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Abstract: In this paper, we present electrooptic experiments on photonic crystal fibers filled
with a liquid crystalline blue phase. These fibers guide light via photonic band gaps (PBGs).
The blue phase is isotropic in the field-off state but becomes birefringent under an electric field.
This leads to a polarization dependent shift of the PBGs. Interestingly, the effect on the PBGs is
asymmetrical: while the short wavelength edges of the PBGs shift, the long wavelength edges are
almost unaffected. By performing band gap and modal analyses via the finite element simulations,
we find that the asymmetric shift is the result of the mixed polarization of the involved photonic
bands. Finally, we use the band gap shifts to calculate effective Kerr constants of the blue phase.
© 2016 Optical Society of America
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1. Introduction

Blue phases (BPs) are chiral liquid crystalline phases which exhibit a three dimensional structure.
The lattice constant of this structure is commonly in the range of the wavelengths of visible light.
This leads to brilliantly reflecting domains seen in a polarizing microscope [Fig. 1(a)]. Three
different blue phase modifications can appear in the absence of external fields, but only two of
them, BP I and II, show a periodic structure [1]. For the BP I and BP II, the three dimensional
structure is composed of double twist cylinders [Fig. 1(b)] stacked in a cubic lattice [1, 2]. This
cubic super structure makes BPs optically isotropic in the absence of external electric or magnetic
fields.
Under the influence of an external electric field, the BP becomes birefringent with its optical

axis oriented along the direction of the electric field. This is usually a fast process (. 1 ms [3–6])
compared to nematic liquid crystals (∼ 10 ms). Thus, BPs are of current interest in display
research. Another advantage is that BPs do not require surface alignment for a homogeneous
orientation. This gives them an advantage over other liquid crystalline phases, which usually
require high quality alignment layers. As there is no need for this additional layer, blue phases
are excellent candidates for use in confined geometries like photonic crystal fibers (PCFs).
PCFs are optical fibers which confine light by a periodic array of air inclusions [7] in a glass
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Fig. 1. (a) Polarizing optical microscope image of a blue phase I in reflection. (b) Cubic
arrangement of double twist cylinders in a blue phase I unit cell [6]. (c) Schematic of the
cross section of a photonic crystal fibers. (d) Close-up of the period cladding with inclusion
diamter d and pitch Λ.

matrix [Fig. 1(c) and (d)]. The light guiding core is formed by one or more missing inclusions.
The air inclusions can be easily filled with various liquids by capillary action [8–12]. If the
refractive index of the liquid is higher than the index of the surrounding material, light guidance
is supported by photonic band gaps (PBGs) of the cladding [13–15]. The PBGs reflect the light
impinging on the walls and confine it to the core. But there are wavelength regions, where light is
not confined because a single PBG only covers a certain wavelength range. Thus, the transmission
spectrum of such a fiber exhibits multiple regions of low transmission. These regions are referred
to as photonic bands, which exist inside the cladding.

The positions of the photonic bands (and photonic band gaps) are determined by the refractive
index of the inclusions and the surrounding materials [16]. Thus liquid crystals have been
commonly used to control the optical transmission through these fibers. The refractive indices of
the LCs can be influenced via temperature change [17, 18] or electromagnetic fields [19–21].
Choosing blue phases instead of nematic liquid crystals to infiltrate PCFs provides some

advantages. There is no need for an alignment, layer which simplifies the experiment. Further, the
theoretical description is simplified as BPs are isotropic in the field off-state. Thus, complicated
liquid crystal director fields have3 not to be taken into account.

So far, only thermal tuning of blue phase photonic crystal fibers (BPPCFs) has been investigated
[22, 23] in order to change the transmission. This is generally a slow process. From our point of
view, the tuning via electrical fields is a more promising concept. This option has become viable
only recently, when blue phases with high sensitivity to electric fields (high Kerr constants) have
become available [4, 5, 24].

In this article, we discuss the effect of electrically induced uniaxiality of the blue phase on the
polarization dependent transmission of BPPCFs. We interpret the experimental results with the
help of modal analysis and band gap analysis via the finite element method. Finally, we connect
the changes in the band gap guidance to the Kerr constant of the blue phase material.

