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Abstract

Some languages have very few NLP resources, while many of them are closely
related to better resourced languages. This paper explores how the similarity be-
tween the languages can be utilised by porting resources from better to lesser re-
sourced languages. The paper introduces a way of building a representation shared
across related languages by combining cross-lingual embedding methods with a
lexical similarity measure which is based on the Weighted Levenshtein Distance.
One of the outcomes of the experiments is a Panslavonic embedding space for nine
Balto-Slavonic languages. The paper demonstrates that the resulting embedding
space helps in such applications as morphological prediction, Named Entity Recog-
nition and genre classification.

1 Introduction

The total number of living languages in the world is estimated at more than 7,000 (Si-
mons and Fennig, 2017). If we only include the top 100 languages with the largest
number of native speakers, they cover about 85% of the world population. Many lan-
guages do not have sufficient NLP resources, such as annotated word lists, syntactic
parsers or Named Entity Recognition (NER) tools. For example, Balochi, Belarusian
and Konkani share the rank of 98—100 in this list with ~8M speakers each, which is
more than the number of speakers of much better resourced languages such as Danish
or Finnish, while they have almost no resources. Similarly, Ukrainian with its 30M na-
tive speakers occupies the 40" position in this list (the 8" position in Europe), while
having very minimal NLP resources.

One of the ways for addressing this issue involves relying on language families,
so that the NLP tools for lesser resourced languages can be developed by using bet-
ter resourced typologically related languages. For example, Belarusian and Ukrainian
belong to the Slavonic family, in which Czech and Russian have sufficiently large re-
sources, such as treebanks or annotated translated texts, see Table 1. This paper refers to
this method as Language Adaptation, in which the resources are transferred from better
resourced languages (donors) to lesser resourced ones (recipients) in a way similar to
Domain Adaptation, which is aimed at transferring the models across the domains.



The tradition of developing NLP resources across languages is quite long, see Sec-
tion 4 for a broader overview. The emphasis of this paper is on the usefulness of typo-
logical links in building and using a shared representation. The specific mechanism of
transfer proposed in this paper is based on building cross-lingual embedding spaces, in
which words similar in their form and meaning are located close to each other across
closely related languages.

The study presented in the paper enriches existing techniques of building cross-
lingual embeddings from comparable corpora by introducing the Weighted Levenshtein
Distance (WLD), when the weights are also obtained from the same seed dictionar-
ies as used for aligning the spaces, see Section 2.2 below. In addition to an intrinsic
evaluation of the parameters of bilingual lexicon induction, cross-lingual embeddings
have been evaluated extrinsically through their use in downstream tasks, in particular,
via prediction of morphological properties of word forms (Section 3.1), Named Entity
Recognition (Section 3.2) and genre classification (Section 3.3).

With respect to data needed for transferring the model, this study assumes a mid-
resource setting:

1. areasonably large (> 40 M words) raw text corpus without annotations is used
to build a monolingual word embedding space for each language;

2. acorpus with annotations is available for a donor language, while a much smaller
corpus can be available for a recipient language, at least for testing;

3. asmall seed dictionary of bilingual equivalents is used to establish a cross-lingual
embedding space.

This allows a semi-supervised setup: a large raw text corpus helps in achieving good
lexical coverage and robustness by accounting for more typical contexts in comparison
to smaller annotated corpora. Atthe same time, an annotated donor corpus provides data
for learning a model for the phenomenon of interest, such as morphological properties
or features of genres. A seed dictionary (of about 500-2000 words) is used for mapping
the embedding spaces between the languages.

In this study, large raw text corpora come from Wikipedia. However, this should
not necessarily be the case. A crawl of available Web resources, e.g., the Wacky corpora
(Baroni et al., 2009), is equally suitable for the first step. The annotated corpora used
in the studies below depend on the task, for example, the morphological annotation ex-
periment uses the respective Universal Dependencies (UD, v.2.0) corpora (Nivre et al.,
2016), the Named Entity Recognition experiment is based on a Slovenian NER corpus
(Krek et al., 2012), while the text classification experiment uses a Russian collection
of genre annotated texts (Sharoff, 2018). When large parallel corpora are not available,
the seed dictionaries can be derived from the links between the Wikipedia pages in the
donor and recipient languages.

2 Induction of cross-lingual embeddings using cognates

2.1 Cross-lingual embedding spaces

A vector space for words represents each word as a vector of a fixed dimensionality with
the aim of grouping semantically similar words closer to each other in this space (Rapp,
1995). Modern methods use neural networks for building such embedding spaces from
raw text corpora (Bengio et al., 2003). Out of many methods for building monolingual
embedding spaces, this study primarily uses FastText (Bojanowski et al., 2016), a recent



Table 1: Available corpora
Languages UD Wiki PEMT

Romance

Catalan 531K 181M

French 1134K  667M 432K
Italian 502K  433M 329K

Portuguese 570K 222M 321K
Romanian 356K 70M

Spanish 1004K  530M 265K
Slavonic

Belarusian 8K 23M
Bulgarian 124K 60M

Croatian 197K 40M

Czech 2222K  120M 183K
Polish 70K 242M 213K
Russian 1247K  460M 266K
Slovak 106K 321M

Slovenian 170K 351M
Ukrainian 100K 193M

approach, which combines the traditional skip-gram model with a model for building
the embedding vectors for character n-grams within words. This incorporates some
information from the subword level into the word embedding vector.

A commonly used model for building a cross-lingual embedding space is based on
constructing a linear transformation matrix W for transforming one of the monolingual
spaces to the other one by minimising the following objective:

min Y ||We; — fil|? Q)

where e; € E and f; € F are the respective embedding vectors in the two languages
for words, which are supposed to be translations of each other according to the seed
dictionary. This study uses a method for building W via SVD (Artetxe et al., 2016),
which ensures that W is an orthogonal matrix built using a closed form solution:

W=V xUT )

when V and U are the matrices from the SVD factorisation of F x ET, see (Artetxe
et al., 2016) for justification and discussion.

