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Previously I outlined a scheme for understanding the usefulness of computational models

(Stafford, 2009). This scheme was accompanied by two specific proposals. Firstly, that al-

though models have diverse purposes, the purposes of individual modelling efforts should be

made explicit. Secondly, that the best use of modelling is in establishing the correspondence

between model elements and empirical objects in the form of certain ‘explanatory’ relation-

ships: prediction, testing, existence proofs and proofs of sufficiency and insufficiency. The

current work concerns itself with empirical tests of these two claims. I survey highly cited

modelling papers and from an analysis of this corpus conclude that although a diverse range

of purposes are represented, neither being accompanied by an explicit statement of purpose

nor being a model of my ‘explanatory’ type are necessary for a modelling paper to become

highly cited. Neither are these factors associated with higher rates of citation. The results

are situated within a philosophy of science and it is concluded that computational modelling

in the cognitive sciences does not consist of a simple Popperian prediction-and-falsification

dynamic. Although there may be common principles underlying model construction, they are

not captured by this scheme and it is difficult to imagine how they could be captured by any

simple formula.

Introduction

We might expect computational modellers to be very con-

cerned with theory and meta-theory. For one reason, compu-

tational modelling is a relatively young branch of psychology

and neuroscience. Not only this, but it is a field in which

innovation abounds, as the rise and rise of computational

power opens up new possibilities. Historically, this kind of

tumult has been associated with discussion of the scope and

purpose of a discipline, and with discussion of the standards

of comparison that should be applied to different investiga-

tions. A second reason we might expect computational mod-

ellers to concern themselves with theory and meta-theory,

is that modelling generates no data in itself. Modellers are

forced to exist in the world of theory; to simulate the under-

lying structures responsible for the patterns in the data, to

propose different explanations for the data and to test rela-

tionships between proposed theoretical entities in our com-

putational mini-worlds.

Post-print of Stafford, T. (2010). How do we use computational

models of cognitive processes? In Connectionist Models Of Neu-

rocognition And Emergent Behavior: From Theory to Applications.

Proceedings of the 12th Neural Computation and Psychology Work-

shop, Birkbeck, University of London, 8-10 April 2010. World Sci-

entific (pp. 326-342).

For these reasons we might expect computational mod-

ellers to resist the urge to view their work as a mere techni-

cal challenge, but remain alive to the theoretical claims that

modelling work must be situated among for it to be scien-

tifically meaningful. For the same reasons, we might expect

computational modellers to be alive to the ongoing metatheo-

retical questions that concern computational modelling: what

scientific role can modelling play, how should computational

models be evaluated and what are legitimate motivations for

instigating a computational modelling project? These kinds

of questions are the domain of the philosophy of science.

Philosophy of science has a mixed reputation among sci-

entists. It has been said that there is a remarkable disparity

between the actual conduct of science and the picture pre-

sented by mainstream philosophy of science. One reason is

the greater attention paid in philosophy of science to how sci-

ence ought to be conducted — that is, to the logical require-

ments and structure of scientific claims — rather than how it

is — in fact — conducted. The physicist Richard Feynmann

is reported to have said “Philosophy of Science is as use-

ful to scientists as ornithology is to birds". The implication

being that philosophy of science is an artificial and wholly

conceptual domain of knowledge which is irrelevant to the

way scientists conduct themselves. It would be surprising,

however, if scientists were able to “do" science with quite

the same instinct, grace and spontaneity that birds fly (even
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Feynmann).

There are at least three good reasons that philosophy of

science is not just of interest, but a necessity for scientists.

What is more, these three reasons are especially pertinent to

the field of computational modelling. Firstly, an articulation

of principles is required to support the acceptance of a new

field. In the case of computational modelling it is not the case

that everyone accepts its value as a scientific activity. For ex-

ample, neuroscientist and Nobel Laureate Francis Crick ac-

cused neural network modelling of being ‘a rather low-brow

enterprise’ (Crick, 1989) and a vent for frustrated mathe-

maticians. Segalowitz and Bernstein (Segalowitz & Bern-

stein, 1997) were clearer but equally condemnatory in their

criticism, dismissing modelling and explaining that ‘models

cannot tell us anything about the world...nor can they pro-

vide new information about brain organisation or function’.