2. Background

2.1. Blue phases

The cubic arrangement of double twist cylinders [Fig. 1(b)] leads to a macroscopically isotropic
liquid crystalline blue phase with the refractive index nBP. An external electric field induces a
threshold-less reorientation of molecules; the BP becomes birefringent. The blue phase then
resembles a uniaxial medium. Its optical axis is oriented along direction of the external electric
field as shown in Fig. 2(a). For small electric field strengths, field-induced biaxiality and saturation
can be neglected. If so, the birefringence δn can be modeled by the Kerr effect of an initially
isotropic medium [25,26]

δn = KλE2, (1)
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where K is the Kerr constant, λ the wavelength of the light and E the electric field. The refractive
indices parallel (ne) and perpendicular (no) to the optical axis can be expressed by

no = nBP −
1
3
δn and ne = nBP +

2
3
δn, (2)

where δn is the field-induced birefringence. For very large electric field strengths, the chiral
structure becomes unwound to a nematic state. δn then approaches a saturation value ∆n(T ),
which corresponds approximately to the birefringence of the nematic phase that appears in a
racemic mixture instead of a BP.

nBP

ne=nBP+2/3 δn

no=nBP-1/3 δn

δn

E=0

Eδn

E

(a) (b) 6 5 4 3 = m

tr
an
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Fig. 2. (a) Splitting of the refractive index of the initially isotropic blue phase due to
an electric field. The blue phase becomes uniaxial with ordinary refractive index no and
extraordinary refractive index ne. The inset shows the quadratic dependence of the induced
birefringence δn on the electric field. (b) Schematic of the transmission (solid line) through
an ARROW structure, in which the inclusion material has an isotropic refractive index n.
The resonances are labeled according to the corresponding order m and are marked with red
lines. The dashed gray line shows the transmission if the refractive index is increased by
dn > 0. The change dn is isotropic.

2.2. Photonic crystal fibers

The periodic arrangement of air holes in photonic crystal fibers can be filled with a high index
material. ‘High’ means that the refractive index of the material is larger than the refractive index
of the background material. Then the light is confined by photonic band gaps. These fibers are
therefore also referred to as photonic band gap fibers. However, the cladding does not provide
a full band gap over a broad spectral range but is interrupted by photonic bands. Within these
photonic bands the light escapes from the core into the cladding and a spectral region of low
transmission arises.
A closer inspection of these photonic bands reveals that they closely resemble waveguide

modes of the individual inclusions [14]. The regions of low transmission can then be interpreted
as wavelengths where the core mode is in resonance with the photonic bands. Then, strong
coupling occurs and light is distributed over the cladding. Consequently, light is only guided
if the core modes and the photonic bands are anti-resonant. This interpretation is called the
anti-resonant reflecting optical waveguide (ARROW) model [16, 27, 28].
According to this model, a strong interaction between the core mode and a photonic band is

expected only close to the cutoff of the involved inclusion mode. The cutoff conditions for the
inclusion modes are well known [29]. The positions can be approximated by [16, 30]

λm =
4d

2m + 1

(
n2 − n2

s
) 1/2

, (3)

where λm is the m-th expected ARROW resonance wavelength, d is the inclusion diameter, n is
the refractive index of the inclusion and ns is the refractive index of the surrounding material.
Figure 2(b) shows schematically a transmission spectrum of an ARROW fiber. The positions of
the dips in transmission can be predicted and labeled with Eq. (3).
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2.3. Blue phase photonic crystal fibers

Equation (3) gives a relation between the transmission minima in a BPPCF and the refractive
index of the inclusions. If we consider the blue phase to be the high index material, we can
calculate the refractive index from the transmission dips.

If an electric field is applied along the fiber cross section, the refractive index of the blue phase
changes from nBP to ñBP for a specific direction. From Eq. (3) it is clear that then λm shifts to
λ̃m . The shift in wavelength can be measured. In order to get a relation between the shift in
wavelength and the change in refractive index, we use ñBP = nBP + dn and assume that dn � 1.
The latter condition is reasonable as we work with low electric fields. Then we can approximate
the square of the refractive index in Eq. (3) by ñ2

BP ≈ n2
BP + 2nBPdn. Equation (3) can then be

rearranged to

dn ≈
(

2m + 1
4d

)2 1
2nBP

(
λ̃2
m − λ

2
m

) 1/2

. (4)

This equation relates the shift in wavelength of a band to the corresponding change in refractive
index.