2.2 Cross-lingual mapping using cognates

The method for cross-lingual mapping across related languages in this study consists
of three steps:

1. automated collection of seed bilingual dictionaries;

2. determining weights for the Levenshtein Distance (LD) from the seed dictionar-
ies;

3. alignment of monolingual embeddings by linear transformation using orthogo-
nalisation and Weighted LD (WLD);



Table 2: Alignments from Wikipedia for titles and words
Polish title Russian title English title
Z zycia marionetek U3 srcusnu mapuonemox From the Life of the Marionettes
Wskaznik jakos$ci zycia  Muoexc kawecmsa scusnu  Quality-of-life index

Word forms aligned for the seed dictionary:

Polish Russian English
Budapeszt Bynanemr Budapest
kapral Kampai corporal
marionetek MapHUOHETOK marionettes
organizacyjnego OpraHU3allMOHHOTO  organisational
patriarchy narpuapxa patriarch
tropikalny TPOMUYECKUI tropical

marionetek zZy cia

Character alignment for word forms:
MapuoHemoK O U3H U

The seed dictionaries can be provided by word alignment of large parallel corpora.
In a low resource setting, the seed dictionaries can be obtained from the titles of inter-
linked Wikipedia articles in two languages (iWiki links),! see examples of aligned titles
in Table 2. This helps in modelling scenarios when few parallel texts are available, such
as for the Polish-Russian pair. Even though Polish is included in Europarl, and Russian
is in the UN corpus, very few reliable resources are available for the Polish-Russian pair
itself. The titles have been word-aligned using FastAlign (Dyer et al., 2013). The re-
sulting word-level dictionaries have been filtered against the respective frequency lists,
since the Wikipedia titles are dominated by relatively infrequent proper names, which
are not representative for the properties of the general lexicon. Table 2 lists a random
selection of the word forms aligned for the Polish-Russian pair.

In addition to providing the training lexicon, a seed dictionary can also be used
to provide a character-level model for matching the cognates via WLD, see the part
of Table 2 for examples of character alignment. The pairs of words from the training
dictionary have been aligned on the character level (again using FastAlign in this study)
to produce the probabilities of regular correspondences between the characters in the
two languages. The character alignment model is particularly important for establishing
orthographic similarity when the two languages use different character sets, such as the
case for Polish and Russian. For example, the characters with the highest probability
for translating the Russian characters ¢ and z into Polish are respectively f and 7.

In the end, the standard edit operations for computing the traditional normalised
Levenshtein Distance can be weighted by the probabilities of their character-level align-
ments:

> (e, f)cal(se,s ;) (L = P(fle))

max(len(s.),len(sy))

WLD(se,s5) = (3)
where s, and s are words in the two languages, al is a set of their alignments, p(f|e)
is the probability from the character alignment model. The distance is normalised by
the length of the longest word.

'https://github.com/clab/wikipedia-parallel-titles



Given that even correctly aligned words from the Wikipedia titles for related lan-
guages are not necessarily cognates e.g., wskaznik vs unoexc (‘index”) from Table 2, the
process of getting the Levenshtein weights ran in two steps. In the first step, an initial
estimate of the character translation probabilities was produced from all word pairs in
the seed dictionary. This was used for assessing the rough WLD between them. The
most likely cognates according to this rough WLD were used as the input for the sec-
ond iteration of character-level alignments. The WLD threshold for choosing the most
likely cognates was determined for each language pair individually. Repeated applica-
tion of these steps did not result in any improvements in detecting cognates.

The value of either LD or WLD can be used as a factor for scoring the translation
suggestions:

score(se,sf) = acos(ve,vf) + (1 —a)(1 — WLD(se,s5)) O

where s, and sy are words in the two languages, v. and vy are their embedding vectors
in the cross-lingual embedding space, while « is the relative weight of the cosine simi-
larity. Unlike the cosine similarity measure, the WLD value is greater for more remote
strings.

While the combined score is useful for producing bilingual dictionaries, it does not
affect the bilingual embedding space by itself. A closed form solution for orthogonal-
isation as used in (2) helps in improving alignment quality in the general case. How-
ever, it does not allow adjusting the transformation matrix by taking into account the
orthographic similarity between the cognates. An easy way for incorporating this infor-
mation into the cross-lingual embedding space is by aligning the entire lexicons from
the cross-lingual space using the WLD score from (4) and selecting the most similar
words in this list. This far longer lexicon can be used instead of the seed dictionary for
producing a new transformation matrix from (2) for re-alignment of the already aligned
cross-lingual space from the previous step. The rationale for this iteration is that we
want to minimise the distance between the known cognates while preserving the or-
thogonality of the transformation matrix. Again, while repeated application of these
steps is possible, it did not produce better results, so the experiments below present the
results obtained after two iterations.

2.3 Experimental setup

This paper reports two sets of experiments. One experiment involved a replicable set-
ting for the English-Italian language pair with the standardised embeddings and training
/ test dictionaries initially developed for (Dinu et al., 2014) and used in (Artetxe et al.,
2016). Even though English and Italian are not closely related languages (English is
a Germanic language, Italian is from the Romance family), a large number of English
words are borrowings from Romance languages, primarily from French and Latin, so
the WLD approach could work for the En-It pair as well. The test dictionary from
(Dinu et al., 2014) includes both cognate word pairs, such as academy / accademia,
and non-cognate pairs, such as absolve / esimere or abysmally / malo, which are also
often questionable translation equivalents. Therefore, a cognate-only version of the
En-It test set was produced by retaining only the words with the WLD value above 0.5,
reducing the En-It test dictionary from 1869 down to 818 entries.

In addition to the standardised embeddings as used in (Dinu et al., 2014; Artetxe
et al., 2016), a new set of embeddings produced by FastText has been added to the



Table 3: Prec@]1 for En-It dictionary induction

TM (Mikolov et al., 2013) 0.349

) CCA (Faruqui and Dyer, 2014) 0.378

W2V vectors from (Dinu et al., 2014) Orth (Artetxe et al., 2016) 0393
Full test set GC (Dinu et al., 2014) 0377
Orth+WLD 0.531

FT+TM 0.461

FT vectors from (Mikolov et al., 2017) FT+Orth 0.529
Full test set FT+Orth+WLD 0.616
MUSE (Conneau et al., 2017) 0.683

FT+TM 0.550

FT+GC 0.575

FT+Orth 0.614

FT vectors from (Mikolov et al., 2017) LDa =0 0.298
Reduced test set with cognates WLD a =0 0.339
FT+Orth+WLD o = 0.5 0.584

FT+Orth+LD o = 0.73 0.669

FT+Orth+WLD o = 0.73 0.692

MUSE 0.719

English-Italian experiments (labelled as FT in Table 3). The FT embeddings have been
the basis for the experiments with the Slavonic languages.

