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Abstract. Genetic programming (GP) has developed to the point where
it is a credible candidate for the ‘black box’ modeling of real systems.
Wider application, however, could greatly benefit from its seamless em-
bedding in conventional optimization schemes, which are most efficiently
carried out using gradient-based methods. This paper describes the de-
velopment of a method to automatically differentiate GP trees using a
series of tree transformation rules; the resulting method can be applied
an unlimited number of times to obtain higher derivatives of the func-
tion approximated by the original, trained GP tree. We demonstrate
the utility of our method using a number of illustrative gradient-based
optimizations that embed GP models.

Keywords: Genetic programming · Automatic differentiation · Opti-
mization · Real-world applications.

1 Introduction

It is now widely accepted that genetic programming (GP) is capable of compet-
itive application across a range of sciences and engineering [5]. One area that
has not hitherto received much attention is the important topic of integration of
GP into conventional optimization-based applications, such as control, that typ-
ically require the computation of derivatives for fast solution. Izzo et al [8] have
recently listed a range of of diverse applications of GP that require derivatives
for effective solution.

In particular, our specific interest is model predictive control (MPC) [3] where
a dynamic predictive model of system behavior is used to optimize future inputs
over a so-called prediction horizon extending many time steps into the future.
MPC is especially suited to systems where there is a significant time lag between
application of an input and an observable response, and has been widely used in
the process industries although interest is growing for the indoor environmen-
tal control of buildings [14]. One of the major problems—and indeed costs—of
MPC is the economic acquisition of a suitable predictive model, and GP, as a
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machine learning technique, is particularly attractive for this purpose. Hitherto,
however, the ability to integrate GP predictive models into the fast, gradient-
based optimizers conventionally used in MPC has been a significant barrier to
the deployment of GP.

Potentially, so-called derivative-free conventional optimizers [4] can avoid the
need for explicit derivatives although the solution times are invariably longer
than for techniques explicitly based on derivatives; further, derivative-free solvers
often internally approximate derivatives, a limitation we will expand upon later
in this paper. In essence, the derivatives of the objective function to be optimized
usually have to implicitly exist, at least up to second order.

Mousavi Astarabadi and Ebadzadeh [12] have calculated tree derivatives us-
ing finite difference approximations, but there is a well-known trade-off here
between making the perturbation on the variable of differentiation too small
and the accuracy being dominated by round-off errors, and making it too big
and suffering large truncation errors. Unfortunately, the optimal value of per-
turbation typically varies across the domain.

Finally, stochastic search methods, such as differential evolution, particle
swarm optimization, etc. strictly require no gradient information but tend to be
too slow for real-time applications, such as control [6].

To expand the range of applications of GP, a means of exploiting fast,
gradient-based optimizers is therefore highly desirable. This, in turn, requires
a straightforward and reliable method of calculating the derivatives of GP trees,
and this is the key contribution of the present paper.

Izzo et al. [8] have recently reported the application of truncated Taylor poly-
nomials in the context of Cartesian genetic programming to calculate derivatives.
These authors concede, however, that the “necessary algebraic manipulations”
are “non trivial”. The approach we present here, on the other hand, is much
simpler. Indeed, we believe all of the concepts will be very familiar to the GP
community.

In this paper, we describe a set of tree transformations that generate the
partial derivative (with respect to a given variable) of a real function described
by conventional tree-based GP. In Section 2, we describe the problem formu-
lation, and we derive the necessary tree transformations in Section 3. We give
practical implementation details in Section 4. Section 5 describes two examples
of the application of our tree-differentiation technique for embedding GP within
conventional, gradient-based optimizations. Possible future work, including ex-
tensions, is discussed in Section 6; Section 7 concludes the paper.

2 Problem Statement

A very general requirement for a real function—be it implemented by a GP or
otherwise—to be differentiable is for it to be analytic. (More pedantically, an ana-
lytic function is infinitely differentiable [15].) Since GP tree mappings (RN → R)
are simply compositions of the internal function nodes, and a composition of ana-
lytic functions is itself analytic [15], it follows that a GP tree will be analytic, and
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therefore (infinitely) differentiable, if each of the function nodes is analytic. At
this stage, the principal challenge becomes apparent. The commonly-used set of
function nodes in GP comprises: addition (‘+’), subtraction (‘−’), multiplication
(‘×’) and some version of protected division (PD) defined by, for example:

f

g

{

f
g g 6= 0

1 g = 0
(1)

where f, g are the values returned by the two subtrees of the PD operator.

