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Abstract 

 Replication in the behavioral sciences is a matter of considerable debate. We describe 
a series of fundamental interrelated conceptual and methodological issues with current 
research that undermine replication and we explain how they could be addressed. 
Conceptually, we need a shift (1) from verbally described theories to mathematically 
specified theories, (2) from lineal stimulus-cognition-response theories to closed-loop 
theories that model behavior as feeding back to sensory input via the environment, and (3) 
from theories that ‘chunk’ responses to theories that acknowledge the continuous, dynamic 
nature of behavior. A closely related shift in methodology would involve studies that attempt 
to model each individual’s performance as a continuous and dynamic activity within a 
closed-loop process. We explain how this shift can be made within a single framework – 
perceptual control theory - that regards behavior as the control of perceptual input. We report 
evidence of multiple replication using this approach within visual tracking, and go on to 
demonstrate in practical research terms how the same overarching principle can guide 
research across diverse domains of psychology and the behavioral sciences, promoting their 
coherent integration. We describe ways to address current challenges to this approach and 
provide recommendations for how researchers can manage the transition.   
Keywords: experimental design; replicability; computational models; closed-loop; negative 
feedback control; perceptual control theory 
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The Assessment and Modeling of Perceptual Control 

A Transformation in Research Methodology to Address the Replication Crisis  

The replication crisis in psychology is in little doubt (Pashler & Wagenmakers, 2012). 
There is a similar unease in the life sciences more widely that has existed for some time 
(Ioannidis, 2005) and has not been resolved (Horton, 2015). Large-scale replication efforts 
have had disappointing results. The most widely publicized has been the Open Science 
Collaboration (OSC) (2015) that found an overall replication rate at 36% with many effects 
much smaller than the original reports. There has been a vast amount of commentary on this 
contentious topic and the debate has generated a range of solutions. These have often 
highlighted the practices of research in the behavioral sciences with the emphasis on 
transparency and integrity (Ioannidis, 2005; Nosek, 2012; Wagenmakers, 2012; Stevens, 
2017). In this view, the sole change would be that the traditional methodological paradigm 
would be executed more rigorously.  

Previous commentaries on replication have clarified the commonly discussed 
statistical issues with sampling error, multiple testing, and the issues with replication of small 
effect sizes (e.g. Button, Ioannidis, Mokrysz, Nosek, Flint, Robinson, & Munafò, 2013). Yet, 
rarely have commentators taken issue with the conceptual basis for research designs, and the 
fundamental statistical and methodological assumptions that are made. In this article, we 
explain how a series of interweaving conceptual and methodological issues will continue to 
undermine the replication of psychology experiments unless they are addressed. We then 
introduce a new research paradigm – based on the ‘control of perception’ - that has potential 
to address all of these issues, and we provide examples of studies within human performance, 
animal behavior, clinical, social, organizational and developmental psychology. We describe 
the challenges ahead of transitioning to a wholly different perspective on psychology, and a 
roadmap of how it may be achieved.   
 
Conceptual problems with prevailing assumptions 

A1. Researchers ordinarily formulate their theories verbally and not mathematically.  
The vast majority of behavioral research is interpreted using theories of a 

phenomenon that are communicated verbally. As Rodgers (2010) points out “our language 
is... a model” (p. 1); these verbal theories are the models often spoken about in psychological 
science, such as the generate-recognize model of memory (Anderson & Bower, 1973) and the 
planning control model (Glover, 2004). These examples were chosen as they are both known 
by the term 'model' and yet are specified only verbally so the description as a model can only 
be metaphorical. Language is, however, inherently ambiguous, meaning there is a constant 
risk of disagreement of the implications of a verbally stated theory. Arguably, even the most 
reliable findings can be interpreted in different ways, entailing uncertainty when attempting 
to confirm the replication of previous findings. 
A2. Theories are typically oversimplified by specifying that variations in the independent 
variable (IV) cause variations in the dependent variable (DV).  

Figure 1 shows typical IV-DV approach. It is assumed that manipulating the IV 
changes some aspect of the stimuli used in the experiment and the DV is the variation in the 
measured response. Yet, there is a recognition that individuals act as agents that act 
dynamically within their environment such that the causal pathway is not a simple one-way 
process from stimulus to response (El Hady, 2016; Schlesinger & Parisi, 2001; Smith & 
Conrey, 2007). A participant’s behavior, alongside unmeasured disturbances in the 
environment, has a feedback effect on their sensory input. This feedback effect was noted as 
far back as the nineteenth century by John Dewey (1896), “the motor response determines the 
stimulus, just as truly as sensory stimulus determines movement” (p. 363). One important 
example is during eye movements, which entail that the ‘stimuli’ perceived are differently 
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from moment to moment (Land & Furneaux, 1997). Given that many psychological theories 
do not incorporate sensory feedback and unseen disturbances within the model, their findings 
are unlikely to be replicable.  
 
 
Figure 1. A generic diagram of an established cognitive or behavioral model. The diagram 

shows the potential for an array of sequential and top-down inhibitory and excitatory 

processes in gray. The feedback effect of the response on the sensory effect of the stimulus is 

rarely shown in diagrams and if it is it is treated as though it was part of a sequential 

process. Yet the feedback effect is always present, though not necessarily on the sensory 

effect of the stimulus (IV) used in the experiment. IV = independent variable; DV = 

dependent variable; MV = mediating variable (mental process) 

 

!

 
 

A3. Attempts to isolate discrete behaviors are often arbitrary.  
The IV-DV model attempts to link discrete stimuli with discrete responses, or 

sequences of discrete stimuli and responses. However, behaviors are not discrete in 
themselves. They are often embedded in other, ongoing processes. Consider the ‘behavior’ of 
opening a car door. It could be defined, and therefore measured, as: the experimenter’s 
measurement of the door being opened; the movement of the door towards an opened state; 
the arm movements necessary to open the door; the muscular forces necessary to open the 
door; the motor signals sent to the muscles that move the arms to open the door. Importantly, 
none of these definitions are ‘wrong’, but the fact that there are at least five different 
plausible definitions shows how arbitrary any one of these definitions can be. With very little 
consensus in this matter of what is defined as behavior, there is wide scope for differences in 
interpreting what counts as the replication of behavior.  
Statistical and methodological problems with prevailing assumptions 
B1. Variation between individuals means that group averages do not apply to any one 
individual.  

Most psychology studies collect data from groups of participants and they report 
summary statistics of average performance. This approach is limited because the ultimate 
purpose of a psychological theory is to describe the workings of an individual, and not of a 
group. One notable example of where group data has led to an misleading conclusion is the 
large body of research leading to the conclusion that there is a ‘learning curve’ (Gallistel, 
Faurhurst, & Balsam, 2004); analysis of individual animals reveals that rather than a curve 
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function, performance improves from pre-training as discrete step-like increases in 
performance.  

Indeed, group statistics can lead to erroneous conclusions about relationships between 
variables that are directly opposite to the known relationship within computational models of 
individuals (Powers, 1990). Powers (1990) constructed individual computational agents 
whose level of effort was increased when reward decreased. Each of these agents had a 
parameter of reward sensitivity that was set by random for each individual. When plotting the 
level of reward by the level of effort for each individual in a large sample, there was a 
significant positive correlation between increasing reward and increasing effort. Thus, the 
reverse relationship was observed within the group to that which had been implemented 
within the individual.  
B2. The way that individual variation in behavior is analyzed adds to uncertainty.  