Although these criticisms concern the historical period when

computational modelling was still struggling for acceptance

in psychology and neuroscience, it is still possible to find

similar sentiments, along the lines that modelling is an in-

dulgence or irrelevance, expressed informally today. Indeed,

the division of psychologists or neuroscientists into ‘mod-

ellers’ and ‘non-modellers’ suggests that modelling has not

been fully integrated into the wider discipline.

Secondly, philosophy of science informs debates that we

have within a field. Among modellers substantial disagree-

ments exist concerning the correct approach to modelling.

As evidence of this assertion, let me pick two discussants

from a debate that occurred on the comp-neuro mailing list

in 2008. James Bower expressed the opinion that modellers

should perhaps “give up on cerebral cortex for several hun-

dred years and all study tritonia instead” (Bower, n.d.). Al-

though he was making this suggestion to illustrate a point,

it does resonate with his apparent preference for low-level

‘computational neuroscience’ modelling. In contrast, in the

same debate, Randall O’Reilly wrote that “the hippocam-

pus is essentially a “solved problem" in terms of the gen-

eral framework for how its biological properties enable its

well-established role in memory" (O’Reilly, n.d.). Not only

should we, contra Bower, continue to study cerebral cor-

tex, but we have in fact essentially solved a major part of it!

Bower initiated the discussion on the email list to illustrate

to a group of graduate students that many fundamental is-

sues within computational neuroscience are not agreed upon.

This it illustrated admirably and the reader is encouraged to

review the discussion to enjoy wide-ranging consideration of

levels of modelling, ways of assessing the value of a model,

the value of modelling in general. All of these issues are the

business of philosophy of science and a modeller-scientist

cannot avoid having a position of them, albeit if only implic-

itly.

Thirdly, and finally, a philosophy of science is necessary

to educate the next generation of scientists. Even if we could

do science as instinctively as birds fly, we would still wish to

articulate the philosophy underlying our practice of science

so that we could best convey it to future scientists. It is per-

haps surprising, then, that of four major textbooks in com-

putational neuroscience and psychology (O’Reilly & Mu-

nakata, 2000; Dayan & Abbott, 2001; Ellis & Humphreys,

1999; Elman, 1996) very little space is devoted to the topic

of what role computational models play in science. Perhaps

the silence of the textbook authors is in recognition of the

seemingly-intractable nature of many debates in philosophy

of science, and a consequent desire to avoid unfruitful dis-

cussion. I recognise the risk that claims concerning the phi-

losophy of science may evoke counter-claims and so on ad

infinitum. In the current paper, my discussion of the purposes

of computational modelling is grounded by a survey of how

computational models are presented in the literature. In this

way I hope to combine consideration of how computational

modelling should proceed with consideration of how it does,

in fact, proceed.

Three claims about computational models

Previously, I have proposed a scheme for categorising the

purposes of computational models (Stafford, 2009). The de-

tails of this scheme are less important, for the purposes of

this paper, than three claims which I will use here to moti-

vate the current work. The first claim is that there are many

purposes for which you might build a computational model.

This is a reflection of the fact that it is difficult to elaborate a

single formula which captures what all modellers are trying

to achieve with every model. Therefore, it is likely the case

that different modellers are trying to achieve different things,

and so there must be many purposes for which computational

models are built. The second claim, which recognises the

first, is that models ought to be accompanied by some state-

ment of what the modeller hopes to achieve by that model.

If models can have many different purposes, then appropri-

ate assessment of a model will take account of those pur-

poses for which a model is designed. And this is made easier

if the model-builder reveals their purposes rather than leav-

ing them to be inferred. The third claim of Stafford (2009)

is that, although there are many purposes for model build-

ing, the best purposes are those which relate to providing

explanations. This is the claim that models that use corre-

spondences between model parts and real-world entities to

make, refine or test predictions. In this claim I am influ-

enced by Popperian philosophy of science (Popper, 1968;

Magee, 1974; Chalmers, 2006) and the auxilliary assump-

tion that modelling is a kind of theory construction. This

assumption makes natural the application of the centrality

of prediction and falsification from Popperian philosophy of

science to computational modelling.