The experiments with the Slavonic languages also emphasise the low-resource set-
ting, when large parallel corpora for the seed dictionaries are not always available, so
the seed dictionaries for building the transformation matrices and the WLD weights
came from the iWiki links (the Italian seed dictionary used in (Dinu et al., 2014) and
(Artetxe et al., 2016) was derived from aligning Europarl).

2.4 Experimental results

The results listed in Table 3 confirm that orthogonalisation (Artetxe et al., 2016) and
global correction (Dinu et al., 2014) improve the accuracy of translation detection in
comparison to the baseline of (Mikolov et al., 2013). Embedding vectors produced by
incorporating subword information (marked by FT in Table 3) also make a considerable
positive impact. Adding the constraint of having orthographic cognates (LD or WLD)
improves the accuracy of dictionary induction further, often by a substantial margin.
Even for the English-Italian pair, where the languages operate over the same alphabet,
WLD outperforms LD because it assigns a very low cost to more common substitutions,
e.g.,x — sorj — g (examined — esaminato or Jerusalem — Gerusalemme).

The best value of «, the relative weight to balance the contribution between the
cosine similarity and the Weighted Levenshtein Distance, was estimated at 0.73 using
a development set which was randomly extracted from the training dictionary. The
same value of @ = (.73 has been used throughout the remaining experiments. Relying
exclusively on the orthographic similarity (o = 0) leads to relatively poor results.

Given that the FT+Orth+WLD combination results in consistently better perfor-
mance, the results of dictionary induction across Slavonic languages are shown only
for this setup (Table 4). The row labelled #Cognates lists the number of WLD cog-



Table 4: Dictionary induction results for Slavonic languages
Dictionary induction without WLD

sl-hr sl-cs sl-pl sl-ru ru-uk cs-sk
#Train dic 2510 3328 3047 4356 2617 11400
#Cognates 38247 24918 24215 32935 153644 74542
Prec@l: 0429 0.611 0.584 0.566 0.929 0.814
Prec@10: 0.688 0.868 0.842 0.818 0.976 0.971
MUSE, Prec@1: 0.724 0.942

Dictionary induction with WLD

sl-hr sl-cs sl-pl sl-ru ru-uk cs-sk
Prec@1: 0.840 0.763 0.751 0.662  0.945 0.910
Prec@10: 0963 0973 0977 0.883 0.994 0.996

nates retrieved for the second iteration of alignment. The amount of useable cognates
depends on the size of the Wiki corpora used for training, see Table 1, as well as on
the typological distance between the languages. Comparison of the Slavonic dictionary
induction results to the English-Italian pair shows even more significant improvements
through the use of WLD, occasionally from 0.429 to 0.840 for the Slovenian-Croatian
pair. The Wikipedia corpus used for Croatian is quite small for reliable training of
monolingual embeddings, so incorporating the WLD score contributes to improving
the initial deficiencies of its space.

The FastText vectors of 300 dimensions built from the Wikipedias for the selected
Balto-Slavonic languages (Belarussian, Czech, Croatian, Lithuanian, Polish, Slovak,
Slovene, Ukrainian) have been transformed into a shared Panslavonic embedding space.
For convenience of running cross-lingual experiments, English has also been added to
the shared embedding space. In spite of the fact that it is not a closely related lan-
guage, its alignment to the Slavonic languages benefits from the WLD because of a
large number of cognates such as the names of locations, personal names and borrow-
ings. Another shared embedding space was produced for selected Romance languages.

2.5 True cognates and false friends

It is well known that even closely related languages have a number of false friends, for
example, Mist in German means ‘manure’ unlike mist as used in English. However, a
closer look at the list of cognates shows that there is a cline of cases:

1. consistently false friends, e.g., bezcenny means ‘worthless’ in Polish and ‘invalu-
able’ in Czech;

2. partial false friends, e.g., e.g., Zena can mean either ‘wife’ or ‘woman’ in a num-
ber of Slavonic languages, e.g., Croatian, while its cognate srcena in Russian
always means ‘wife’;

3. actual cognates with uncommon divergent senses, e.g., similarly to orcera in Rus-
sian, in Polish Zona means ‘wife’, while rarely it can also mean ‘woman’.

Therefore, the boundary between true cognates and false friends is quite flexible.
This can lead to some disagreement between the annotators with respect to what con-
stitutes false friends, see also a discussion in (Fiser and Ljubesi¢, 2013).