It is typically noted that measured behavior is variable in experimental tasks (Bell, 
2014), and this is especially true in single-case designs where data are not averaged across 
participants or across repeated measures (Normand, 2016). Behavior may also vary on a trial-
by-trial basis across seemingly identical situations in an experiment (Gluth & Rieskamp, 
2017). Many models of behavior do not account for any form of variability between 
individuals and ignore these trial-by-trial fluctuations. One method is to seek to model 
average performance across trials to obscure this difficulty. Indeed, some regard variable 
behavior as evidence of intrinsic random noise; this was the policy of the early behaviorists 
who "solved the problem by attributing the unpredictability of behavior to a universal 
property of living organisms: variability" (Powers, 1973, p5). Yet, to the degree that 
individual variation in behavior is not random but is due to an as-yet-unspecified mechanism, 
replication will be unnecessarily compromised.  
B3. “Open loop” research designs and laboratory settings do not represent ‘normal’ 
behavior outside the laboratory 

We made the case earlier that organisms are ‘closed loop’. Whatever the design of an 
experiment, variations in the IV cannot be the proximal cause of organism’s actions because 
these events occur at a distal location in the organism’s environment (e.g. the appearance of 
flashing lights, pictures or sounds). These events produced by the IV have proximal effects 
on the participant via the excitation of sensory nerves (Marken, 1997; Powers, 1978). 
Moreover, the behavior of the organism – measured by the DV – also has sensory effects. For 
example, in any experiment where a stimulus offset is triggered by the response, the duration 
of stimulus presentation – a proximal sensory effect - is influenced by reaction time (the DV 
in many cases). This means that the proximal sensory effects of the experimental 
circumstance are a combination of both the experimental manipulation (IV) and participant’s 
behavior (DV) (Marken, 1997, 2013). This process can be ongoing, and simultaneous and 
does not necessarily proceed in a sequence of actions and events (Powers, 1992). Sensory 
effects have often been reframed as consequences or reinforcements (Baum, Reese, & 
Powers, 1973). However, sensory effects are the combined effect of behavior and 

environmental disturbances. 
Researchers often assume that an open-loop design is necessary to study behavior 

accurately, even though they acknowledge that in normal circumstances humans, and 
animals’ are closed-loop in nature (e.g. Heisenberg & Wolf, 1992). This assumption is 
implicit in the design of the classic reaction-time task that presents stimuli as a distinct event 
and measures a response. Some human studies claim to be open loop when sensory input 
from one channel is obstructed (e.g. reaching in the dark; Henriques et al., 1998). In animal 
studies, the design is often more elaborate and involves using an apparatus to immobilize the 
animal to convert the design to ‘open loop’ (Heisenberg & Wolf, 1992). We propose that if 
organisms are operating as closed loop systems in most cases, attempts to generate an open-
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loop design are at the least artificial, and at the worst, misleading because humans and other 
organisms are likely to find ways to circumvent the procedure (e.g. by using an alternative 
sensory modality). These adaptive reactions are likely to be inconsistent and introduce 
variability into an experimental procedure that reduces the capacity for replication.  

Research on body movements in the context of affect provides one extended example 
within the field of social and clinical psychology of how open loop studies have led to non-
replicated and mixed findings. Based on embodiment theory, it has been proposed that there 
are inherent bodily movements associated with certain affective stimuli (Laham, Kashima, 
Dix, & Wheeler, 2015). A series of open loop studies have tested whether positive as 
opposed to negative affective stimuli are associated with the response of biceps flexion rather 
than extension, because biceps extension is conceived as biological tendency to push away 
aversive stimuli. A meta-analysis of 68 independent effect sizes revealed a significant but 
weak effect (Laham, Kashima, Dix, & Wheeler, 2015). Further analyses revealed that the 
effect is actually reversed by framing biceps extension as approach and flexion as avoidance, 
rather than framing them as pulling and pushing a stimulus in relation to the self. The authors 
of the meta-analysis concluded that participants attempt to keep negative stimuli at a further 

distance from oneself than positive stimuli, regardless of the exact muscle movements 
involved. Thus, the attempts to replicate a specific stimulus-response mapping have failed, in 
place of evidence that closed loop control of perceived distance may be the consistent feature 
shared across studies. 
B4. Studies of mediators and “mechanisms of change” tend to be subject to the above issues 

At times, groups of researchers can conflict for many years over what is the ‘correct’ 
theory of a psychological phenomenon. This can obscure the possibility that different theories 
may apply to different individuals within any sample. For example, this is evident when 
participants spontaneously employ different strategies in a navigation task (Iaria et al. 2003). 
The separation of these groups indicates that neither strategy mediates the relationship 
between task instructions and performance across all participants. Indeed, participants were 
also shown to change strategies during the task, meaning neither strategy accounted for the 
behavior of any individual participant. A special version of this issue is Simpson’s Paradox, 
where combining different groups of participants may show the reverse effect of the two 
groups studied independently (Blyth, 1972). Often, a highly integrative research design and 
the consideration of multiple moderators of an experimental effect are used to attempt to 
discover such relationships within the data (e.g. Colquitt, Scott, Judge, & Shaw, 2006).  

A prominent example of where group comparisons can lead to erroneous conclusions 
is within the randomized controlled trials used to compare different forms of psychological 
therapy. Whilst these trials can demonstrate the relative superiority of a certain intervention, 
they cannot, on their own, provide any test of the theory informing the therapy. Studies of the 
‘mechanism of change’ of psychological therapies may use statistical analyses to examine 
mediating variables (MVs; e.g. Warmerdam, van Straten, Jongsma, Twisk, & Cuijpers, 
2010). Yet, these patterns of relationships across individuals are prone to the same errors as 
illustrated above. Indeed, there is a wide individual variation in the outcomes and the 
temporal profile of psychological change that are rarely assessed (Hayes, Laurenceau, 

Feldman, Strauss, & Cardaciotto, 2007). In short, using group statistics to infer a mechanism 
of change is prone to errors that reduce the likelihood of replication.  
The intertwined nature of conceptual, statistical and methodological problems 

The nature of the problems describe above are reciprocally related. Most researchers 
recruit groups of participants to carry out open-loop experiments and analyze the effects of 
discrete stimuli on discrete responses. This approach to research inevitably constrains these 
researchers to only test simple IV-DV hypotheses in spite of the conceptual shortcomings of 
the theories of this kind. Similarly, if theories are limited to those that specify only direct 
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pathways and fail to consider closed-loop feedback, they will be constrained to the traditional 
statistical designs with the errors and uncertainties we have described. Some IV-DV 
protocols demonstrate high levels of replication across groups of participants but even in 
these cases it is rare for all individuals in a sample. We will demonstrate below that closed-
loop methods hold potential to increase the bar to replicating in every case, and not only in 
every study. 
An alternative approach to conceptualization and methodology 
 Following from the above analysis, a future of replicable research requires that each 
of the above conceptual and methodological problems is addressed. It is unlikely to be 
sufficient to simply address some of these issues because any one of them can undermine 
replicability. Specifically, it will require all of the following within a new approach:  
A1. A mathematically specifiable psychological theory  
 When a theory can be specified mathematically, it removes the uncertainty 
surrounding verbal terms and their various interpretations (McClelland, 2014). It also allows 
the nature of the relationships between the elements of a theory to be specified. This in turn 
allows a computational model to be constructed and the pattern of expected data can be 
specified and tested directly against the real world data. This greatly reduced uncertainty 
enhances the capacity for replication. Arguably one of the most successful mathematically 
specified theories is evolution by natural selection (Mansell, Carey, & Tai, 2015). Within 
psychology, as we have argued, they are rarer. Those that do exist are most easily found in 
cognitive science, such as the General Context Model (Nosofsky, 1986) - a theory of object 
classification. Broader mathematical theories in psychology and neuroscience are more 
limited but one contemporary example is the free energy principle (Friston, 2010)1.  
A2. A theory that acknowledges and incorporates the closed-loop nature of humans and other 
organisms 
 Closed-loop theories treat humans and other animals as they are in their natural 
environment, in which any action leads to a change in sensory input to the organism. There is 
no artificial point where an organism stops acting to control its perceptions. The experimental 
situation operations to determine what perceptual variables might be under control by the 
organism. Thus, there is no attempt to control behavior through a restraining apparatus. 
Instead, disturbances in the environment are introduced that the organism must counteract to 
meet its goals. The chances of replication are therefore enhanced because it allows 
participants greater freedom to adapt behavior to meet the demands of the experimental 
protocol rather than fixing their behavior into an arbitrary pattern.  
A3. A theory that acknowledges the complex, continuous and dynamic nature of behavior   
 A theory that conceives of behavior as dynamic and continuous can inform a model to 
simulate the real system to generate data that can be assessed for its fit with data in the real 
world as it is recorded. The potential for replication is enhanced because information is not 
lost through imposing segmentation or smoothing of the data to remove variability. The 
variability in behavior is used to increase the chance that the perceptual variables can be 
identified and replicated in future.  
B1: A methodology that attempts to model each individual's actions or performance  