3. Materials and setup

For the experiments, a commercial PCF (LMA10, NKT photonics) made of silica with inclusion
diameter d = 2.908 µm, pitch Λ = 6.525 µm [cf. Fig. 1(d)] and outer diameter D = 125 µm is
filled with the blue phase mixture by capillary forces. This mixture consists of 97.2 % liquid
crystal host MDA-PB-3 [5] provided by Merck doped with 2.8 % of the chiral component R5011.
The permittivites of the neat MDA-PB-3 have been measured at different temperatures at

1 kHz. At 68 ◦C, which is close to the blue phase temperature region of the prepared mixture, the
values for the permittivities are ε⊥ = 13, ε ‖ = 55 and ε̄ = 2

3 ε⊥ +
1
3 ε ‖ = 27. We assume that the

blue phase perimittivity εBP is approximately equal to the average permittivity, i. e. εBP ≈ ε̄ . The
refractive indices at room temperature for the neat MDA-PB-3 are no = 1.489 for the ordinary
index and ne = 1.664 for the extraordinary index (measured with an Abbe refractometer at
589 nm). The refractive index of the blue phase can be found in the inset of Fig. 7.

Pol

HS

BPPCF

a)

~

E

GM PMT

b)
Xe-arc

CF

NOA65 ITO

glass

silicablue
phase

Fig. 3. (a) Setup for measuring the transmission through a blue phase photonic crystal
fiber. The light of a broad band Xe-arc lamp is collimated, then passes through a grating
monochromator (GM). The monochromatic light is coupled into a fiber (CF) which is
butt-coupled to the BPPCF and placed on a hot stage (HS). The transmitted light passes
through a polarizer (Pol) and is detected by a photo multiplier tube (PMT). (b) The BPPCF
sample is sandwiched between conducting ITO plates and fixed with an adhesive NOA65
(Norland Optical Adhesive 65).

The transmission of the sample is measured with the setup shown in Fig. 3(a). All measurements
are performed upon heating. The BPPCF of 3.3 cm length is fixed between conducting ITO plates
[Fig. 3(b)] to apply an external voltage V . The electric field inside the inclusions Eincl can be
approximated by

Eincl =
2ε s

εBP + ε s

V
D

(5)
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where D is the distance between the conduction plates, which is identical with the fiber diameter,
ε s and εBP are the relative permittivites of the surrounding medium (silica) and the blue phase,
respectively. Details about this equation can be found in the Appendix A.

4. Results and discussion

4.1. Measuring the transmission under the influence of an electric field

After filling the BP into the PCF, polarizing microscope images of the fiber were studied upon
heating [Fig. 4]. The transition from the cholesteric phase (a) to BP I (b,c) to BP II (d,e) and
then the BP II-isotropic coexistence (f) is observed between 65.5 ◦C and 67.5 ◦C. Within the blue
phase regions, indeed blue phase platelets are observed. For BP I, also different orientations of
the BP crystals can be observed.

(a)

(b)

(c)

(d)

(e)

(f)

65.0°C

65.5°C

66.0°C

66.5°C

67.0°C

67.5°C

100µm

Fig. 4. Polarizing microscope images of a BPPCF in transmission for different temperatures:
(a) the cholesteric phase, (b, c) BP I, (d, e) BP II and (f) BP II-isotropic coexistence.

Figure 5(a) and (b) show the results of the transmission measurements in the visible wavelength
range for voltages from 0 V to 600 V. The polarization of the light is (a) perpendicular (x-
polarized) and (b) parallel (y-polarized) to the external electric field [cf. Fig. 3(b)]. At 0 V, the
spectra show transmission windows which are expected for a photonic band gap fiber. The spectra
for x- and y-polarization at 0 V confirm that the blue phase is isotropic as both spectra are almost
identical.

Under application of a square wave at 1 kHz, the average intensity in the case of x-polarization
[Fig. 5(a)] decreases by 23 % at 600 V. This loss of intensity can be attributed to scattering by
the change in refractive index when the electric field switches polarity. The loss increases with
increasing voltage, i. e. with increasing induced birefringence. The position of the band gaps,
however, is not affected in any way.