Table 5: Ordering false friends in cognate lists

Russian Czech False WLD Cos W+C Best Cos Best Cos+WLD

3aX0[ zachod 0.473 0.009 0.149 meziptistani 0.411 hod 0.359
poK rok 0.112 0.037 0.267 punkrockové 0.658 rock 0.580
obxon obchod 0.287 0.084 0.254 obchazeni  0.467 obchdzeni  0.429
HITYKa Stuka 0.204 0.103 0.290 pochopitelna 0.419 taky 0.410
CTOJIHIIA stolice 0.248 0.106 0.280 mésto 0.489 mesto 0.423
3aKa3 zékaz 0.417 0.131 0.253 zakazka 0.608 zakazka 0.562
YPOK urok 0.289 0.131 0.288 skolnik 0.383 skolnik 0.368
Je7no délo 0.272 0.154 0.309 obvinéni 0.361 delikt 0.361
KpacHBIi  krdsny 0.443 0.155 0.264 ¢erveny 0.599 &erveny 0.503
BBIXOJ vychod 0.439 0.166 0.273 vystup 0.404 ptechod 0.384
MOBECTh povést 0.345 0.185 0.312 povidka 0.698 povidka 0.640
JKHBOT Zivot 0.219 0.197 0.354 nohy 0.542 nohy 0.444
poauHa rodina 0.123 0.199 0.382 domovina  0.447 domovina 0.457
Xynon chudy 0.623 0.206 0.252 zbéhly 0.345 hodny 0.343
IJ1aBa hlava 0.276 0.207 0.347 starosta 0.490 starosta 0.441
BJIACTh vlast 0.256 0.209 0.353 svrchovanost 0.590 vlada 0.518
CTpaHa strana 0.108 0.209 0.394 republika 0.473 ukrajina 0.421
rpaj hrad 0.270 0.222 0.359 Krupobiti 0.346 grad 0.463
CTaBKa stavka 0.286 0.225 0.357 trokova 0.478 splatka 0.414
KU3Hb Zizet 0.682 0.235 0.258 Zivot 0.635 Zivot 0.564
en jel 0.351 0.235 0.346 vypil 0.416 jedl 0.428
BEK vek 0.394 0.238 0.337 stol 0.454 stoleti 0.386
CKOpO skoro 0.132 0.245 0.413 brzy 0.595 brzo 0.508
KH3b knéz 0.489 0.261 0.329 kniZe 0.703 KkniZe 0.635
Bpar vrah 0.304 0.281 0.393 nepfritel 0.624 nepiitel 0.486
3noz1e zlodgj 0.380 0.314 0.396 padouch 0.513 zloduch 0.474
CKIIen sklep 0.157 0.323 0.463 hrob 0.583 hrob 0.475
nerporpan petrohrad  0.201 0.330 0.457 bolsevikt 0.390 petrohrad  0.457
CBET svét 0.325 0.336 0.428 svétlo 0.596 svétlo 0.565
mnapa para 0.252 0.349 0.457 dvojice 0.514 par 0.509
MpaKx mrak 0.096 0.360 0.507 temnota 0.510 mrak 0.507
qac cas 0.255 0.371 0.472 hodina 0.594 hodina 0.481
3anoMHHUTE zapomenout 0.454 0.390 0.432 zapamatovat 0.633 zapamatovat 0.566
miagenenn  mladenec  0.251 0.395 0.491 chlapec 0.500 mladenec 0.491
MYX muz 0.194 0.398 0.508 manZel 0.696 manZel 0.602
yXKacHBIH  UZasny 0.484 0.400 0.432 priSerny 0.620 désivy 0.500
THIKBa tykev 0.531 0.411 0.426 kdoule 0.463 tykve 0.436
cinoBenckuil slovensky  0.321 0.415 0.486 chorvatsky  0.703 slovinsky 0.635
CTYyn stal 0.277 0.419 0.501 stal 0.419 stal 0.501
naserg palec 0.135 0.428 0.546 prst 0.552 palec 0.546
IOCTEIb postel 0.230 0.490 0.566 postel 0.490 postel 0.566
3amax zapach 0.461 0.509 0.517 viiné 0.521 zapach 0.517
OBOLIHA ovoce 0.417 0.518 0.535 zeleniny 0.633 ovoce 0.535
yroi uhel 0.617 0.611 0.549 iihel 0.611 qihel 0.549
cipimars - slySet 0.468 0.625 0.600 slyset 0.625 slySet 0.600

Monolingual word embeddings are built to reflect the similarity of the most common
contexts via the distance between the embedding vectors, so the false friends are likely
to have fairly distant vectors, as indicated by low cosine similarity values. However,



Table 6: Forms of adjectives in Russian and Ukrainian

Forms of Russian Ukrainian
green Masc Fem Masc Fem
Nominative 3¢aCHBI  3eiéHas 3CICHUN 3¢JIeHa
Genitive 3¢EHOr0  3CJIEHOM || 3eleHOro  3eJeHOl
Dative 3enéHOMY  3enEHOM || 3eJIeHOMY  3elieHiid
Instrumental || 3enméubiM  3enéHOM 3€JICHUM  3€JICHOK
Locative 3e€HOM  3eNEHOM || 3eJieHOMY — 3eleHid

the WLD reflects the similarity of the word forms, thus leading to the possibility of
selecting false friends as possible translation equivalents. Therefore, the Panslavonic
embedding space has been tested against available lists of Slavonic false friends to
determine the amount of non-cognate noise introduced through the use of WLD.

A useful testbed is provided by the False Friends of the Slavist,> which covers most
of the language pairs for the Panslavonic set, even though its coverage differs across the
language pairs. The first two columns in Table 5 list the false friends for the Russian-
Czech direction provided in the dictionary. They can be ranked by their similarity
scores (Column ‘Cos’) with the top words corresponding to consistently false friends,
as their contexts typically differ. The words at the bottom of the list tend to be actual
cognates, which have been included in the gold-standard lists because they also have
some divergent uses. While the words at the bottom of the lists can be potential false
friends, corpus evidence for the most common senses suggests that their divergent se-
mantic components are uncommon, at least in the Wikipedia corpus used for building
the embeddings. Often there is a mismatch between dictionary definitions and the ac-
tual corpus use. For example, while the Russian word 3anax ‘smell’ is neutral in its
dictionary sense, the majority of its collocations are negative (‘unpleasant’, ‘pungent’,
‘foul’, similarly to the collocations of the word odour in English), thus leading to its
embedding vector being closer to zdpach in Czech, which means ‘unpleasant smell’.

Higher orthographic similarity (lower WLD) increases the final score for all false
friends. However, the consistently false friends have very low cosine similarity scores,
so that the weighted sum needs to compete with other vectors, which are closer seman-
tically. The last four columns in Table 5 list the Czech vectors closest to the Russian
keywords according to the plain cosine measure, as well as its weighted sum with the
WLD (a0 = 0.73). The correct dictionary translations are indicated in bold, while the
partially correct translations, such as 3anax vs zdpach are in italics. In some cases, the
WLD helps in correcting the raw cosine measures (seven instances, e.g., slovensky vs
slovinsky), while in three cases using the weighted sum deselects the correct choice, but
only when the initial similarity score was high (prst ‘finger’ vs palec ‘thumb’). We can
conclude that the WLD score tends to be helpful even in the difficult case of dealing
with false friends.



3 Application studies
3.1 Morphology prediction

3.1.1 Prediction of syncretism

The previous section shows that a procedure for aligning the cross-lingual embedding
spaces can benefit from taking the similarity between the languages into account. So
far the proposed procedure assumed a one-to-one mapping, namely that one form in the
donor language corresponds to one form in the recipient language. While the problem
with homonymy and polysemy of translation equivalents is important in the general
case, this problem is relatively minor in related languages, because their words tend to
keep the same distribution of meanings with relatively few exceptions, see the study of
false friends above.

However, a far more common problem concerns differences in syncretism, i.e.,
when one form can serve several grammatical functions. For example, the verbs in
French have the same endings for the first- and third-person forms, while these forms
are different in Spanish:

Frije/il anticipe vs Es:yo anticipo/el anticipa
Therefore, a single form in French needs to be similar to two forms in Spanish.