A single-case design, in which data from an individual is collected as repeated 
measures and replicated within the individual, can address many of the issues regarding 
inferential group statistics (Kazdin, 2011; Normand, 2016). Following from above, when a 
theory can be described mathematically, it can be reproduced as a computational model. The 
model yields a simulation of the behavioral phenomenon, in essence reproducing it, so that 
detailed observations and measurements may be made. A computational model (sometimes 
known as a functional model; Runkel, 2007) formalizes a hypothesis regarding the processes 
that occur within the individual within computational terms such that the behavior of the real 
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system can be simulated. There are a number of standardized methods for comparing the 
suitability of competing models and the living system they attempt to emulate (Pitt, Myung, 
& Zhang, 2002). The most obvious metric is whether or not the model fits the observed data. 
It has been proposed that computational model testing of individual cases provides the most 
direct test of the theory underlying a therapy (Carey, Tai, Mansell, Huddy, Griffiths, & 
Marken, 2017) or underlying an organizational activity such as work scheduling (Vancouver, 
Weinhardt, & Schmidt, 2010). Yet other commentators rarely point out that matching a 
computer model of an individual with data collected within that individual is the ultimate test 
of a computational model (e.g. Smith & Conrey, 2007). It is critical to note that even models 
of the behavior of individuals within social groups require modeling of distinct individuals 
with distinct goals and preferences within that population, not of the ‘group average’ 
(McClelland, 2014; McPhail, Powers, & Tucker, 1992; Shoda et al., 2002).  

Within the field of psychophysics, the behavior of individuals is well studied. For 
example, Steven’s Power Law (Stevens, 1957) describes the relationship between the 
objective magnitude of a feature of the environment (e.g. the recorded decibels of a tone) and 
its subjectively perceived intensity (e.g. loudness). The exponent of power function that 
relates these two variables is found to be distinctive to individual participants and consistent 
over time (Logue, 1976). While there have been failures to establish the consistency of these 
individual-specific parameters over time (Teghtsoonian & Teghtsoonian, 1983), a range of 
studies have shown test-retest reliability in estimated parameters across a range of domains of 
perception beyond loudness, including perceptions as diverse as estimated distance (da Silva 

& Fukusima, 1986) and elastic stiffness (Nicholson, Adams, & Maher, 2000). The estimation 
of stable individual-specific parameters therefore seems achievable and can enhance 
replication, relative to attempting to replicate group-averaged data drawn from an attempt to 
randomly sample a population.   
B2: A methodology that assesses and analyzes continuous variations in behavior 

A robust approach is to systematically model variability in behavior before one 
concludes that the variation in behavior is inexplicable (Bell, 2014). It is important to note 
that we are not claiming that all variables in a psychology experiment must be continuous – 
there are clearly elements that are discontinuous, such as the experience of discrete events, 
the recognition of specific configurations of sensations as patterns, and the constructions of 
categories of features of the environment (Powers, 1973). Rather, we are proposing that 
researchers need to focus on measuring and modeling continuous variables because using this 
raw data where it clearly occurs in the real world environment will entail more information 
for enhancing replication, relative to artificially parsing continuous data into averaged, 
smoothed or categorized, chunks.   
B3: A closed-loop methodology  

Closed-loop task design allows individuals substantial control over their environment, 
and their sensory input, as in the real world. For example, this may involve interactions with 
quantitative coding of videos of natural environments, eye tracking across visual scenes and 
movement within a virtual reality environment. Yet, even traditional experimental tasks can 
be reconceptualized as closed-loop tasks; because organisms are closed loop by nature, this is 
the only way that they can engage with the task in practice. For example, Marken (2013) 
demonstrated how the traditional use of a button press to denote detection latency can be 
reconceptualized as a closed-loop design and shown to have a comparable level of fit to the 
open-loop design.  
B4: A methodology that assesses how a mechanism of change operates within the individual 
 Many studies purport to measure the mechanism of change when in fact they measure 
the reported experiences of groups of people who have already undergone change (Carey et 
al., 2017). Rather, a methodology assessing change within the individual has the capacity for 
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greater accuracy and therefore replicability, especially if compared against a computational 
model that incorporates an algorithm for the change process itself (Marken & Carey, 2015).  
The Alternative Paradigm: Perceptual Control 

Whilst there are approaches to psychological research that have provided one or more 
of the above solutions, we propose that all of these solutions need to be implemented to 
improve replication rates in psychological science. This is our reason for introducing 
perceptual control theory (Powers, Clark & McFarland, 1960a, b; Powers, 1973, 2005) and 
its associated methodological innovations. This theory, and its accompanying methodological 
framework, addresses all the difficulties we have outlined above in the following ways:  
A1. PCT is a mathematically specifiable psychological theory  

In a series of papers in the late 1970s Powers (1978 a-d) laid out in detail and defined 
the variables for functional models of a range of tasks. This included all the functions that 
transformed specific signals, as well as being precise about the location of input and output 
boundaries between the individual and the environment. Together, this entails a level of 
precision of model description that is necessary for effective replication. We will later 
demonstrate the level of replication that has been possible using these methods.  
A2. PCT is a theory that acknowledges and incorporates the closed-loop nature of humans 
and other organisms 

PCT provides an explanation of the phenomenon of control as a unique configuration 
of closed-loop negative feedback process (Powers, 1973). It regards behavior as a process of 
control that involves bringing perceived aspects of the environment to pre-specified 
(intended/purposive) states. Control is defined as the “achievement and maintenance of a 
preselected perceptual state in the controlling system, through actions on the environment 
that also cancel out disturbances” (Powers, 1973, 2005; p296). 

The fundamental building block of this closed-loop process is shown in Figure 2. The 
input function extracts the aspect of the environment that is to be controlled. For example, in 
the tracking task explained later, the input function converts the sensory information from 
retinal cells to a perception of the position of the dot. The input function sends a perceptual 

signal that quantifies the currently perceived state of that aspect of the environment. In turn, 
it compares this value with a reference value (internal standard or goal; the source of this 
signal is explained below) for that variable – which could be ‘on target’ in this example. The 
discrepancy (or error) between the value inputted and the reference value drives output 

signals. These output signals are converted to actions (e.g. handle position) in the 
environment through the output function. For example, the error signal is typically amplified 
by a gain factor so that actions to reduce error are much greater than the error signal itself. In 
this way, even tiny adjustments can be made to keep on target with necessary force, such as 
when keeping a car in its lane during a storm. 
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Figure 2. The PCT control unit. Definitions of terms are provided in the text. The boxes 

denote functional operations that are applied to quantities within the environment or to 

signals within the organism. The dotted box denotes the organism-environment boundary. 