The scheme for categorising model purposes developed

by myself (Stafford, 2009), and extended here, is shown in



HOW DO WE USE COMPUTATIONAL MODELS 3

Major category Sub-categories

Exploratory Capacity

Data fitting

Biological plausibility

Reinterpretation

Problem-definition

Analysis —

Integrative —

Explanatory Prediction

Testing

Sufficiency

Existence proof

Insufficiency

Table 1

Model paper categorisation scheme

Table 1. There are four major categories of model purposes

according to this scheme. Exploratory model building in-

cludes the sub-categories capacity, which is the demonstra-

tion that a model has the capacity to perform a certain kind

of function, without reference to how that model might re-

late to psychological or neuroscientific theory. For example,

the demonstration that a Hopfield network can store patterns

would be such a demonstration of capacity. Data fitting is

the demonstration that a model can generate data which re-

sembles the data generated in psychology or neuroscience

investigation. Biological plausibility is the adjustment of an

existing model to increase the extent of its correspondence

to the biological structure it purports to model. Reinterpre-

tation is the use of suggestive results from a model to widen

the scope of plausible explanations. Problem definition is

the use of modelling to explore and more fully definite the

domain in which a psychological or neuroscientific function

is performed.

The second and third major categories are models used for

analysis (e.g. a statistical model such as a linear regression)

and modelling for integration, which is the construction of

a model which combines models from two separate domains

or levels of description.

The fourth and final category, which I claim is the one that

the most scientifically useful models belong to, is of models

with explanatory purposes. To understand my breakdown of

this category I will need to rehearse an argument made pre-

viously (Stafford, 2009), which attempts to understand ex-

planation in terms of the “modelling is just tautology" accu-

sation quoted earlier (Segalowitz & Bernstein, 1997). My

argument, briefly, was that models must, in some sense, be

only tautology but they derive their power from the corre-

spondence between the parts of the model and real-world en-

tities. All mathematical equations are tautological, but this

does not mean that computation cannot be used to reveal new

facts about the world. If you take the length of the shadow of

a tower at noon in one place, and the length of the shadow of

a tower at another place at noon you can compute the circum-

ference of the earth. The result is an inherent and necessary

result of the information you put into the computation. In

this sense it is tautological, but it would be obtuse to argue

that the computation has not revealed new information about

the world.

We can take the simple example of 1 + 2 = 3 — another

tautology — and use it to illustrate the value of modelling-

as-tautology. If the model elements on the left-hand side of

the equation (‘1 + 2’) correspond to known real-world enti-

ties then the model predicts the presence of the entities that

correspond to the right-hand side elements (‘3’). If entities

corresponding to both left- and right-hand side elements are

known that the model demonstrates that the left-hand side el-

ements are sufficient to produce those entities corresponding

to elements on the right-hand side. If, alternatively, the en-

tities known to exist are more than represented by elements

on the right-hand side (for example, not ‘3’ but ‘4’ maybe)

then the model constitutes a demonstration of insufficiency

(particularly, of those entities represented by the left-hand

side of the equation to produce those entities on the right). If

the existence of the entities corresponding to elements of the

model is in doubt, or the particular interrelation represented

by the model is in doubt, then the model can constitute a form

of existence proof that these entities can exist in the particu-

lar inter-relation captured by the model. These four types of

explanation, which correspond — I suggest — to the canon-

ical Popperian category of prediction and three examples of

what Kukla (Kukla, 1995, 2001) calls theory amplification

make up the four subcategories of my fourth class of model

purpose. Note that the categorisation of a model depends on

its relationship to wider theory, not on its internal structure.

