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Joint DOA, Range, and Polarization Estimation for

Rectilinear Sources with a COLD Array
Hua Chen, Member, IEEE, Weifeng Wang, and Wei Liu, Senior Member, IEEE

Abstract—In this paper, a novel localization method for near-
field (NF) rectilinear or strictly noncircular sources with a
symmetric uniform linear array of cocentered orthogonal loop
and dipole (COLD) antennas is proposed. Based on the rank
reduction (RARE) principle, the multiple parameters including
direction of arrival (DOA), range and polarization parameters are
separated. Furthermore, a closed-form solution for polarization
parameters and noncircular phases is also provided. The deter-
ministic Cramer-Rao bound (CRB) of the estimation problem
under consideration is also derived as a benchmark. Numerical
simulations are provided to demonstrate the effectiveness of the
proposed method.

Index Terms—DOA estimation, near-field, noncircular signals,
rank reduction, COLD array.

I. INTRODUCTION

A
S an important topic in the area of array signal pro-

cessing and wireless communications, direction of arrival

(DOA) estimation with diversely polarized antenna arrays

has attracted much attention [1–3]. Compared with a scalar

antenna array, a diversely polarized array can extract both the

spatial-time and the polarization information of an incident

electromagnetic wave. Therefore, algorithms based on such

a vector antenna array usually outperform their conventional

scalar antenna array based counterparts. Most existing meth-

ods assume that all incident signals are far-field (FF) plane

waves, and their locations can be characterized by DOA only.

However, in practice, near-field (NF) signals can be present

around the array with spherical wavefronts. In this case, both

the DOA and range parameters need to be characterized, and

some methods have been developed specifically for NF source

localization [4, 5].

For NF source localization based on vector antenna arrays,

an ESPRIT-like algorithm was proposed in [6] based on po-

larimetric fourth-order cumulant (FOC) for closed-form DOA

and range estimation. Using FOC matrices, localization of

multiple NF sources with a linear tripole array was studied

in [7] with an additional advantage of extended aperture. To

avoid the high computational complexity of constructing FOC

matrices, two second-order statistics (SOS) based methods
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were presented in [8, 9], where a sparse linear array was

employed in [8] and an array of cross-dipoles studied in [9].

All the above mentioned methods assumed that the in-

coming signals are circular. However, strictly noncircular

signals [10–12], such as amplitude modulation (AM) and

binary phase shift keying (BPSK) signals, are widely used

in modern radio communications, for which the DOA and

range estimation performance can be improved significantly

by exploiting both covariance matrix and conjugate covariance

matrix of noncircular signals. Therefore, in this paper, based

on a uniform linear array of cocentered orthogonal loop

and dipole (COLD) antennas, a novel noncircularity based

localization algorithm for NF polarized sources is proposed.

Based on the principle of rank reduction (RARE) [4, 5], the

DOA and range parameters of NF noncircular sources can

be successively estimated through two one-dimensional (1-

D) spectral searches. Meanwhile, estimating the polarization

parameters and noncircular phase are also achieved with a

closed-form expression.

Notation: [·]∗, [·]T ,[·]H ,[·]−1 represent operations of con-

jugation, transpose, conjugate transpose, and inverse, respec-

tively; E[·] is the expectation operation; diag{·} stands for

the diagonalization operation; Ip denotes the p-dimensional

identity matrix; Re{·} denotes the real part, while tr{·} and

det{·} denote the trace and determinant of a matrix, respec-

tively. ⊗ and ⊙ are the Kronecker product and Hadamard

product operations, respectively. 1p denotes an all-one p × 1
row vector.

II. SIGNAL AND ARRAY MODELS

Consider a symmetric uniform linear array (ULA) of N =
2M + 1 COLD antennas, as shown in [Fig.1, 13]. There are

K narrowband completely polarized signals impinging on the

array from (θk, rk), k = 1, · · · ,K, where θk ∈ (−π/2, π/2)
represents the angle between the kth source and the z-axis

and rk denotes the range from the source to the origin of

coordinates. The completely polarized signals can be decom-

posed into a polarization electric component and a polarization

magnetic component. The COLD composite antenna measures

each polarization component separately, with the loop mea-

suring the magnetic component and the dipole measuring the

electric component. Referring to [2], the polarization-space

steering vector of the kth source can be expressed as

ξk =

[

− cos γk
− sin γke

iηk

]