The minus sign denotes where a quantity is subtracted from the quantity passing around the 

loop. This single control loop is a functional simplification of a hierarchy of control loops 

that are represented in grey.  

 

!
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A3. PCT is a theory that acknowledges the complex, continuous and dynamic nature of 
behavior   

There is no point within the PCT architecture at which ‘behavior’ can be defined as a 
specific output from the organism. Instead, it is vital to trace the pathway from neural signals 
to muscles, through the body and environment, considering the effects of other features of the 
environment, and back to the aspect of the environment (the input quantity) that is being 
controlled. Behavior is a property of the whole loop: organism and environment. The aspects 
of the environment that enable an individual to control the input quantity are termed the 
feedback function, whereas external influences on the input quantity are termed disturbances. 
They both combine to affect the input quantity directly. It is important to note that the 
individual does not perceive either the feedback function or the disturbances in order to 
control the input quantity. Only the perceptual signal is perceived. The environmental 
components are only ever noticeable via their effects on the controlled variable. Thus, there 
are important aspects of the environment that are not ‘stimuli’, in that the individual does not 
sense them directly. The individual merely needs to vary its outputs in a way that keeps the 
input quantity matching the reference for the state of that perception. As can be seen from the 
grey features within Figure 2, any control unit is actually one of many, and these are 
connected in a hierarchical network to control a variety of perceptual variables at any one 
time (Powers, 1973). For the sake of simplicity of explanation, we continue with the example 
of a single unit and elaborate on some of the more complex details later.  
B1-4: PCT utilizes a methodology that attempts to model the individual’s dynamic behavior 
as part of a closed-loop process 
  In PCT, the variable that the participant strives to keep at the reference value is 
termed the controlled variable (Marken, 1997). So, for example, during a reaction time 
experiment a participant may be attempting to keep their environment free of aversive images 
(e.g. Tolin, Lohr, Lee, & Sawchuk, 1999). The controlled variable would be the duration the 
image is displayed for and the reference value might be zero milliseconds for the duration of 
aversive images. Whatever the experimental manipulation, the presentation of aversive 
stimuli will influence any dependent variable that involves the display duration of the images; 
this allows an IV-DV relationship to be observed. However, it will only have an effect if the 
participant is controlling for a specific state of the sensory variable relevant to aversive 
images. Furthermore, as the relevance of the IV manipulations increase in relation to this 
controlled variable, then the effect size of the IV-DV relationship also increases. In the 
example, this could occur by increasing the vividness or size of the aversive images; larger or 
more vivid images provide a greater disturbance.  

The formal method for identifying the controlled variable in an individual is called the 
Test for the Controlled Variable (TCV; Powers, 1973). The experimenter attempts to identify 
which perceptual variables the participant is controlling, and then to test this with precision, 
the experimenter may build and test a model that attempts to simulate the individual 
interacting with their environment. Only an extremely tight match of behavior between the 
model and the participant is counted as support for the model.  
  The TCV involves the following steps:  
 1. Hypothesize what variable is being controlled.   
 2. Apply disturbances that should affect the variable if the person was not controlling it.  
3. Observe the effect of the disturbance. If the disturbance is resisted then the variable could 
be the CV. Try another disturbance to test this. Otherwise return to (1).  
 4. Once the experimenter can reliably create disturbances that are resisted then the CV is 
discovered.  
  The TCV can be applied across any domain of interest. The study is set up differently 
from a traditional IV-DV experimental design. First, the experimenter does not attempt to 
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control all variables in the study; rather the experimenter aims to set up a design in which the 
perceptual variables that the participant controls can be inferred by the effect of their actions 
the controlled variable which is observed by the experimenter. Second, the experimenter does 
not present discrete ‘stimuli’ and measure discrete ‘responses’ to this stimulus. For example, 
in animal studies, the TCV involves recording the movements of free-moving animals rather 
than restricting movements and presenting stimuli to observe specific responses (Bell & 
Pellis, 2011; Barter et al., 2015). Instead, the experimenter needs to (a) characterize the 
continuous array of perceptual information that is available to the participant through their 
senses (b) identify or provide the means through which the participant has to control their 
perceptual input within the environment, and (c) identify or manipulate the disturbances to 
this control.  Third, the TCV is aimed at modeling the individual rather than averaging across 
a group of individuals.  
 We will now illustrate how PCT is used to derive computational models of the 
individual and test them and we report evidence of the high levels of replicability of the fit of 
these models to human data. We begin with visual tracking in pure and applied settings, then 
introduce proximity control across a range of subdisciplines of psychology, then illustrate 
how higher order goals, and ultimately the more complex processes of learning, decision-
making and reasoning may also be studied in closed-loop designs and modeled at the 
individual level.  
Evidence for replication and robustness of PCT-informed methodology 
1. Visual tracking 

Powers (1973) describes the paradigmatic case of a closed-loop experiment as "the 
tracking experiment where a participant manipulates a control lever to cause a cursor - say a 
moving spot of light - to track a moving target (e.g. Taylor & Birmingham, 1948)" (p. 44).  
According to Powers (1973), "this is clearly a control task. [The participant] is trying to keep 
the spot and the moving target in a particular relationship, namely, on the target". If the dot 
moves from the target then the participant's response is always to reduce the difference via 
action. A range of visual tracking tasks have been tested, each requiring the control of a 
simple perceptual variable. They have involved control in one and two-dimensions, and 
movements determined by the user moving a computer mouse or operating a handle.  

This task permits extremely reliable experimental effects in the form of the moment-
by-moment intra-individual correlations obtained between the controlled variable (e.g. 
location of the cursor relative to a target), the output (e.g. the movements of the computer 
mouse), and the disturbance (e.g. the disturbance to the location of the target). In particular, it 
is found that the disturbance and the behavioral output of the individual have a very high 
negative correlation due to the fact that the individual’s action needs to counteract the 
disturbance in order to maintain control. Unlike typical experiments involving the behavior of 
humans or animals, the IV-DV relationship in tracking is extraordinarily high - in excess of 
.98 (Bourbon, 1996; Bourbon et al., 1990). In contrast, the controlled variable, even though it 
represents the input to the human participant, has a very low correlation with output or 
actions, thereby contradicting a lineal input-process-output model. 