In the case of y polarized light [Fig. 5(b)], a much stronger decrease in intensity with increasing
voltage (45 % at 600 V) is observed. The scattering in this case is higher because it relates
to the birefringence which is larger for the y-polarization [+2/3 δn, cf. Eq. (2)] than for the
x-polarization (−1/3 δn). In contrast to the x-polarized light, the y-polarized light also shows a
shift of the band gap positions, the magnitude of which increases with the voltage. To make this
effect more visible we focus on a single band gap [gray shaded in Fig. 5(a) and 5(b)].
In Fig. 5(c) and 5(d) the band gap located between 530 nm and 620 nm is plotted for (c)

x- and (d) y-polarized light. The intensities are normalized to unity for each voltage in both
graphs. This procedure reveals that there is almost no change of the band gap shape for the
x-polarized case. In contrast, for y-polarized light, there is a significant shift of the left edge of
the transmission window by up to 12 nm at 600 V while the right edge remains constant. This
effect of an asymmetric shift of the transmission windows will be discussed in the following
section.
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Fig. 5. Transmission spectra of white light coupled into a BPPCF for different voltages.
(a) Polarization of light (x direction) is perpendicular to the external electric field, (b)
polarization is parallel to the electric field. (c) and (d) are enlargements of (a) and (b) for the
band gap around 575 nm. The spectra are recorded at 65.5 ◦C.

4.2. Explaining the asymmetric shift

From the ARROWmodel and Eq. (4), a symmetric shift of the band gap is expected. To investigate
this behavior, we carried out a modal analysis via the finite element method (FEM). In Fig. 6(a)
the fraction of the electric field guided in the core is plotted for three different cases: (i) in the
absence of an electric field (blue line) meaning at 0 V where the blue phase is isotropic; (ii)
with an applied voltage of 650 V taking into account the correct anisotropy with nx = nz = no,
ny = ne (green line) and (iii) also at 650 V but with an ‘artificial’ refractive index distribution
nx = ny = ne, nz = no (red line). The last case is an anisotropic waveguide with its optical
axis parallel to the fiber axis. The cases (i) and (ii) represent the experiment at 0 V and 650 V,
respectively.

The simulation in fact shows a shift of the short wavelength edge of the transmission window
from case (i) to (ii). On the long wavelength edge in case (ii), the core power drops to 0.2 at
610 nm which coincides with edge of the transmission window in case (i). In the range from
610 nm to 615 nm the core power stays low indicating weak confinement of the core mode. This is
the region we do not see in the experiment due to the high losses. Beyond 615 nm the core mode
is not confined anymore. In case (iii), the wavelength region between 610 nm and 615 nm exhibits
good confinement of the core mode. Thus, we conclude that the asymmetric shift originates from
the anisotropy when the optical axis is perpendicular to the fiber axis.
This result is supported by the modal analysis [Fig. 6(b)] at 610 nm. It reveals that the mode

in case (ii) couples to a photonic band (or cladding mode) which is mainly x-polarized. The
coupling is weak because the core mode is y-polarized. The photonic band does not move to
longer wavelengths under voltage as its polarization is mainly perpendicular to the polarization
direction with increasing refractive index. In case (iii), this photonic band is not present because
it has shifted to longer wavelengths due to ne = nx = ny .
The above interpretation is supported by the band gap plots in Fig. 6(c) and 6(d). Details on

the simulations are given in Appendix B. Fig. 6(c) shows the band gap diagram at 0 V [case
(i)]. The effective refractive index of the guided mode is shown in green and has been obtained
by modal analysis. It is flanked by two photonic bands located around 537 nm and 612 nm. The
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Fig. 6. (a) Electric field confined to the core of the fundamental mode of a single band gap
around 580 nm for three different cases (i) 0 V (blue), (ii) 650 V with ny = ne , nx = nz = no
(green) and (iii) ny = nx = ne , nz = no (red). On the short wavelength edge, we marked the
wavelength shift λ → λ̃. (b) Simulated mode profiles (normalized electric field) at 610 nm
for the described cases. Each image is 7 µm × 7 µm. (c) DOS plot for 0 V (case (i)). (d) DOS
plot for 650 V (case (ii)): the orange regions correspond to bands with η ≤ 1 and the blue
regions to bands with 0.1 ≤ η < 1. The green line in (c) and (d) corresponds to the effective
refractive index of the guided mode. The wavelength shift of the band edges ( ∆λl and ∆λr )
of the transmission window are marked separately for short and long wavelength edge. For
the simulation, K = 6.0 nm V−2 is assumed.

interaction of the core mode with the photonic bands leads to a bending of the effective refractive
index close to the edges. There are some bands (at 548 nm and 585 nm) within the transmission
window which intersect with the core mode but do not interact. These are caused by higher order
cladding modes, the high order of which does not allow for significant coupling [16].