The current work

Aims

The current work is concerned with an empirical investi-

gation of how computational modelling work is presented to

the scientific community. My hope was that a set of highly-

cited modelling papers would act as a proxy for successful

or admirable modelling work. By systematic investigation

of the properties common to this set we might get some in-

sight into the characteristics of modelling papers that are as-

sociated with success (as defined in terms of high rates of

citation). The scheme outlined above is used to categorise

the modelling papers investigated, so this investigation also

acts as a test of the adequacy of this scheme for categorising

modelling paper type.

Corpus

The papers selected for this survey were the fifty most

highly cited modelling papers from five journals, plus the
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Source Search criteria

Nature Topic=(computational) AND

Topic=(neuroscience OR psychology)

Nature Neuroscience Topic=(computational)

Neural Computation ALL

Cognitive Science Topic=(model)

Connection Science ALL

NCPW11 ALL

Table 2

Search terms used to identify modelling papers from each

source
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Figure 1. Log citations for the fifty highly cited papers in-

cluded in the survey

papers from the 11th Neural Computation and Psychology

Workshop (NCPW) held in 2008 (Mayor, Ruh, & Plunkett,

2009). The journals were selected to contain a range of pa-

pers for a specialist and generalist audience, and to capture

some difference in impact factor. The search terms used

to identify modelling papers are shown in Table 2. Non-

modelling papers identified by these searches were discarded

without replacement. Papers with less than 10 citations were

also discarded, resulting in a total number of papers included

in the survey of 173.

Figure 1 shows the log of the number of citations of the

papers initially selected for inclusion in the survey, from the

five journal sources, using the search times given in Figure 2.

As expected, journals with higher impact factors have more

highly cited papers.

0 0.2 0.4 0.6 0.8 1

NCPW11 Conference

Connection Science

Cognitive Science

Neural Computation

Nature Neuroscience

Nature

Proportion of papers which are explict about the purpose of model building

Figure 2. Proportion of papers with an explicit statement of

purpose in the abstract, by source

Results

Is making explicit your purpose for building a model

associated with publication in quality journals and/or

higher citation counts?

To address this question each paper in the corpus was

coded as to whether it made explicit in the abstract what the

purpose of the modelling work presented was. The assump-

tion here is that, because models have diverse purposes, if it

is not said why a model is built then that model cannot easily

be assessed or used by the non-modelling community.

For the NCPW11 conference, the proportion of papers

which, in their abstracts, were explicit about the purpose

for which their model was constructed was 66%. In other

words, most, but far from all, models were explicit about

their purpose. This finding confirms an informal observation

that I made while at NCPW11. One researcher I spoke to

during NCPW11 acknowledged that this state of affairs was

sub-optimal, but expressed the opinion that it was due to the

nature of the papers at a conference. In other words, this

was provisional work. Papers accepted for publication in a

journal would have a far higher proportion of those which

were explicit about their purposes. The results of my survey,

shown for all the sources in the corpus, are shown in figure

2.

The details of these results are discussed below. Because it

seemed that in general that most, but by no means all, papers

were explicit about their modelling purpose, an additional

analysis was carried out. The mean of the citation counts

was calculated for each source, divided according to those

papers which were explicit about their purpose and those that

were not. If, on average, papers which were explicit were

more highly cited (even among this corpus of highly cited

papers) then this analysis should reveal it. The results are
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Figure 3. Mean citation count for papers with and without an

explicit statement of purpose in the abstract, by source

shown in figure 3. There is no clear superiority, in terms of

citations counts, of the ‘explicit’ papers compared with the

‘non-explicit’.

What purposes are associated with highly cited papers?