The next stage involves model generation, which reproduces the phenomenon of 
control manifest in any given task. In the case of simple tracking this is demonstrated by the 
model simulating the maintenance of the cursor on the target by appropriately countering 
disturbances. There is a training phase during which a computer model of one or more 
control units (see Figure 2) is constructed by estimating its parameters. For example, this 
involves inferences for the controlled variable (e.g. location of the cursor), its reference value 
(e.g. aligned exactly with the target) and the output function (e.g. the gain of the error signal). 
Then a test phase is carried out in which both the human participant and the computer model 
are presented with a disturbance pattern that has not been presented in previous trials. In each 



PERCEPTUAL CONTROL MODELING 13 

case, the agent needs to move the computer mouse by an amount that exactly tracks the target 
on the screen.  In order to evaluate the accuracy of the computer model, a correlation 
coefficient is calculated for each participant by recording the position of the human’s cursor 
and the position of the computer’s cursor at each time point during the task, which typically 
around 16ms. A correlation of 1.0 would indicate perfect correspondence between the 
positions of both the human and computer. An example of the task itself is displayed in 
Figure 3.  
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Figure 3. A) Experimental set up with computer model and screen: r = reference signal, p – 
perceptual signal, C = cursor position, T = target position, e = error, o = output signal; B) 

Experimental set up from the view of the participant, C) Results typical of human tracking 

over one experimental run. Reproduced from Parker et al. (2017), pending permission from 

Sage publications. 
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Table 1. Published replications of high correlations between the cursor movements generated 

by a PCT computer models and the recorded cursor movements generated by the individual  

 

Task and Study       Pearson correlation  

_______________________________________________________________________  

Relative location in one dimension (Pursuit) 

Bourbon & Powers (1999) 
     Experiment 1        r = .989 
     Experiment 2       r = .981 
     Experiment 3       .969 ≤  r ≤  .996 
Marken (2013)       r = .995 
Marken and Powers (1989) 
     Experiment 1       r = .987 
     Experiment 2A      r = .95 
     Experiment 2B         r = .95 
     Experiment 3       r = .94 
      Experiment 4       r = .97 
Bourbon (1989)  
     Experiment 1       .991 ≤  r ≤  .996 
     Experiment 2       .991 ≤  r ≤  .993 
Bourbon (1990)       .995 ≤  r ≤  .996 
Bourbon et al. (1990)   
     Experiment 1       .961  ≤  r ≤  .996 
     Experiment 2       .989  ≤  r ≤  .996 
     Experiment 3       .992  ≤  r ≤  .997 
Bourbon (1996)       .971 ≤  r ≤  .998 
Relative location in one dimension (Compensatory)  

Marken (2013)       r = .995 
Powers (1989b)       .99841 ≤ r  ≤ .99991 
Relative location in two dimensions (Compensatory) 

Marken (1991)       r = .986 
Matching distance between two pairs of horizontal lines 

Marken (1986) 
     Experiment 1       .979 ≤ r  ≤. .990 
     Experiment 2       .982 ≤ r  ≤ .990  
     Experiment 3       r = .98  
___________________________________________________________________________ 

Note. ‘Pursuit’ refers to controlling the relationship of a cursor to target moving according to 
a randomly generated disturbance. ‘Compensatory’ refers to controlling the relationship of a cursor to 
a stationary target, despite disturbances applied to the cursor. Pearson r values represent the value, or 
range of values, for the correlations between the model behavior and the behavior of the individual 
measured across the time period of the task. They are reported to the decimal point value of the 
original paper. 

 
The model-participants correlations in these replicated studies are described in Table 

1. They are consistently above r =.94, across a total of 21 different experiments that have the 
same methodology but vary in a number of features, such as the number of participants and 
the number of spatial dimensions. This consistency is achieved across variants of the design 
despite the fact that the disturbances used to train the computer model  – typically generated 
by a smoothed random sequence of numbers – were typically not the same as those used in 
the test phase. These findings were replicated in a recent study using root mean squared error 
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as a measure of model fit rather than correlation coefficient (Parker, Tyson, Weightman, 
Abbott, Emsley, & Mansell, 2017). The average error rate at follow-up was 1.85%. Thus, the 
PCT model achieves a high level of accuracy in simulating the behavior of participants to 
‘stimuli’ in the environment that they have not previously demonstrated. We would like to 
suggest that the model fits are particularly high for this group of studies not only because the 
theory may be valid, but because the experimental methodology used to test the theory fitted 
the criteria we are proposing to be essential to achieve replication, namely a closed-loop task 
collecting continuous data within an individual.  

This visual tracking methodology has been extended to applied domains of human 
performance. A diverse range of experimental studies have been used to examine whether a 
particular controlled variable - optical velocity  - is generally superior to a range of other 
possible controlled variables (e.g. optical acceleration), whether the object is thrown to 
oneself by another person (baseball catching), by oneself (throwing up a basketball and 
catching it), or moves autonomously (a toy helicopter) (Marken, 2005; Shaffer et al., 2013, 
2015). The same basic model was replicated in each case. The design of these studies was 
critical to their robustness; they required data to be collected dynamically as part of an 
explicitly closed loop design, either within a computer simulation, or in a real-life task 
through coding movements recorded on video cameras as participants intercepted objects 
within their environment.  

 
 
 

2. Evidence for applying the PCT methodology beyond visual tracking: proximity control 

The next challenge has been to assess whether this experimental method generalizes 
to other controlled variables and disturbances, and to other contexts and samples. We will 
focus on a single controlled variable - proximity to others - because it can be widely studied 
across the behavioral sciences. For example, proximity control is a key feature of attachment 
during child development (Bowlby, 1972), grouping in animals (Niwa, 1994) and personal 
space in social and clinical psychology (Sundstrom & Altman, 1976). Yet it is important to 
note that, in principle, any traditional open-loop design can be reconceptualized as a closed-
loop system when one takes into account the perceptual control abilities of the individual 
(Marken, 2013).   

A series of studies involved frame-by-frame coding of videos of pairs of animals (rats 
and crickets) during food competition (Bell & Pellis, 2011; Bell, Judge, Johnson, Cade & 
Pellis, 2012). These researchers successfully used the TCV to show that the animals were 
controlling their proximity to one another. Following this, the researchers demonstrated that 
simulated agents controlling their proximity to one another showed qualitatively similar 
behavior to the animals (Bell, Bell, Schank & Pellis, 2015). Similarly, computational models 
of proximity control have been developed within social psychology to show qualitative 
similarities with the behavior of human crowds (McPhail et al., 1992). These studies clearly 
have the capacity to be extended to tests of computational models. For example, a paradigm 
to assess control of interpersonal distance has involved validating a computational model. 
Participants were recruited in groups of five, tested in each combination of pairs, and their 
distance from one another was recorded whilst standing for a conversation. The models were 
optimized to training data such that the preferred interpersonal distance for each individual 
(reference value) could be estimated, along with their gain for the control of this distance. 
This allowed the experimenter to use the model to predict the interpersonal distance of novel 
combinations of pairs of participants (Mansell, Rogers, Wood, & Marken, 2013).  

A closed-loop design has also been used within clinical psychology as an alternative 
to paradigms that present a ‘threat stimulus’ and assess reaction time to a discrete response. 
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Participants use a joystick to control their continuous distance from a threatening image (a 
spider) within an image of a corridor on a computer screen (Healey, Mansell, & Tai, 2017). 
The participant needed to move the joystick continuously to adjust the distance because the 
spider moved of its own accord. One version of this paradigm reversed the relationship 
between joystick direction and distance from the image, in the same way as the reversal noted 
in the meta-analysis of flexion and extension studies described earlier (Laham, Kashima, Dix, 
& Wheeler, 2015). In both conditions, participants maintained a preferred distance, even 
though the actions required to achieve this were in the opposite direction between conditions.  

Taking the literature above as a whole, it is clear that control of socially important and 
clinically relevant variables can be modeled accurately using valid closed-loop experimental 
designs. We now turn our attention to the circumstances when we might expect models (of 
any domain of the psychological sciences) to be less consistent and replicable, by considering 
further elements of perceptual control theory, namely the hierarchical organization of goals 
and reorganization.    
3. Evidence for Generalizing PCT methodology to high level goals 

The experiments we reviewed in the last section are required to have a very tight 
relationship between the IV (the experimental manipulation) and the DV (e.g. the behavioral 
response); in other words a very large effect size. The computational models of these tasks 
then emulate the task itself rather than various other processes involved in learning to 
perform them. It makes sense to build models of highly practised tasks before moving on to 
try to understand more sophisticated psychological processes, including the learning of novel 
and complex tasks. It also makes sense to model highly practised tasks from an ecological 
perspective - they are likely to be by far the most common activities people engage in - 
walking, talking, object manipulation, tracking moving objects, controlling distance - even 
though they may executed relatively automatically and outside awareness most of the time. 