(1)

where γk and ηk represent the polarization angle and polar-

ization phase difference respectively.
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Use the array center indexed by 0 as the phase reference

point, and then received signal xm(t) at the mth antenna at

time t can be expressed as

xm(t) =
K
∑

k=1

am,k(θk, rk)ξksk(t) + nm(t) (2)

m = −M, . . . ,−1, 0, 1, . . . ,M , where am,k(θk, rk) =

e
j
2πrk

λ (
√

1+(md
rk

)2−
2md sin θk

rk
−1)

is the spatial phase factor for

the kth source to the mth antenna. sk(t) is the complex

envelope of the kth signal, nm(t) is white Gaussian noise

which is independent and identically distributed (I.I.D) with

zero mean and uncorrelated with the sources. The range of the

NF signals is within the Fresnel region [4–10], which means

rk ∈ (0.62
√

D3/λ, 2D2/λ) with D being the array aperture

and λ being the wavelength.

The observed data vector x(t) =
[x−M (t), · · · , x0(t), · · · ,xM (t)]T at time t can be expressed

as

x(t) = As(t) + n(t) (3)

where A = [a1 ⊗ ξ1,a2 ⊗ ξ2, · · · ,aK ⊗ ξK ] ∈ C
2N×K is the

array manifold matrix, ak = [a−M,k, · · · , a0,k, · · · , aM,k]
T is

its k-th column vector, s(t) = [s1(t), s2(t), · · · , sK(t)]T is the

signal vector and n(t) = [n−M (t), · · · ,n0(t), · · · ,nM (t)]T is

the noise vector with E{n(t)nH(t)} = σ2
nI2N .

III. THE PROPOSED METHOD

In this section, a novel algorithm to estimate the DOAs,

ranges, polarization parameters and noncircular phases of the

NF strictly noncircular sources is proposed.

For the kth rectilinear or strictly noncircular signal, it holds

that [12]

E[sk(t)sk(t)] = αke
jβkE[sk(t)s

∗

k(t)] (4)

where βk is the noncircularity phase and αk = 1 is the

noncircularity rate of the kth strictly noncircular signal. For

signal vector s(t) consisting of K uncorrelated signals, its

unconjugated covariance matrix is given by

E[s(t)sT (t)] = PBE[s(t)sH(t)] = PBRs (5)

where B = diag{ejβ1 , ejβ2 , · · · , ejβK} and P = IK .

In order to exploit the noncircular information, we construct

a new vector z(t) as follows

z(t) =

[

x(t)
x∗(t)

]

(6)

Then, the covariance matrix of z(t) is given by

Rz =

[

A

A∗B∗

]

Rs

[

A

A∗B∗

]H

+ σ2
nI4N (7)

The eigenvalue decomposition of Rz leads to

Rz = UΛU = USΛSUS +UNΛNUN (8)

where the 4N×K martix US and the 4N×(4N−K) martix

UN are the signal subspace and noise subspace, respectively.

The K×K martix ΛS and the (4N −K)× (4N −K) martix

ΛN are diagonal matrices consisting of the eigenvalues of Rz .

A. Solution Based on the Accurate Signal Model

Base on the principle of the MUSIC algorithm, we have

[

A

A∗B∗

]H

UN = 0 (9)

Then, a cost function f(θk, rk, γk, ηk, βk) can be construct-

ed as follows

f(θk, rk, γk, ηk, βk) = ∥

[

ak ⊗ ξk
a∗k ⊗ ξ∗ke

−jβk

]H

UN∥2F (10)

According to the property of Kronecker product, we have

ak ⊗ ξk = (ak ⊗ I2)ξk (11)

Substituting (11) into (10), we have
[

ak ⊗ ξk
a∗k ⊗ ξ∗ke

−jβk

]

=

[

ak ⊗ I2 0

0 a∗

k ⊗ I2

] [

ξk
ξ∗ke

−jβk

]

(12)

The cost function can be simplified as

f(θk, rk, γk, ηk, βk) = pH(γk, ηk, βk)M(θk, rk)p(γk, ηk, βk)
(13)

where the 4× 4 matrix M(θk, rk) has a form of

M(θk, rk) =

[

ak ⊗ I2 0

0 a∗k ⊗ I2

]H

UNUH
N

[

ak ⊗ I2 0

0 a∗k ⊗ I2

]

(14)

p(γk, ηk, βk) =

[

ξk
ξ∗ke

−jβk

]

=









− cos γk
− sin γke

jηk

− cos γke
−jβk

− sin γke
−jηke−jβk









(15)

In general, p(γk, ηk, βk) ̸= 0, and based on the

RARE principle, we know that M(θk, rk) = 0 means

f(θk, rk, γk, ηk, βk) = 0. Then, the cost function can be

changed to

f(θk, rk) = det[M(θk, rk)] (16)

It is clear that the rank{M(θk, rk)} < 4 if and only if

(θ, r) = (θk, rk) are the true DOA and range. The K DOA

and range estimates (θ̂k, r̂k), k = 1, · · · ,K can be acquired

by searching for the K minima of f(θk, rk).
Substituting the estimated DOAs and ranges into (13), we

have M(θ̂k, r̂k)p = 0, and then the estimation of polarization

parameters (γk, ηk) and the noncircularity phase βk, k =
1, · · · ,K is transformed to a least square problem.