At a voltage of 650 V [case (ii), Fig. 6(d)], the bands start to shift and polarization dependencies
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of the photonic bands start to appear. To distinguish between the polarizations of the bands we
introduce a parameter η =

〈
|Ey |

〉
/ 〈|Ex |〉, where 〈|Ex |〉 and

〈
|Ey |

〉
are the absolute values of

electric fields Ex and Ey averaged for a photonic band. The plot now shows two different kinds
of photonic bands. Bands with η > 1 [orange in Fig. 6(d)] are mainly y-polarized and bands with
0.1 < η < 1 (blue) are predominantly x-polarized but still carry some amount of y-polarization.
The region in which the core mode (green line) is guided becomes smaller with increasing

voltage. On the short wavelength side, a mainly y-polarized band (η > 1) flanks the core mode at
543 nm. In contrast, the core mode is stopped on the long wavelength edge at 615 nm by a band
which is predominantly x-polarized (blue). The left band is shifted significantly due to its strong
response to the increase of the refractive index ny . The right edge approximately stays constant
because it is mostly x-polarized and interacts with nx . This leads to the asymmetric shift of the
transmission window.

4.3. Applying the ARROW model to determine the Kerr constant

From the previous discussion it is clear that the induced change in refractive index of the blue
phase causes the left edges of the transmission windows to shift. We now want to connect the
applied electric field to the shift in wavelength and then to the induced birefringence. Finally, we
would like to evaluate if the birefringence is proportional to the electric field squared as described
by Eq. (1).
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Fig. 7. The solid black line corresponds to the measured intensity and the cyan line shows the
simulated power confined to the core. The red labels on the top give the respective m-values
determined by the ARROW model. The band gaps are labeled correspondingly. The inset
shows the refractive index of the blue phase material at 0 V and 68 ◦C.

Equation (4) gives us a relation between the shift of the photonic band and the corresponding
change in refractive index. This equation is based on the ARROW model and we require the band
or resonance order m to use Eq. (4). To this end, we plot in Fig. 7 the measured transmission
spectrum and the transmission dips predicted by the ARROW model. The results show good
agreement between the ARROW model and the experiment. There are some differences towards
the shorter wavelengths, though. These differences are due to the inaccuracy of the measured
refractive index of the blue phase nBP. To verify this, we plotted the normalized power guided
inside the core region. This is in perfect agreement with the ARROW model and in good
agreement with the experiment. The numbering of the photonic bands (or resonances) can then
be performed: m = 3, . . . , 7 from right to left.
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Now that we have identified the resonance order m for the corresponding band gaps, we
determine the electrically induced wavelength shift λ̃m of the short wavelength edges in Fig. 5(b).
For each band gap and each voltage λ̃m are analyzed at five positions of the normalized intensity
(I = 0.3, 0.4, . . . , 0.7).

The change in refractive index is then obtained with Eq. (4). If we then assume that the shift
in wavelength and therefore the change in refractive index is solely caused by the extraordinary
refractive index ne, i. e. dn = ne − nBP, we are able to relate dn to the induced birefingence in
Eq. (1) by δn = 3/2dn.
From Eq. (1) it is expected that δn is linear with the electric field squared. Therefore, in

Fig. 8(a) we plot δn against E2 for each photonic band at temperature T = 65.5 ◦C. All photonic
bands show the expected linear behavior. For the bands m = 5 and m = 6, the agreement is
very good. For the bands m = 4 and m = 7, the deviations are quite high. The Kerr constant K
is calculated from the slope of the linear fit. The Kerr constants vary with band number from
5.53 nm V−2 for m = 4 to 7.01 nm V−2 for m = 5.
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Fig. 8. (a) Electrically induced birefringence δn (filled circles) calculated with the ARROW
model for the each band gap at 65.5 ◦C. The Kerr constant is calculated from the linear fit
(solid line). (b) Kerr constants of the different photonic bands versus temperature. The gray
dashed line shows the Kerr constant that we measured in a vertical field switching (VFS)
cell.