The nature of the experimental data to train computational models has been 
particularly highlighted by the work of Jeffrey Vancouver and colleagues. They have 
developed models of goal pursuit within organizational contexts (e.g. health services; 
education) drawing from PCT in order to attempt to provide a more accurate account than 
existing social learning theories (e.g. Bandura, 1978). Vancouver and colleagues have used 
study designs that fit their computational models: for example a task in which participants 
were given the role of a manager in a simulated work setting. The job was to allocate workers 
shift times to a schedule. This required them to balance time allocation and also meet the 
budget for the workforce (Vancouver, Putka, & Scherbaum, 2005). Their study serves as a 
worked example of the key stages of development when applying closed-loop designs to test 
a computational model in a novel domain of psychology.  

Vancouver et al. (2005) helpfully broke down their design process into the following 
stages:  

(1) Circumscribe the phenomenon. Any real world system is highly interconnected 
between individuals and their environments, and therefore attempting to model all 
systems would be unproductive (Forrester, 1968). Therefore, the researcher needs to 
specify the most important elements of the phenomenon of interest. Vancouver et al. 
(2005) studied the ‘goal level effect’ (Locke & Latham, 1990) and so they needed a 
paradigm in which a user could be assigned goals of different levels, apply decisions 
within the system, and get feedback on their effects.  
(2) Represent a specific context. Next the researcher needs to select a relevant social 
context for the task. Vancouver et al. (2005) chose a simulation of computerized 
scheduling of nurses work patterns because it was relevant to an organizational 
context, and it allowed interactivity with the user within a closed loop.     
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(3) Select a software platform for computer modeling of the human participants. 
Vancouver et al. (2005) describe a wide range of platforms, including spreadsheets 
(e.g. Marken, 1990), all purpose programming languages (e.g. C++, Basic), and 
simulation platforms, such as Vensim (www.vensim.com).  
(4) Construct the model. The researcher uses the components of PCT to build a 
bespoke model that perceives the variables presented in the experimental task, 
compares these with reference values for the variables, and acts upon the task. 
Vancouver et al. (2005) produced a three-level hierarchy that implemented 
adjustments of the nurses schedules in order to manage its cost. This stage of the 
research clearly requires considerable thought and discussion as the model 
architecture is refined.  
(5) Test the model. Vancouver et al. (2005) reported a number of test of their model. 
These included visual inspection of the graphs of the outputs of each participant and 
their computational model for direct comparison, and the calculation of intraclass 
correlations to estimate the model fit. 
Figure 4 displays the example provided by Vancouver et al. (2005) and indicates the 

close match between participant and computer data. The computational model of 
performance of this task produced high correlations (all r > .9) between the individual 
participant behavior and that of the model for the majority of participants. Despite this being 
an abstract task, the level of fit was comparable to the target tracking tasks described above.  
Interestingly, it also revealed that an alternative model (based on another theory - Klein, 
1989) applied to a minority of participants, thereby revealing the importance of studying 
individuals to gain a more nuanced understanding of individual differences, rather than 
attempting to generalize a single finding across groups. Taken together, they demonstrate that 
it is possible to follow the recommendations of our article when studying higher level, 
acquired goals. Vancouver and colleagues have also interweaved the modeling of 
discontinuous variables (e.g. the perception of events) into their models of continuous 
variables.  We anticipate that such designs could be applied across social and cognitive 
psychology; for example an earlier study utilizing PCT showed that people counter trait 
words that are disturbances to their self concept (Robertson, Goldstein, Mermel & Musgrave, 
1999). A future study could construct a computational model of this closed-loop process 
within individuals and test it against participant data. Next we turn to the acquisition of such 
goals during learning and development, and other higher-order processes such as reasoning 
and decision-making.  

 

http://www.vensim.com/
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Figure 4. Plot of the relationship between time and cost on the scheduling task in one 

participant from Vancouver et al. (2005). The model shows the close match in performance 

of the computational model and the participant continuously during the task.  

 
 

4. Generalizing PCT Models to Complex Psychological Processes 

Designing studies to examine the learning and development of mental processes such 
as memory, reasoning and decision-making present a particular challenge to researchers (e.g. 
Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Kotseruba, Gonzalez, & Tsotsos, 2016). 
At present a large field of computational modeling is involved in simulating data from 
complex tasks that involve high levels of uncertainty both in terms of the participant’s 
understanding of how to perform well, and in terms of the researchers’ understanding of what 
the task is actually measuring. A characteristic example is the modeling of control 
performance in the classic dynamic systems task by Berry and Broadbent (1984). The task 
introduced a noise parameter to increase participant's uncertainty about the crucial features of 
performance. This meant that the data generated by both the participants and simulations 
showed highly variable behavior (e.g. Dienes & Fahey, 1995). In this situation, models can 
only be evaluated in terms of very broad qualitative comparisons between patterns of data 
across models and human behavior. In the sugar factory example, the learning rate in 
individual participants was very low, partly because noise was deliberately introduced into 
the procedure. However, even allowing for that, participants’ performance was well below 
that of routine, highly practiced, tasks. The consequence of this approach to date for the sugar 
factory task is that the interpretation of computational models is judged according to broad 
qualitative impressions of the performance, across the sample, and rarely in terms of 
individual performance.  

Within contemporary examples, the inclusion of random variability within 
computational models can permit individual differences and their correlates to be identified 
within group data (e.g. Guitart-Masip, Huys, Fuentemilla, Dayan, Duzel, & Dolan, 2012; 
Moutoussis, Dolan, & Dayan, 2016). Yet, it is when computational models begin to 
incorporate the processes within the individual that may be generating variability that model 
fit improves (Moutoussis et al., 2016). We will return to this point later when we describe the 
proposed role of intrinsically generated variability within a control architecture. Indeed, it is 
possible to produce models of the continuous data from individuals carrying out closed-loop 
tasks that do incorporate classically ‘cognitive’ processes (Vancouver & Purl, 2017). 