Syncretism is very common in Slavonic languages as well. Table 6 shows the dif-
ferent case endings for the Russian and Ukrainian adjectives. In Russian, all feminine
non-nominative forms of 3emensrit (‘green’) have the same ending, while the endings
in Ukrainian differ in each case. The reverse is true for the masculine dative and loca-
tive forms, which are different in Russian and identical in Ukrainian. So cross-lingual
mapping between the forms needs to address the problem of variations in syncretism
even across closely related languages.

3.1.2 Experimental setup

A possible way of addressing this problem is by inferring information about morphol-
ogy from the embeddings. It is known that the embeddings do keep information about
the underlying morphology of the word forms, e.g., (Belinkov et al., 2017). Therefore,
we can set the task of predicting morphological properties from the embeddings. For
example, we train a model to predict the case, gender and number for the two fairly
close embedding vectors from the Panslavonic space:

ru 3enéHomy=(-0.047 -0.032 -0.101 0.007 0.021 -0.046 0.0066 0.095...)
— Case=Dat|Gender=Masc,Neut|Number=Sing

uk 3emeHOMY=(-0.044 -0.062 -0.137 -0.035 -0.019 0.058 0.106 0.017...)
— Case=Dat|Gender=Masc,Neut/Number=Sing
— Case=Loc|Gender=Masc,Neut|Number=Sing

This expertimental setting helps in two ways. First, it tests the possibility to deter-
mine morphological properties within each language even after the cross-lingual trans-
formation in order to assess the difference between the forms or to assign the right
translation given a context. Second, it can help in populating the lexicons for POS tag-
gers and parsers. Training corpora, especially for lesser resourced languages, are quite
small, see the corpus sizes in Table 1, while the prediction setup using embeddings
benefits from more contexts available in large raw text corpora.

*https://en.wikibooks.org/w/index.php?oldid=3417664
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Table 7: Proportion of OOV words in the lexicons

Cs Ru || P Sk Be Uk
Train 108257 97749 | 19344 19100 1628 5080
Dev 32461 26567 || 4778 5425 662 271
OOV # 7891 8034 2327 3385 436 192

OOV % | 24.31% 30.24% || 48.70% 62.40% 65.86% 70.85%

Table 7 demonstrates the difference between the training and development parts of
the UD corpora with respect to their lexicon. The smaller corpora have a substantial rate
of Out-Of-Vocabulary (OOV) words, which makes the tagging task harder, especially
given that their tagging models are based on very sparse data.

The experimental setup tested in this study involves predicting properties for nouns,
adjectives and verbs from the Panslavonic vectors (300 dimensions) using the UD train-
ing sets for training and their development sets for testing morphological predictions.
The UD test sets have been reserved for testing the accuracy of POS tagging and pars-
ing. Prediction has been done by a Multi-Layer Perceptron (MLP) with a single hidden
layer of 150 neurons using tanh as the activation function and the Adam optimiser. Ex-
periments with other hyperparameter settings did not change the results significantly.
Two models have been tested:

R training using the original UD lexicon for each recipient language;

D training using cross-lingual embedding by transfer from related donor languages:
Cs—PLSk, Ru—Be,Sk,Uk

Given the multilabel setup, the evaluation metric is Average Precision for prediction
(Sorower, 2010). For example, when the model predicts four labels for a word form,
three of which are correct, the precision for this prediction is 0.75.

3.1.3 Prediction results

Table 8 presents the results of prediction. In this table and in the discussion below R
stands for Recipient, D for Donor. D, O for the Donor part corresponds to predic-
tions using the joint embedding space produced via orthogonal transform as in (Artetxe
etal., 2016), D, W corresponds to the join embedding space produced by using WLD-
induced cognates.

Column #T i, indicates the number of tags in the training corpus for an individual re-
cipient language, while #T p indicates the number of tags in the donor language corpus.
If the recipient corpus is small, e.g., for Be, it covers only a small portion of possible
tags. The number of examples available for training can be significantly increased via
the donor language, see Columns Traing and Trainp (many more examples are avail-
able in the donor corpora, so addition of examples was limited to provide at most 400
examples per tag). The donor language also provides more examples per individual
tag, see Columns PerTr and PerTp. The test examples (Test) were selected from the
development parts of the respective UD corpora for words not attested in the training
corpora.

Table 8 shows that prediction usually improves by taking more data from the donor
language. When the initial training set is very small, as it was the case for Belarussian,
the improvement is dramatic, e.g., from 3% to 68% for Belarussian verbs. The original
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Table 8: Morphology prediction results
Language POS #T g #T p Traing PerT g Trainp PerTp Test APr APp o APp w

R: Be adj 23 52 357 16 8,067 155 69 13% 46% 46%
D:Ru  noun 39 77 898 23 14,810 192 196 25% 41% 49%
verb 26 65 325 13 9,358 144 66 3% 48% 68%

R: Uk  adj 51 52 3,481 68 11,783 227 42561% 55% 63%
D:Ru  noun 62 77 7,099 11519878 2581,04741% 49% 53%
verb 35 65 3,209 92 14,519 223 40580% 71% 81%

R: Pl adj 61 245 3,043 50 14,979 61 41737% 26% 34%
D: Cs noun 69 140 7,959 11522489 1611,12949% 40% 40%
verb 21 65 1,926 92 7,253 112 23585% 73% 81%

R: Sk adj 64 245 2,664 42 14,199 58 65439% 29% 30%
D: Cs noun 49 140 6,198 126 20,091 1441,68043% 48% 53%
verb 15 65 590 39 6,630 102 13333% 67% 64%

R: Sk adj 64 52 2,664 42 11,451 220 65439% 36% 33%
D:Ru  noun 49 77 6,198 126 21,744 2821,68043% 44% 51%
verb 15 65 590 39 12,659 195 13333% 33% 75%

Belarussian UD corpus contains merely 13 examples per verbal tag on average, which
is not enough for training a classifier. Comparison of the APp o vs APp y columns
(Orthogonalisation vs WLD) shows overall improvement.