The full results of the survey with respect to the primary

purpose of the modelling paper analysed, are shown in table

3. Each paper can contribute to only one cell.
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Major category Minor category Nature Nature Neuroscience Cognitive Science Connection Science Neural Computation NCPW11 TOTAL

Exploratory Capacity 2 5 4 18 22 17 68

Data fitting 0 1 6 0 0 6 13

Biological plausibility 0 0 1 2 0 5 8

Reinterpretation 1 0 1 0 0 2 4

Problem-definition 0 0 1 1 0 0 2

Analysis — 2 1 2 0 0 2 7

Integrative — 1 5 5 7 3 6 27

Explanatory Prediction 1 4 3 1 1 3 13

Testing 0 0 6 2 0 1 9

Sufficiency 2 7 3 3 0 2 17

Existence proof 0 2 0 0 0 0 2

Insufficiency 1 0 0 2 0 0 3

Table 3

Survey results, model paper types by source.
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Figure 4. Proportion of models with an ‘explanatory’ pur-

pose, by source

Note that there are over twice as many ‘exploratory’ than

‘explanatory’ papers. Of the exploratory papers the majority

are of the ‘capacity’ kind. The second largest subcategory

of the exploratory type is ‘data fitting’. These two categories

are very similar in nature, but distinguished in that ‘capac-

ity’ papers demonstrate that a model can do some abstract or

general task, whereas ‘data-fitting’ papers demonstrate that a

model produces data of the same form as some experimental

procedure.

Note also that the full range of proposed modelling pur-

poses is found by the survey. In other words, there are no

empty cells in the categorisation table (although there are

some empty cells with respect to individual sources in the

corpus).

In order to further address the question of the superiority

of explanatory modelling, compared with models built for

other purposes, the proportion of models with explanatory

purposes for each source in the corpus was calculated. The

results are shown in figure 4. It is clear that a majority of

papers, in nearly all sources, are not presented as fulfilling

explanatory purposes. Even for the single source for which

more than half of papers in the corpus were explanatory, the

proportion was not very much greater than half.

An analysis of mean citation counts for explanatory com-

pared with non-explanatory papers from each source is

shown in figure 5.

Discussion

The results covered in the previous section put us in a posi-

tion to address the claims asserted previously and discussed

at the beginning of this current paper (section ). The first
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Figure 5. Mean citation count for ‘explanatory’ and ‘non-

explanatory’ modelling papers, by source

claim is that there are many purposes for which computa-

tional models are built. The results confirm this. Across the

entire corpus examples of each purpose in the categorisation

scheme were found. Two categories were well-populated,

against previous expectations. The importance of modelling

for providing theory integration and novel frameworks (as

reflected in the ‘integration’ category), and the importance

of modelling for providing new methods/techniques (as re-

flected in the ‘capacity’ category) was unanticipated from the

perspective of my previous analysis (Stafford, 2009).

The second claim is that models ought to be accompa-

nied by an explicit statement of what the modeller hopes to

achieve by that model. These data cannot address this claim,

since it is normative by nature, but they can inform us as to

what occurs ‘in the wild’ with respect to model publishing.

Evidently, many highly cited papers are not accompanied, in

their abstracts, by an explicit statement of the purpose for

which they are built. Further, it does not seem as if mod-

els accompanied by an explicit statement of purpose have

a higher citation count among the corpus, on average (Fig-

ure 5. Although the mean citation count is higher for ‘ex-

plicit’ models for those published in Nature (see figure 3),

the opposite patten was true for models published in Neural

Computation. Furthermore, the highly skewed distribution of

citation counts (see figure 1) means that a small number of

highly cited papers have a disproportionate impact on these

mean figures, and so although the difference between the ‘ex-

plicit’ and ‘non-explicit’ means seems large, it is probably

not reliable. This inference is supported by the fact that al-

though the differences are large for both Nature and Neural

Computation journals, they are in opposite directions. Al-
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though I would still support the normative claim that mod-

els should be accompanied by an explicit statement of their

purpose, this support is not reinforced by the data presented

here. Many successful modelling papers do not contain such

a statement.

The third claim is that the best model purposes are those

which relate to providing explanations. Considering the pro-

portion of explanatory papers from each source, it does not

seem as if there is a strong association between better qual-

ity journals and a higher proportion of explanatory papers.

