows similar results as the pressure: Small differences

between the two coarsest meshes, and no difference for more refined meshes. Near the tips of the fracture, at x = 3m and x = 7m,

the results are more sensitive to the discretisation. This is partly due to the quartic shape functions not being able to represent a

sharp fracture tip. Instead, the opening height at the tips requires approximately one non-fractured Bézier element to correctly

represent a still closed fracture. While this results in visible differences in the tip aperture, it does not appear to influence the

opening in the remaining part of the fracture.

The fluid velocity in the centre of the fracture, shown in Figure 10c, shows slight differences between the 40 × 20 and the

60 × 30 meshes. However, refining the mesh any further shows no visible change in the computed velocity. Since the velocity

at the centre depends on the fracture opening, the results near the crack tips show a somewhat larger mesh dependence. It is

somewhat less pronounced than the mesh dependence of the crack opening, since the velocity scales non-linearly with the crack

opening, which reduces the effect of small differences near the tip, while it reinforces the effect of differences in the crack

opening near the centre.

Figure 11 shows the velocity jump of the fluid normal to the fracture. Clearly, there is now a significant mesh dependence.

Only for meshes finer than the 100 × 50 mesh the differences become fairly small, but close to the crack tip minor differences

persist even for the two most refined meshes. From the above it transpires that when using NURBS even the coarser meshes are

sufficient to accurately simulate the deformations and pressures in the porous medium. When focusing on the velocity of the

fluid in the fracture, however, a finer mesh is required. Finally, really fine meshes are needed for obtaining accurate results for the

fluid inflow and outflow from the fracture. However, in spite of the fact that fine meshes are needed for accurately obtaining these

local flow patterns, the resulting pressure changes in the porous medium remain accurate also for considerably coarser meshes.

6 COMPARISON WITH STANDARD FINITE ELEMENTS

The analyses of the previous section were repeated using standard finite element shape functions. Now, quadratic Lagrangian

shape functions were used both for the displacements and for the fluid pressure.

The results are given in Figure 12. The pressure inside the fracture, Figure 12a, shows that differences only start to level

out after the 60 × 30 mesh, which is different for the results that were obtained using NURBS. This corresponds to earlier

observations, where it was concluded that for coarse meshes NURBS already yield the same accuracy as that obtained using

Lagrangian basis functions for finer meshes27,28. The results for the crack opening shown in Figure 12b confirm this, but shows

that now no small elements are necessary near the crack tips to obtain a zero opening. This is because standard finite elements

allow for discontinuous gradients, and are therefore able to simulate sharp crack tips.

The fluid velocity in the centre of the fracture is given in Figure 12c. Due to the C0 interelement continuity of standard

finite element shape functions, jumps in the velocity profile occur since this velocity depends on pressure gradients. While the

magnitude of these jumps decreases upon mesh refinement, jumps are still visible for the finest mesh. Indeed, results for the two

finest meshes have not yet converged, which was different for the solutions employing NURBS.

The jump in fluid velocity normal to the fracture around the crack tips is given in Figure 13. A comparison of these results

with those obtained using NURBS shows that the jump in fluid velocity near the crack tip is much higher in the standard finite
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FIGURE 12 Mesh sensitivity when using standard Lagrangian shape functions. Results are shown along the discontinuity for

a steady state (t=50 s) for k = 1 ⋅ 10−12.

element solutions. These higher values for the jumps are caused by the strong oscillations, which can occur because of the lack

of higher-order interelement continuity of standard finite elements. Interestingly, the results tend to worsen, rather than improve,

upon mesh refinement.

These results indicate that standard finite element simulations can correctly represent displacements and pressures inside the

porous medium, but a finer mesh is required compared to NURBS based (isogeometric) analyses. However, standard Lagrangian

shape functions cannot well reproduce local features such as the fluid velocity or the inflow at the crack tip. This is caused by

the C0 continuity of standard finite element shape functions.
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FIGURE 13 The velocity jump normal to the fracture enlarged around the right crack tip. The results have been obtained using

standard finite element simulations.

7 CONCLUDING REMARKS

A numerical model has been developed for non-Newtonian power-law fluids in deformable, fractured porous media. The model

has been augmented with a sub-grid scale model for the fracture, allowing for the accurate representation of the (non-Newtonian)

fluid transport inside fractures, while retaining the ability to model large domains. Discretisation has been done using standard

(Lagrangian) finite element shape functions as well as using Bézier extracted NURBS shape functions, commonly used in

Computer-Aided Design.

Simulations have been carried out for different values of the power-law fluid index. Depending mainly on the permeability of

the porous medium that surrounds a fracture, the effects of the non-Newtonian character of a fluid are more or less pronounced.

Generally, local features showed the largest differences, like the fluid velocity in the centre of the crack, or the inflow velocity

at the tips. Depending on the value of the fluid index, a significant increase has also been observed of the effect of the fracture

on the total fluid transport through the domain.

Results from a mesh sensitivity study show that a coarse discretisation with NURBS is already capable of accurately simulating

the fluid transport in the fracture including its effect on the pressure and deformations in the surrounding porous material.

Standard finite elements can also do this, but need some more refinement to attain the same level of accuracy. However, the

local fluid velocity normal and tangential to the fracture could only be simulated accurately using NURBS, since the lower

interelement continuity of standard finite elements cause severe jumps in the velocity profile, resulting in a severe overshoot.
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