In the case of Czech, the UD tags make heavy use of features specific to the Czech
training corpus, e.g., Style (with such values as Colloquial, Archaic, Rare, etc) and
NameType (Geo, Given name, Surname, etc), which are not used in the available feature
sets in other related languages. These two specific morphological attributes have been
removed before training. However, the number of Czech tags is still quite high, compare
the numbers for #T i vs #T p in Table 8 for Polish and Slovak (#Tp is for Czech as the
Donor). In the end, many Czech tags do not contribute to predicting the tags for Polish
and Slovak in the cross-lingual setting. Another observation is that the gold standard is
derived from an annotated corpus, which does not necessarily cover the entire paradigm
for each test item. This means that the prediction model often produces correct results
without receiving credit for this. For example, anmpononoeuueckuii (‘anthropological”’)
in Russian in the gold standard corpus is annotated as:

ADJ Case=Nom|Gender=Masc|Number=Sing
while the predicted annotation is equally correct:
ADJ Animacy=Inan|Case=Acc|Gender=Masc|Number=Sing

3.2 Named Entity Recognition
3.2.1 Training setup

The cross-lingual embedding space has been also tested through the Named Entity
Recognition (NER) task, which is aimed at detecting and labelling all occurrences of
person names, organisations or locations. This is a convenient downstream task for
which there are existing methods and test sets. Recently, various neural network ap-
proaches produced very convincing results for NER (Collobert et al., 2011). A par-
ticular implementation used in the extrinsic evaluation experiment reported below is
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Table 9: F1 strict prediction scores for NER at BSNLP
cs hr pl ru sl uk

472 462 448 465 478 10.8 | JHU
ECnews: 412 300 346 53.7 375 208 | JRC
39.7 404 268 302 584 160 | Orth
47.6 443 442 336 595 13.7 | Orth+WLD
cs hr pl ru sl uk

46.1 504 41.0 41.8 462 332 | JHU
Trump: 422 374 480 556 442 50.8 | JRC

451 516 390 197 627 219 | Orth

52.6 524 552 210 62,6 20.7 | Orth+tWLD

based on a sequence tagging method, which combines bidirectional LSTM with CRF
for making the final prediction (Lample et al., 2016). Each word is represented by its
embedding vector from the shared embedding space, in addition to other easily avail-
able features, such as character-level embeddings or the presence of capitalisation. The
taggers for individual languages were trained from an existing NER-annotated corpus
from (Krek et al., 2012) in Slovenian using the Panslavonic embedding space.

Small samples from each language have been added to the Slovenian training corpus
in order to provide at least some information for the character-level embeddings. The
small additional samples were derived from the Wikipedia title names in the respective
languages for the articles which categories matched such patterns as ‘Births’ (for person
names), ‘Organizations’ (for organisations) and ‘Countries’ or ‘Villages’ (for locations,
since the Wikipedia articles usually lack a more generic category of locations). For
example, an entry for a sample of Russian person names looks like:

Hrops B-Per Igor
JlapuonoB I-Per  Larionov
TOBOPHUT O says

The entry contains the likely first and following elements of a named entity (B-Per and
I-Per, respectively), and it ends with a third person verb, which helps in learning typical
conditions when a named entity ends. The most common verbs and prepositions were
used as the ending elements as selected from the respective UD corpora.

3.2.2 BSNLP NER shared task

The NER shared task at BSNLP’17 contained two separate test sets with no training
sets for individual languages. One test set was based on news reporting about the Euro-
pean Commission, another one on news wires concerning Donald Trump. The baseline
system (Piskorski et al., 2017) was based on large gazetteers developed by the JRC,
while the only other submission covering all Slavonic languages from JHU (Mayfield
et al., 2017) was based on projection of NER labels via word-aligned parallel corpora,
see Table 9, as well as a brief explanation of the projection approach in Section 4.

The shared embedding space is surprisingly efficient. The training corpus was for
Slovenian, so it provides the upper baseline for language adaptation. Czech, Croatian
and Polish are sufficiently similar typologically, so the accuracy on those languages is
only slightly below what has been achieved for Slovenian. Russian and Ukrainian are
East Slavonic languages, further away typologically from the rest, which is probably
the main reason for the markedly lower accuracy of transfer from the Slovenian training
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Table 10: Genre annotated corpora

Russian Ukrainian

#idoc  #Words #doc #Words
News (A) 100 39583 18 6767
Discussion (B) 218 306063 20 65345
Reviews (C) 46 62072 29 44760
Information (Wikipedia) 236 475128 48 63319
Instructions (E) 62 107652 43 71973
Academic (J) 34 271150 18 14040
Legal (H) 48 277619 6 36024
Fiction (K) 86 196576 50 10001
Personal 205 216822 23 65291
Promotion, ads 46 27334 29 82617
Total 1081 1979999 284 460137

set. Across all languages, the NER tagger has a problem with detecting relatively long
NERs, which are common in the EC test set, such as The European Convention for
the Protection of Human Rights and Fundamental Freedoms, while the accuracy is
higher on general newswire texts. Overall, the results are considerably lower than what
has been achieved for English, which can be explained by much richer morphology
of the Slavonic languages, as well as by a relatively small training set. Despite such
limitations, the transfer model which only used the Slovenian training corpus was on
average more successful than the projection-based model.

3.3 Genre classification

Text classification is one of the commonly used tasks in NLP. A more specific task
concerns classification of texts into genres (Santini et al., 2010), since genre annotation
provides useful information for understanding kinds of texts a corpus consists of in ad-
dition to understanding the structure of its topics via Topic Modeling (Blei et al., 2003;
Sharoft, 2013). Unlike topic modeling, which usually uses unsupervised topic discov-
ery via detection of keywords, the relationship between topics and genres is not well
defined, since keywords from the same topic are often used in texts of different gen-
res. Instead, genre classification requires a supervised approach to learn the association
between stylistic features and genre labels.

A supervised approach needs a training set, which might be available for some spe-
cific languages and specific genre classification schemes, but not for others. The Lan-
guage Adaptation framework can be used to solve this problem as well: training is
done using the available donor resources within the shared cross-lingual embedding
space, while the resulting model is applicable to the recipient language. As an example
of such study, a Russian genre-annotated corpus (Sharoff, 2018) has been applied to
classify Ukrainian texts into genres.

For evaluating the resulting classifier a small testing corpus is still required. The
Ukrainian corpus for this study has been collected from the Web to provide a sample of
the major genres represented in the respective Russian corpus, see Table 10. For the ease
of interpretation, the category labels given in brackets in Table 10 roughly correspond
to the categories of the Brown Corpus (Kucera and Francis, 1967), whenever possible.

14



The Personal category (missing in the Brown corpus) primarily contains personal blog
entries and personal messages from social networks.