Earlier we described the organization of a single control unit. The complete 
architecture describes how multiple control units are organized within a hierarchy (Powers et 
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al., 1960; Powers, 1973). The outputs of each higher level in the hierarchy provide the 
reference values for the next layer down, enabling more complex variables to be controlled. 
This architecture also allows the operation of various modes of control as outputs can also 
form recurrent connections that are fed back upwards - for example allowing mental 
simulation of the perceptual results of action before they occur (Powers et al., 1960; Powers, 
1973, 2008). This is thought to be the means through which we engage in mental imagery of 
our goals.  
 The model parameters of the work described above are stable; they do not change as 
the task progresses. As long as the output function of the model counters the disturbance, the 
perceptual variable is under control. However, more profound changes in environment can 
undermine control, for example where the feedback function of the environment is reversed. 
One example of this involved chicks on a treadmill that was set up so that when they ran 
faster they got closer to a cup of food. When this relationship was reversed experimentally – 
with the cup of food moving further away as they ran faster – they lost control because they 
consistently chased towards the food faster as it got further away (Hershberger, 1986). This 
study clearly supports the view that ‘approach behavior’ is not a triggered response, but part 
of a closed-loop process to try to control visual perception. Yet it also demonstrates how the 
basic control unit has limitations and so a new control strategy would need to be learned in 
order to restore control in some highly novel environments. For this reason, PCT incorporates 
a learning process that describes how new control systems are developed, optimized and 
conflict between them reduced - known as reorganization (Powers et al., 1960; Powers, 1973, 
2008). Powers credited this process in part to earlier work by Ashby (1948) and Campbell 
(1960). This is the component of PCT that requires a stochastic process rather than a 
deterministic mechanism, and the element of the theory that involves a level of uncertainty. 
While the mathematical details of the algorithm are beyond the purpose of the current article, 
the key principle is that random variation in the parameters of a control unit is introduced in 
order to select the values that optimize control. As Powers (1989a) states, “The concept of a 
reorganizing system fills in a missing part of the control-system model: the explanation of 
how it got that way… how an organism could be organized, maintain its organization, and 
acquire new organizations that pertain specifically to the continued existence of the organism 
in a wide variety of changing environments.” (Powers, 1989a, p291). 
 Thus, from the perspective of PCT, we can make a hypothesis regarding when a 
computational model is likely to have a very high fit with human performance, and periods 
when it cannot have a tight fit, owing to the proposed self-generated randomness within the 
system. Specifically, we would expect accurate models to predominate in well-practised 
activities showing high levels of control by the participants. Periods of poorer fit would occur  
when control is poorer, until, through reorganization, the individual converges on the most 
adaptive perceptual variable to carry out the task effectively from their perspective, at which 
point model fit, and therefore replicability, should rise again suddenly, providing that the 
computational model controls the same variable as the human participant. Following this, 
both the human participant and the model should show a gradual improvement in control, and 
in model fit, as the parameters of the control system asymptotically approach their optimal 
values (Robertson & Glines, 1985).  

There are a small number of PCT models that have designed experiments to test more 
complex elements of the PCT architecture. In terms of utilizing a hierarchy, one task 
involved participants controlling the relative distance of two independently moving objects 
on a computer screen (Marken, 1986). This closed-loop design fitted our stated criteria. A 
computational model requiring two hierarchical levels was constructed and optimized to the 
training data. It showed a high level of fit, similar to the position tracking studies described 
above. 
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A small number of studies have directly explored the stochastic learning process of 
reorganization using novel experimental designs (Pavloski, Barron, & Hogue, 1990; 
Robertson & Glines, 1985). For example, one study tested participants on a computerized 
‘game’ that required them to detect and control three different perceptual variables varying in 
level of abstraction. These studies did not involve the construction of computational models. 
In a parallel line of work, computational models of the reorganization process have been 
developed and shown to have a qualitative resemblance to human performance (Marken & 
Powers, 1989; Powers, 2008), but these have not been tested against individual behavioral 
data.  

 Returning to the work of Vancouver and colleagues, they have further advanced the 
complexity of their models, including multiple goal pursuit (Vancouver, Weinhardt, & 
Schmidt, 2010), and learning and planning, drawing on further components of PCT in the 
process (Vancouver & Purl, 2017). These models show high internal validity in completing 
the tasks for which they were designed, although their match with behavior data has been 
more modest than the simpler models. This may be the case for two reasons. First, Vancouver 
and colleagues are striving to model complex processes in which multiple goals are modeled 
and ability to control is emerging, and so the models are likely to be less precise than the 
well-practised tracking and interception tasks typically modeled. Second, the existing 
research designs do not typically provide the data necessary to accurately test a 
computational model against individual, closed-loop data (Vancouver & Purl, 2017). Taken 
together, this body of work has made clear both the advantages and future challenges of 
experimental design for computational models based on PCT.  

 
Future improvements in experimental designs for testing psychological theories 

In this final section, we provide four further recommendations regarding how to 
further advance theory-testing through dynamic, closed-loop, assessments of individual 
performance.   
1. Establish the individual specificity and stability of computational models and their 

parameters 

First, we recognize a limitation in current testing of computational models. The test 
phases typically do not extend beyond the experimental session, immediately following the 
training phase for the model. Yet, psychological theories typically hypothesize both task-
specific and enduring, person-specific traits or structures within individuals. Indeed, within 
the fields of social and personality psychology, the requirement for trait measures to have 
stability over time has long been upheld as an essential stage in establishing the validity of a 
new measure (Oppenheim, 1990). As we mentioned earlier, within psychophysics, it also 
seems feasible to establish consistency in perceptual parameters over time. Surely, it is no 
less important to establish test-retest reliability for computational models over longer periods 
than a single test session? Despite the importance of this, we have identified only two studies 
that tested the temporal stability of computational models (Bourbon et al., 1990; Bourbon, 
1996), and none that directly assessed whether models were individual-specific. In our lab, 
we have recently completed a study of participants carrying out a one-dimensional tracking 
task and showed that the computational models of individuals derived from PCT were 
specific to each individual, and highly stable over one week (Parker et al., 2017).  

Going beyond the above work, one might argue that a fully robust test of a 
computational model of an individual will have the capacity to model performance that is 
based on both task-specific (and therefore varies over time within an individual depending on 
their current task) and task-invariant parameters and strategies. In other words, we come even 
closer to testing the validity of a theory in modeling an individual when models and their 
parameters have consistencies across different tasks. We know of one study achieving this - 
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although not within a closed-loop task - terming the methodology ‘cognitive tomography’ 
(Houlsby, Huszar, Ghassemi, Orban, Wolpert, & Lengyel, 2013). In this study, computational 
models of individual participants were constructed based on their judgment of familiarity of 
an array of facial images. The models utilized idiosyncratic internal representations of facial 
images to successfully complete the original task, and the same models fitted individual 
performance during a subsequent, different task that involved identifying ‘the odd one out‘ in 
an array of facial images. Future work on models of closed-loop activities can take 
inspiration from this design. They would examine the degree of consistency in models and 
their parameters on different tasks that are nonetheless proposed to require the control of the 
same perceptual variables.    
2. Carry out comparative tests between computational models against behavioral data 

 An appropriate methodology for computational model testing against behavioral data 
is to compare and contrast the fit of competing models (Guitart-Masip et al., 2012; 
Moutoussis et al., 2016; Vancouver et al., 2010).  A small number of studies have compared a 
PCT model against a ‘cognitive’ or ‘open-loop’ model, and found that the PCT model to be 
superior in fit to behavioral data (Bourbon & Powers, 1999; Marken, 2013). However, in 
both cases, the competing model was constructed by experts in the PCT models. In the future, 
collaborative work is required so that competing models derived from distinct theories are 
contrasted in their degree of fit with the individual data of specific tasks. Particular attention 
will need to be paid to ensure that competing models have equal capacities to optimize their 
parameters to the individual for a fair comparison. 
3. Build and test physical simulations and robotic devices against behavioral data 

There is an increasing appreciation that robotics provide a testing ground for 
psychological theory (Sleek, 2016). Yet, at present the aim is typically to produce 
qualitatively similar behavior to that of a human, rather than to attempt to quantitatively 
match the behavior of a human carrying out the same task. Where a robotic device is required 
to implement a computational model, the test becomes increasingly challenging. For 
example, the typical model of tracking performance permits the computer to move the cursor 
on the screen directly through the electronics of the computer. The model is not required to 
move a joystick or a mouse like the human user. For this reason, the functional architecture 
required to embody movement is not typically modeled; the model specification is 
incomplete. Whilst it could be argued that modeling anatomy is an overly complex 
requirement for a psychology experiment, there is clear evidence that body arrangement and 
posture are significantly associated with measures of cognition and emotion (Niedenthal, 
Barsalou, Winkielman, Krauth-Gruber & Ric, 2005). Indeed, the body itself may have a key 
role in the process of control and computation (Füchslin, Dzyakanchuk, Flumini, Hauser, 

Hunt, Luchsinger et al., 2013). Furthermore, modeling anatomy adds additional complexity 
to one’s assumptions regarding the design a computational model because the different joints 
within a limb act as self-generated disturbances to one another, which need to be 
counteracted in an ongoing manner (Powers, 2008).  