Three higher impact journals, Nature, Nature Neuroscience

and Cognitive Science do seem to have elevated levels of ex-

planatory papers, compared with the NCPW11 conference

and Connection Science. An exception to this pattern is the

Neural Computation journal, which has a very high impact

factor, but a very low proportion of papers with explanatory

purpose. The reason for this can be deduced from table 3.

Nearly all the papers in Neural Computation are demonstra-

tions of capacity.

Note, however, that for all sources the proportion of

explanatory papers is low. The mean citation counts for

explanatory compared with non-explanatory papers shows

there is no evidence that explanatory papers have higher rates

of citation. If anything, there is some evidence that non-

explanatory papers have higher rates of citation, although the

distribution of citations (as discussed above) could make the

means unrepresentative, and the results for the Neural Com-

putation journal should probably be excepted. (The differ-

ences between the type of papers published in Neural Com-

putation and the other sources in the corpus are probably due

to the fact that it is a specialist journal with an engineer-

ing slant, rather than a general scientific or cognitive science

journal like the others in the corpus).

A large minority of papers fell into the ‘integrative’ cat-

egory, something which was unanticipated from my initial

theorising, although it is in line with Kukla’s analysis of the

scope of theoretical psychology (alongside which I would

include modelling) (Kukla, 2001).

It is surprising, perhaps, that so many of this corpus of

highly cited modelling papers are of the ‘data-fitting’ cate-

gory. An influential review by Roberts and Pashler (Roberts

& Pashler, 2000) condemns data-fitting as a criterion for

model assessment.

Final words

A limitation of the current design is that the categorisation

of papers was done by one person (myself). The use of a sin-

gle reviewer means it is impossible to assess the reliability of

the categorisation. A possible extension of this work would

be to fully formalise the criteria for the categories used and

to have papers categorised and rated with respect to whether

they include an explicit statement of purpose by independent

reviewers who were blind to the source and authors of the

paper.

Nonetheless, even allowing for some minor to moderate

level of intra- and inter-reviewer variability, the major con-

clusions of this review would hold true: highly cited mod-

elling papers appear to be constructed for a wide variety of

theoretical purposes, they are often not explicit about what

their purposes are, and often these purposes are not ‘explana-

tory’ according to this scheme. Neither being explicit nor

having an explanatory purpose appear associated with higher

rates of citation. This suggests that although previously I

have suggested that these are desirable properties of a mod-

elling paper, their absence does not conspicuously hinder the

reception of a modelling paper.

The results presented here could be further investigated by

looking at modelling papers cited outside of modelling jour-

nals — in other words, by experimentalists. This would give

a valuable insight into how modelling work affects main-

stream cognitive science. Another productive avenue would

be to look how modelling papers build on and test existing

models. The cumulative nature of research programmes, and

how theories succeed or are replaced, is another area where

analysis of the nature of computational modelling could be

informed by philosophy of science (Roelofs, 2005; Lakatos,

1970; Kuhn, 1996).

The current review is an investigation of how science, at

least in this corner of the domain, is carried out, rather than

how it should be carried out. In this sense the review is in the

spirit of Feyerabend (Feyerabend, 1988) and seems to echo

his conclusion that “anything goes”. He used this phrase to

summarise his conclusion that there are no principles which

hold universally in the conduct of scientific investigations.

Here we might take it in a weaker sense to reflect the conclu-

sion that successful modelling papers are not of one type and

their nature is not captured by my initial hypothesis about

what makes a good modelling paper (i.e. explicit statement

of purpose, explanatory purpose).

A reasonable extension of this conclusion would be

that ‘naïve Popperianism’ (Magee, 1974) is demonstrably

wrong, at least in this domain of science. There is far more to

computational modelling in the cognitive sciences than pre-

diction and falsification. Although we may still hope that

there are general principles governing the desirable features

of modelling papers, this review suggests that they are not

captured by this level of analysis. General principles, if it is

possible to find and articulate them, are likely to be complex.

Like all modellers, I continue in the belief that modelling is

a powerful scientific tool. But if modelling is a tool it is clear

that it is a multipurpose tool, used by different scientists in

different ways.
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