In comparison to other supervised text classification setups, such as sentiment anal-
ysis, genre classification can be biased by the topical words in the training corpus (Pe-
trenz and Webber, 2010). A convenient representation, which can use cross-lingual
embeddings and at the same time can have the capacity to generalise a genre across
topics represented in the training set, is a mixed feature set (Baroni and Bernardini,
2006), which is produced by replacing the less frequent words with their POS codes,
while leaving the most common words in their original form. The POS codes have been
taken from the UD set to ensure their transfer across languages. For example, a review
text (in English for illustration purposes):

It won the SCBWI Golden Kite Award for best nonfiction book of 1999 and
has sold about 50,000 copies.

converts into a mixed representation as

It won the PROPN ADJ NOUN NOUN for best NOUN NOUN of [#] and
has sold about [#] NOUN.

This representation makes it easier to compare this review snippet to other reviews
without relying too much on the specific keywords and numerical values, while it keeps
important lexical features for detecting genres, see (Petrenz and Webber, 2010) for fur-
ther discussion concerning the importance of non-topical representations for genre clas-
sification.

As for the machine learning approach, the genre classification experiment reported
here uses a simple Feed Forward network inspired by FastText (Joulin et al., 2017). In
this setup, we start with pre-trained word embeddings from Section 2.2 to build a docu-
ment embedding representation, doc2vec. Then, simple Feed Forward neural networks
are used for multi-labelled text classification. This method has been shown to be robust
and efficient in a number of sentiment classification tasks for English, while achieving
comparable accuracy in comparison to more complicated neural models based on CNN
or LSTM (Joulin et al., 2017). The specific implementation in this study is based on
Keras.?

Table 11 presents the results of classification in terms of average precision, which
was the objective for optimising the training pipeline. Given the vast amount of texts
on the Web, optimising for precision helps in extraction of useful sample texts in a
specific genre, in contrast to retrieving all texts in this genre. In the multilabel context,
the overall quality of classification can be described in terms of its Hamming loss, which
computes the proportion of irrelevant predictions (Sorower, 2010), thus the lower the
better.

The first two columns in Table 11 (marked as CV) show the results of training clas-
sifiers on the respective training corpora with 10-fold cross-validation. The bigger Rus-
sian corpus quite predictably produces a much better model. The last two columns show
the results of training on the Russian corpus with the two versions of the cross-lingual
embedding space with and without WLD. In the same pattern as with the NER task,
transferring data from the donor language usually helps, and the transfer accompanied
with the WLD cognates helps even more. For example, fiction, legal and instructive
texts can be detected reliably, so the genre classifier is useful for selecting their samples

Shttps://github.com/keras-team/keras
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Table 11: Genre classification results: Precision for Russian and Ukrainian
Ru Ukrainian

Ru-Uk transfer
CcvV CV  Orth WLD

News (A) 0.928 0.102 0.091 0.286
Discussion (B)  0.594 0.072 0.000  0.109
Reviews (C) 0.744 0.102 0.247 0.253
Information 0.481 0.588 0.321 0.225
Instructions (E) 0.957 0.060 0.474  1.000
Academic (J) 0.932 0.244 0.188  0.067

Legal (H) 0.966 0.500 0.000 1.000
Fiction (K) 0.868 0.667 0.000 1.000
Personal 0.584 0309 0321 0412
Promotion 0.906 0.072 0400 0.667
Average P 0.796 0.272 0.204 0.502

Hamming loss ~ 0.056 0.134 0.182  0.160

from the Ukrainian Web. At the same time the resulting Ukrainian models suffer from
the mismatch between the original Russian training set and the Ukrainian testing sam-
ple. In particular, the academic texts in the Ukrainian testing corpus came primarily
from popular science sources, while the Russian model has been trained on a range of
research articles.

4 Related studies

The possibility of developing resources across languages has been recognised quite
early in the NLP community, e.g., (Wu, 1997). In a rule-based approach, having a
shared representation can be interpreted as a system of shared rules with some language-
specific constraints when necessary (Bateman et al., 2000).

In the modern Machine Learning paradigm there are several approaches to building
multilingual models. One set of approaches uses parallel corpora for projecting auto-
matic annotations in one language to others, e.g., for POS tagging (Das and Petrov,
2011), parsing (Tackstrom et al., 2013; Tiedemann, 2014) and NER (Mayfield et al.,
2017). In the projection approaches, the donor part of a parallel corpus is annotated
with an existing tool. The labels are projected into the recipient language via word
alignments with possible adjustments of labels in the case of alignments other than one
to one. This creates a training corpus for the recipient language. The problem with
using parallel corpora in this task is related to their limitations in terms of topics and
genres even for better resourced languages, e.g., resources are much scarcer outside of
the official documents of Europarl and the United Nations. Also, even if each individ-
ual language has reasonably good parallel resources, such as Polish and Russian aligned
with English, it is difficult to find a large reliable parallel corpus, which contains this
specific language pair.

Another set of approaches uses monolingual comparable corpora, which should help
in improving robustness of transfer by accounting for more typical contexts for more
language pairs. Studies in extraction of bilingual lexicons from comparable corpora
can be traced back to at least (Fung, 1995; Rapp, 1995), who described words via a
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vector of their collocates, translated some words using a seed dictionary and compared
the vectors across the languages. Word embeddings built via predicting context words
(Bengio et al., 2003) has recently become the standard way of representing meanings
of words as the distance between their embedding vectors. Word embeddings across
languages have been studied since (Klementiev et al., 2012). A seminal study, which
transformed the field, was (Mikolov et al., 2013), which used a transformation matrix
(TM) trained on a seed bilingual dictionary to convert monolingual word embeddings
into a shared space. That study was followed by other studies aimed at improving the
process of TM production, e.g., via Canonical Correspondence Analysis (Faruqui and
Dyer, 2014), Global Correction (Dinu et al., 2014) or TM orthogonalisation (Artetxe
et al., 2016). The cross-lingual embedding space has been shown to be useful in topic
and sentiment classification tasks, e.g., (Klementiev et al., 2012), but it has not been
tested for genres.