Defining two new matrices

Q1 =









−M11

−M21

−M31

−M41









,Q2 =









M12 M13 M14

M22 M23 M24

M32 M33 M34

M42 M43 M44









(17)

where Mij , i, j = 1, 2, 3, 4 is the element of M(θk, rk), we

have

(QH
2 Q2)

−1QH
2 Q1 =





m1

m2

m3



 (18)

where

m1 = tan γke
jηk ,m2 = e−jβk ,m3 = tan γke

−jηke−jβk

(19)
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Thus, the polarization parameters and the noncircular phase

can be expressed as

γk = arctan(|m1|), ηk = arg(m1), βk = − arg(m2) (20)

B. Solution Based an Approximate Signal Model

However, the estimation of DOAs and ranges based on the

above algorithm still needs 2-D peak searching. In order to

reduce the computational effort, we can replace the spatial

phase factor defined in (2) with an approximate second-order

expansion which is known as Fresnel approximation in forms

of al,k(θk, rk) ≈ ej(mµk+m2ϕk) where µk = −2πd sin θk/λ
and ϕk = πd2 cos2 θk/λrk.

Then the steering vector ak can be re-expressed as [5, 8]

ak = ς(µk)υ(ϕk) =

















ej(−M)µk · · · 0
...

. . .
...

0 · · · 1
... . .

. ...

ejMµk . . . 0























ejM
2ϕk

...

1







(21)

Substituting (21) into (14), M(θk, rk) can be written as

M(θk, rk) =

[

υk ⊗ I2 0

0 υ∗

k ⊗ I2

]H

C(θk)

[

υk ⊗ I2 0

0 υ∗

k ⊗ I2

]

(22)

where

C(θk) =

[

ςk ⊗ I2 0

0 ς∗k ⊗ I2

]H

UNUH
N

[

ςk ⊗ I2 0

0 ς∗k ⊗ I2

]

(23)

Based on the RARE principle, C(θk) and M(θk, rk) are of

full column rank unless θ = θk, and then the cost function

defined in (16) can be changed to

f(θk) = det[C(θk)] (24)

The K DOA estimates θ̂k can be obtained through 1-D angle

search. Substituting the K DOAs θ̂k into (22) and searching

for the peaks of M(θk, rk) about range r, we finally have the

ranges of the K sources and no parameter pairing is needed.

Remark 1: The computational complexity of the proposed

method is analyzed in terms of the number of complex-valued

multiplications, mainly including spectral searching, construc-

tion of the extended covariance matrix ((4N)
2
T flops, with T

being the number of snapshots) and performing EVD ( (4N)
3

flops ). For the accurate signal model, the proposed method

has to conduct direct two-dimensional (2-D) spatial spectrum

searching which needs π
△θ

2D2/λ−0.62(D3/λ)1/2

△r (4N)
2 flops

by defining the scanning interval for DOA θ ∈
[

−π
2 ,

π
2

]

, and

range r ∈
[

0.62(D3/λ)1/2, 2D2/λ
]

parameters as △θ, and

△r respectively, while for the approximate signal model, it

involves π
△θ (4N)

2
+K 2D2/λ−0.62(D3/λ)1/2

△r (4N)
2

flops since

it only needs two 1-D searches. The proposed method has

higher complexity than methods in [8, 10] by jointly exploiting

the polar and noncircular properties.

Remark 2: A closed-form solution for source localization is

achievable using a COLD antenna array [13] through parallel

factor (PARAFAC) analysis. However, the noncircular infor-

mation is not included in PARAFAC, and how to incorporate

the noncircular information into PARAFAC will be a topic of

research in our further work to avoid the spectrum searching

process.

IV. DETERMINISTIC CRAMER-RAO BOUND

In this section, the deterministic CRB for the estimates of

DOA, range, polarization and noncircular phase parameters is

derived for NF strictly noncircular signals.