The Kerr constants also change with temperature as can be seen in Fig. 8(b). In general Kerr
constants seem to decrease, which is commonly observed in blue phases. The band with m = 6 is
distinct from the remaining bands by its high Kerr constant of about 8 nm V−2. This value comes
close to the values of the Kerr constant measured in a vertical field switching (VFS) cell (dashed
grey line). At all temperatures, the Kerr constants of all photonic bands are lower than the ones
measured in the VFS cell. This is again an effect of the bands carrying a mixed polarization.
Even though they are mainly influenced by the y-component of the refractive index (ny = ne),
they still weakly interact with the lower index nx = no. Each photonic band carries different
portions of x and y-polarizations and hence shows different Kerr constants.

These results seem to limit the applicability of the ARROWmodel, which is made for isotropic
materials. Nevertheless, there still is a linear relation between the shift of the photonic bands
and the electric field squared as it is predicted by Eqs. 1 and 4. The refractive index change we
calculated above has to be seen as an effective value and consequently the Kerr constant has to be
seen this way. The merit of these values is that with them we are able to predict how the left edge
of a specific transmission window shifts for a given electric field.

5. Conclusion

In this work, we infiltrated a photonic crystal fiber with a liquid crystalline blue phase and
electrically induced a birefringence of the blue phase with an optical axis perpendicular to the
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fiber axis. Consequently, the transmission spectrum of the fiber became strongly polarization
dependent. For the polarization of light perpendicular to the optical axis, almost no change in
transmission windows was found. However, the transmission windows for light polarized parallel
to the optical axis shifted to longer wavelengths. In the latter case, the change was strongly
asymmetric. While the long wavelength edge remained constant, the short wavelength edge
shifted proportional to the square of the electric field.

By band gap analysis of the photonic cladding, we found that the photonic bands of the short
wavelength edge were mainly polarized along the optical axis. The increased refractive index had
therefore strong effect on these bands, which led to a red-shift. However, the long wavelength
edge was formed by bands mainly polarized perpendicular to the optical axis. They did therefore
not shift. Nevertheless, these photonic bands still carried sufficient polarization to stop the core
mode.
We then used the shift of the short wavelength edge to determine the change in refractive

index. We discovered that the induced shift is indeed proportional to the electric field squared as
expected of a Kerr medium. From this, we calculated the Kerr constants, which are lower than
the Kerr constant measured in the bulk material. This can be attributed to the mixed polarization
of the photonic bands.

Blue phases offer the unique opportunity to study a uniaxial medium within a photonic crystal
fiber where the optical axis is distinct from the fiber axis. This provides a new application for the
electrooptic effects observed in blue phases.

Appendix A: Electric field inside inclusions

Equation (5) describes the electric field inside the inclusion. This field is different from the
electric field within the surrounding material due to the difference in permittivity [31]. The field
can be approximated by the limit of a single inclusion which is embedded in the middle of an
otherwise perfect plate capacitor. This is possible because the relative permittivities of silica [32]
and the optical adhesive are very similar (≈ 3.9). Then, by performing a multipole expansion [31],
it can be shown that the external field Eex = V/D and the inclusion field are related by Eq. (5).
For the given parameters this results in Eincl ≈ 0.25Eex. It is important to note, that within this
approximation the field inside the inclusion is homogeneous. However, as there are not one but
multiple inclusions close to each other inside the silica surrounding, there will be deviations both
inside a specific inclusion and also when comparing different inclusions. The variations can be
up to 15 %. The variations are not considered in the calculations of photonic band or the Kerr
constant.
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Fig. 9. (a) Unit cell of the hexagonal photonic crystal cladding in k-space. (b) A quarter of
the first Brillouin zone for an uniaxial lattice with optical axis along the y direction. The
points represent the discretization of the k-vectors for N nodes per edge. The different node
colors indicate the weighting of the node due to symmetry arguments.
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Appendix B: Band gap simulations

The calculations of the photonic band gaps in Fig. 6(c) and 6(d) were carried out with the finite
element software COMSOL Multiphysics [33]. The dispersion of silica [34] and the blue phase
[cf. inset in Fig. 7] have been taken into account. Due to the anisotropy of the blue phase material
under voltage, it is necessary to simulate a quarter of the hexagonal unit cell [35] instead of one
twelfth in the isotropic case [Fig. 9(a)]. Fig. 9(b) shows the reduced unit cell. The discretization
of the k-vectors is characterized by N nodes per edge leading to (3N − 1)N/2 in total. For the
simulations we used N = 7 corresponding to overall 70 points in k-space. Each node has to be
weighted [36, 37] to compensate for overcounting of certain nodes. The weighting is indicated in
Fig. 9(b).
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