Feature spaces with a large number of dimensions (100-500) also demonstrate a
phenomenon of hubness (Radovanovi¢ et al., 2010), i.e., some vectors happen to be in
close proximity to many other vectors. This makes such vectors more common choices
in the lexical retrieval tasks leading to more errors. Formally, a word w is mapped to
a set of words NV, (w) for which this word is within their & nearest neighbours. Words
with the largest |V (w)]| are (typically unwanted) hubs. Often such words have re-
stricted context of their use, e.g., troops (183), retreated (176), cavalry (156) are such
hubs in the FastText English space induced from Wikipedia (the numbers in brackets
refer to their | Nag| hubness index, i.e., there are 183 words for which the word troops
is in the list of their 20 closest neighbours), while the median | N2 | hubness index on
the English Wikipedia is 5. Dinu et al. (2014) observe that the hubness phenomenon
becomes more pronounced after linear transformation, since the objective for build-
ing the transformation matrix W leads to lower variance of the transformed vectors,
which in turn means that the vectors (on average) are closer to each other. Dinu et al.
(2014) suggest a way of mitigating hubness by using Global Correction (GC), i.e., by
downgrading the similarity ranks for the items proportionally to their hubness index.

In addition to a model with a seed bilingual dictionary, the initial study by (Mikolov
et al., 2013) also introduced constraints on what its authors call “morphological struc-
ture” (actually the Levenshtein Distance) for keeping only the cognate words in the
output. However, this worked as a filter to reduce the amount of errors rather than to
help with improving the dictionary. Further work on bilingual lexicon induction did
not include the use of cognates, especially in the context of related languages.

Detection of cognates across related and non-related languages has been also stud-
ied recently, e.g. (Frunza and Inkpen, 2009). Some studies relied on using bilingual
corpora (Kondrak, 2013), while others used embeddings from comparable corpora. For
example, a manually developed set of rules for a Finite State Transducer (FST) was used
for identification of cognates and borrowings in (Tsvetkov and Dyer, 2016). A study
aimed at detecting false friends via embeddings (FiSer and Ljubesi¢, 2013) treated the
false friends only among homographs (identically spelled words), not among cognates.

There have been also various studies aimed at providing quantitative analysis of
embeddings by training predictors for various classification tasks, e.g., (Belinkov et al.,
2017; Kohn, 2015). The specific contribution of this study consists in investigation
of transferring such predictors across the related languages using a shared annotation
framework, such as UD.
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5 Conclusions and further work

The key take-home message from this study is as follows: when cross-lingual em-
bedding spaces for related languages are built by taking into account lexical similar-
ity between the cognates, the resulting models can be more successful in transferring
the resources from the donor languages. This study illustrates this claim for a num-
ber of language pairs and application domains, such as the dictionary induction task or
morphosyntactic prediction. In particular, the results in the dictionary induction task
improve the state of the art considerably, for example, from 0.429 to 0.840 for the
Slovenian-Croatian pair when a corpus is too small for reliable training of monolin-
gual embeddings. Incorporating the WLD score contributes to improving the initial
deficiencies of a small corpus.

The tools for aligning the monolingual embedding spaces for related languages, the
resulting embeddings, as well as the trained NLP models transferred to the recipient
languages are available under permissive licenses.* In addition to the NER and genre
classification tasks, as shown in this paper, the cross-lingual spaces can be used for
improving coverage of existing resources, such as POS taggers (Straka et al., 2016) or
MT for related languages (Forcada et al., 2011).

The resulting Panslavonic space can be easily expanded to accommodate a new
language, e.g., Rusyn or Sorbian, when a reasonable monolingual corpus is available
to train the embeddings for this language, and when a reliable seed dictionary exists
between this language and one of the other languages in the current Panslavonic space
(the Wikipedia iWiki lists for such languages are too short to produce useful seed dic-
tionaries).

There are several extensions possible for this line of research. First, the setup for
building cross-lingual embeddings involves a number of hyper-parameters which de-
serve a separate study. This concerns:

Seed dictionary There can be different sources for choosing the seed dictionary, such
as alignments from parallel corpora, existing traditional dictionaries, alignments
from comparable Wikipedia titles (as used in this study). In addition to this, there
can be variation in their size or contents, which might in turn lead to investiga-
tion of their components, such as common names, borrowings or proper names.
For example, it is relatively easy to collect large lists of proper names from such
sources as Wikipedia titles via the iwiki links. The current study filtered many
of them through a frequency list. However, their presence mihgt benefit down-
stream tasks, such as NER.

WLD contribution The best value of o has been estimated on the development set
for one language pair and used in other experiments. However, the optimal bal-
ance between the embedding scores and WLD depends on the quality of the seed
dictionary and the typological distance between the languages.

Monolingual embedding spaces There are numerous methods and parameters for build-
ing embedding spaces, which can impact their usefulness for the cross-lingual
embedding task. For each language pair, this study used embeddings from a sin-
gle source without comparing different settings to the individual tasks.

Second, the cross-lingual spaces in the current study are constructed in iterations
by means of a closed-form method for building the transformation matrix. This closed-
form method cannot take into account the lexical similarity, which needs to be intro-

“https://github.com/ssharoff/cognates
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duced via a separate dictionary update. A useful experiment would be to use an adver-
sarial training technique (Conneau et al., 2017) in order to transform the monolingual
spaces while adding lexical similarity measures such as WLD. As shown in other stud-
ies, adversarial training outperforms the orthogonal transform (see the rows marked as
MUSE in Tables 3 and 4) and allows incorporation of other cost functions. Another
possibility for using WLD in the process of aligning monolingual embedding spaces is
by iterative learning of a nonlinear transformation (Di Marzio et al., 2018).

Third, morphological prediction can be improved if done in a multitask fashion,
when the tasks concern predictions of the individual features, such as case, gender and
number (Augenstein et al., 2018). In the current study, the tags were predicted as a
whole. Other kinds of multi-task and multi-domain experiments are also possible. For
example, the current study does not make a distinction between the embeddings for
different languages, so the shared space is considered to be the same for all languages,
even though the semantic and grammatical properties of individual languages are likely
to differ. It has been shown that applying autoencoders over the feature spaces in two
languages leads to a better feature space for the target model, because this helps in
generalising language-specific variations in the monolingual feature spaces (Rios and
Sharoff, 2016).

Finally, the current model has been tested with relatively well-defined synchronic
languages, such as representatives from the Slavonic family. It is interesting to ex-
periment with languages diachronically by building better models for earlier stages of
language development, e.g., for medieval English, from the more abundant models ex-
isting for modern languages, see (Piotrowski, 2012). A related experiment would in-
volve building models for dialects. A problem to be tackled in this case concerns the
need to build a monolingual embedding space for a recipient language variety from a
small amount of available raw texts.
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