Despite the above challenges, the potential leap further towards robotic technology 
has intermediate steps that make it somewhat simpler. For example, computer simulations 
can be used within computational models to emulate the physics of the environment (e.g. 
Kennaway, 1999; Powers, 1999). However, such approaches are open to criticism regarding 
the accuracy and oversimplification of such modeling of the environment. An alternative step 
in this direction that our lab has piloted is the use of force-feedback devices. They allow a 
computational model to demonstrate its ability to use physical movement in the real world 
(the computer-generated motion of a joystick) to close the loop between an output signal and 
a shift in the variable that is being controlled (the location of the cursor). A recent effective 
test of the PCT architecture has involved embodying it within a rover vehicle (Young, 2017). 
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Yet, arguably only robotic structures that are more analogous to human anatomy will permit a 
direct test of an embodied model (e.g. Guizzo & Ackerman, 2012). A shift of this kind 
towards artificial life as a means to test psychological theory has its own philosophical and 
ethical challenges (Jordan, 2008), but need not be seen to be outside the realms of 
psychological science.  

 
How can researchers make the transition we are recommending?   

We recognize the huge challenges involved for researchers to shift from existing 
conceptualizations of behavior and their associated methodologies, to the alternative we are 
suggesting. The inherent difficulties of any cultural, organizational or scientific system to 
make changes are well recognised (Kuhn, 1962; Todnem By, 2005). There are two sides to 
any system confronting change.  
 On one side are the perceived benefits of keeping the status quo alongside the 
perceived fears and costs of shifting to a new set of conceptual and methodological 
assumptions. It is clearly easier to stick with the existing system because it is supported by 
the vast majority of textbooks, school, college and degree courses, and academic journals. 
There is a realistic fear that, at least in the short term, producing research based on a different 
set of assumptions may not be published, nor supported by funding bodies.  
 On the other side are the costs of keeping the existing system and the benefits of the 
shift. We have tried to make a clear case that the cost of keeping the existing system will be 
no resolution of the replication crisis, which in turn will limit scientific progress. In addition 
we have described evidence for the benefits of more accurate and consistent replication of 
research findings. There are several other reasons that researchers considering making the 
shift should be heartened:  

1) Resources. The methods to examine perceptual control are supported by a variety 
of resources. We summarized the TCV, which is also described in a number of books with a 
range of illustrative examples (e.g. Marken, 2014; Runkel, 2007). Software is also freely 
available to collect data on visual tracking, and to build models of crowd behavior (Powers, 
2008). We have also summarized a number of tools available to build new computational 
models, including spreadsheets (Marken, 1990), and model-building software (e.g. Vensim).  

2) Contemporary technology. The perceptual control paradigm lends itself easily to a 
number of contemporary advances in research technology that are already popular with 
researchers yet appear to have not yet reached their full potential. For example, virtual reality 
systems have the capacity to collect continuous real-time data on bodily movements, and to 
present continuous information to the visual and auditory modalities. Yet, this data is rarely 
used to train and test computational models of the psychological processes involved. A 
similar case can be made for smartphones and advanced robots.  

3) Coherent framework. The capacity for the integration of research findings is 
enhanced by this approach. Through considering behavior as the control of perceptions, 
research on behavior across a variety of contexts can be seen to share the same underlying 
patterns. One example is within the field of psychopathology. Increasingly it is becoming 
recognized that the wide variety of symptoms of different psychiatric disorders share a 
conceptual structure; they reflect attempts to control various emotional experiences in ways 
that limit the individual’s opportunity to process and resolve longstanding goal conflict 
(Mansell, Carey, & Tai, 2015). This conceptualization in turn can inform a more efficient and 
universal psychological intervention (Alsawy, Mansell, McEvoy & Tai, 2015).  

In sum, despite the costs of change, there are appropriate means available to make the 
change and a range of benefits to be identified in the long term.  
Conclusions 
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In the future, we hope that increasingly larger numbers of researchers from diverse  
backgrounds will recognize and use perceptual control methodology. This will allow the field 
of psychological science to continue to move from null hypothesis testing of aggregated 
groups of participants designs towards using models to prototype individual performance as a 
robust test of the ‘truth’ of a scientific theory. We have proposed that such a scientific 
venture will only succeed if close attention is paid to the experimental design used to collect 
participant data. We also showed examples of where these advances in research design 
advance scientific knowledge and test psychological theories even in the absence of a 
computer model.  

Specifically, we made the recommendations that studies collect continuous individual 
data from participants carrying out activities that are ‘closed loop’ in nature and that ideally 
generate very high effect sizes for the IV-DV relationship. We offered research on perceptual 
control theory as an illustration of where these requirements have been met and led to a 
number of accurate models of real world psychological phenomena. We have recognized that 
there is however a tension between the complexity of computational models, and the 
advances in experimental design required to test them robustly at the individual level. We see 
this as an inevitable feature of progress in this area and anticipate that adhering to the 
recommendations for experimental design we have described could act as a helpful rubric to 
hone research development in this field.  

At its pinnacle, researchers from all backgrounds will be able to directly compare the 
capacity for different (and potentially theoretically distinct) computational models of 
individuals to match task performance. From here, replication can proceed. The researcher 
attempts to replicate the degree of fit between a computational model derived from a theory 
and continuous data from individuals. Ultimately, a valid theory should permit replication of 
a model not only within the same participant over time, but across different tasks to the 
degree that they share the same components. We have specified the conditions under which 
near exact replication of individual models is feasible (i.e. during highly practiced tasks in 
which the participant manages high levels of control) and those in which it will retain some 
level of ‘noise’ but nonetheless remain a robust test of psychological theory  (i.e. during the 
learning and practice of more difficult versions of the same task, or novel tasks that require 
random changes to converge on an effective control strategy). We aim to pursue all of these 
considerations within our future work on ‘replication science’. 
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Footnotes 

1.It is tempting to think that a number of contemporary approaches to 
computational modeling might occupy the same ground as PCT. Most prominent here are 
predictive coding accounts including those that involve the free energy principle or active 
inference (e.g. Seth, Suzuki, & Critchley, 2012). The contemporary view is that the 
fundamental role of the brain is to make predictions about the environment through its own 
internal models to determine its behavioral response. In contrast, according to PCT, the 
control of perceptual input is the fundamental role of the brain and not prediction. Prediction 
can occur as part of the process of perceptual control but it is not a necessary requirement for 
psychological functioning. Control requires only the establishment of adaptive perceptual 
goals, many of which are described in the current article (e.g. Bell, 2014; Marken, 2005). 
Indeed, some of the most contemporary empirical work putting to the test established models 
of the brain as a ‘prediction machine’ actually support the view that sensory input is a 
controlled goal-state rather than a predicted outcome (e.g. Niziolek, Nagarajan, & Houde, 
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2013). Nonetheless, we expect that both accounts have strengths and limitations. Rather than 
attempting to integrate or contrast PCT with contemporary prediction error accounts in the 
current article, we have chosen to simplify our message by focusing on the specific 
contributions of a PCT account to research methodology. 
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