First, define a real-valued vector of the unknown pa-

rameters as ξ =
[

θT rT γT ηT βT
]T

with θ =
[θ1, θ2, ..., θK ]T , r = [r1, r2, ..., rK ]T , γ = [γ1, ..., γK ]T , η =
[η1, ..., ηK ]T , and β = [β1, ..., βK ]T . Under the deterministic

assumption, z(t) are circularly Gaussian distributed with mean

Aes(t) and covariance σ2
nI4N , where Ae = [AT ,AHBH ]T .

Then, the (p, q)th entry of the 5K × 5K CRB matrix for the

parameters in ξ is given by [11, 12]

[CRB−1(ξ)]p,q = L
σ2Re

{

∂AH
e

∂ξp
P⊥

Ae

∂Ae

∂ξq
Rs

}

(25)

where P⊥

Ae
= I4N − Ae(A

H
e Ae)

−1AH
e .

Define

D = [Dθ,Dr,Dγ ,Dη,Dβ ] (26)

with Dθ =
[

∂Ae

∂θ1
, ..., ∂Ae

∂θK

]

, Dr =
[

∂Ae

∂r1
, ..., ∂Ae

∂rK

]

,

Dγ =
[

∂Ae

∂γ1
, ..., ∂Ae

∂γK

]

, Dη =
[

∂Ae

∂η1
, ..., ∂Ae

∂ηK

]

, Dβ =
[

∂Ae

∂β1
, ..., ∂Ae

∂βK

]

, and after some simplification, the closed-

form expression for the CRB is given by

CRB(ξ) =
σ2

L

{

Re[(DHP⊥

Ae
D)⊙ (15 ⊗ 1T5 ⊗ RT

s )]
}−1

(27)

V. SIMULATION RESULTS

In this section, the proposed method is compared with some

existing methods including Tao’s method [8], Xie’s method

[10] and the deterministic CRB for the scenario of NF strictly

noncircular sources. For the simulations, a ULA consists of

nine antennas (M = 4) with a quarter-wavelength inter-

antenna spacing (d = λ/4) is employed. The impinging

sources are equal-power, uncorrelated BPSK signals and all the

sources are located in the Fresnel region (1.75λ < r < 8λ) of

the array. The root mean square error (RMSE) RMSE(ϑk) =
√

1
500K

∑K
k=1

∑500
q=1(ϑ̂qk − ϑk)2, where ϑ̂qk is the estimate of

the parameters θ̂k, r̂k, γ̂k, η̂k at the qth Monte Carlo simulation,

ϑk is the true value.

In the first set of simulations, we examine the performance

of the proposed method using both the exact signal model

and the approximate signal model versus the SNR. Four NF

signals are located at (−30◦, 2.1λ), (−5◦, 2.3λ), (20◦, 2.5λ)
and (45◦, 2.7λ), respectively. The polarization angles and

polarization phase differences of the sources are (20◦, 70◦),
(30◦, 85◦), (55◦, 100◦) and (75◦, 115◦). The RMSEs of DOA,

range, polarization angle, and polarization phase difference

estimation are shown in Fig. 1(a)-(d), where the SNR varies

from −6 dB to 20 dB, with the number of snapshots fixed
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Fig. 1. RMSEs of four near-field sources versus SNR.

at 2000. In Fig. 1, it is clear that the proposed algorithm

outperforms the existing methods for both DOA and range

estimation of NF sources by simultaneously utilizing the non-

circular and polarization information at low SNRs. However,

because of the Fresnel approximation error, the performance of

the proposed algorithm using the exact signal model is better

than the counterpart using the approximate signal model. In

addition, the RMSEs of the proposed method are very close

to the CRBs.

In the second simulation, we examine the performance of

the proposed method versus the number of snapshots. The

simulation conditions are similar to those in the first example,

except that the SNR is set at 20 dB, and the number of

snapshots varies from 10 to 1000. The results are shown in

Fig. 2(a)-(d). As expected, the proposed method is always

superior to the existing methods, especially for DOA and range

estimation, and the RMSEs of the proposed method decrease

monotonically and are very close to the CRBs.

VI. CONCLUSION

An effective localization method for NF rectilinear sources

with a COLD array has been proposed. Based on the RARE

principle, the separation of DOA, range and polarization

parameters can be realized in the estimation process. By

exploiting the approximate signal model, we can obtain the

estimation of DOA and range through two 1-D searches,

and a closed-form solution for polarization parameters and

noncircular phases is provided. As demonstrated by computer

simulations, the proposed method has outperformed existing

methods and led to a performance very close to the derived

deterministic CRB.
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