Although ‘+’, ‘−’ and ‘×’ are everywhere analytic, protected division is not.
In particular, when g = 0 the limit defining the derivative does not exist. While
GP systems using only a function set of {+,−,×} have been explored, the ability
to divide some quantity into ‘parts’ appears to give greater expressiveness [10].
(More generally, Keijzer [10] criticizes the use of ‘protected’ operators in GP.)
Fortunately, an elegant solution to the above problem has already been reported
by Ni et al. [13] who replaced the protected division operator with an analytic
quotient defined by

AQ(f, g) =
f

√

1 + g2

that tends asymptotically to the quotient value f/|g| when |g| ≫ 1, but retains
analyticity at g = 0. Although the principal motivation in [13] was to avoid
problems with the PD operator returning huge values when |g| was very small
but strictly> 0, the differentiability of the operator was remarked upon in [13]. In
consequence, in this work we replace the conventional protected division operator
with the analytic quotient (AQ) operator.

3 Theory

Since the fundamental requirement for all function nodes to be analytic can now
be met with a function set of {+,−,×, AQ} supplemented by a leaf node set
of {xi ∈ R ∀i ∈ [1 . . . n], and constants ∈ R} where n is the dimensionality of
the input vector x, an arbitrary GP tree can be differentiated using repeated,
recursive application of the standard chain rule of calculus for the differentiation
of a composition of functions. Thus, where F (x) = h(k(x)):

F ′(x) = h′(k(x)).k′(x) (2)

3.1 Internal Function Nodes

Differentiation of each of the internal function nodes follows straightforwardly
from (2), and the chain rule and can be conveniently formulated as a transfor-
mation of the elements of the GP tree.
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Addition/Subtraction The derivative can be written as:

∂(f ± g)

∂xi
= f ′ ± g′ (3)

which can be represented by the simple tree transformation in Fig. 1.

Fig. 1. Addition/subtraction transformation

Multiplication Similarly, the derivative can be written as:

∂(fg)

∂xi
= f ′g + fg′ (4)

which is represented by the tree transformation shown in Fig. 2.

Analytic Quotient Finally, the derivative of the analytic quotient can be written
as (5), which can be rearranged as (6) in the form of other analytic quotient
functions:

∂ AQ(f, g)

∂xi
= f ′(1 + g2)−1/2 − fgg′(1 + g2)−3/2 (5)

=
f ′

√

1 + g2
− f

√

1 + g2
.

g
√

1 + g2
.

g′
√

1 + g2
(6)

The practical choice between (5) and the less compact (6) is discussed further
in Section 4, but for the present, the tree transformation corresponding to (6) is
shown in Fig. 3.

3.2 Terminal Nodes

Any given GP tree can be differentiated by repeated, recursive application of the
transformations shown above. Finally, however, the inputs to the transformed
(differentiated) trees will reach the leaves of the tree. For completeness, the
derivative of a variable is given by (7), and for a constant leaf node by (8).
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Fig. 2. Multiplication transformation

∂xi

∂xj
=

{

1 i = j

0 i 6= j
(7)

∂c

∂xi
= 0 ∀i ∈ [1 . . . n] (8)

4 Implementation

Since trees are differentiated by application of the chain rule of calculus, our
implementation is correct by construction.

With reference to Section 3, it is clear that multiplication, and especially the
AQ operator, result in significant growth in tree size compared to the original,
undifferentiated tree. One AQ node in the original tree transforms to (at least)
seven nodes in the differentiated tree. This tree growth is a direct consequence of
the chain rule of calculus. (For reference, the derivative of a regular (unprotected)
quotient operation would transform to five nodes.) The increased complexity of
derivatives is well-recognized in numerical analysis, and many derivative-based
solvers include either automatic differentiation libraries to generate derivatives
from instrumented source code [1], or additional utilities to roughly check hand-
generated derivatives using finite difference approximations.
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Fig. 3. Analytic quotient transformation

In the context of the present work, the tree growth from differentiation poses
a design choice: should we use the same function set and express the derivative
of the AQ operator using the existing function set at the inevitable cost of some
tree growth? Or should we augment the function set with a new type of 4-ary
function node that embeds the derivative of AQ as a single node and takes f , g,
∂f/∂xi and ∂g/∂xi as inputs? This latter option would lead to less tree growth
since the differentiated AQ node would be replaced by a single derivative node.

We have chosen the former route since expressing the derivative tree using
only the original function set allows repeated application of the tree differentia-
tion operation without limit to form higher derivatives; for example, the Hessian
matrix, the elements of which comprise second-derivatives such as ∂2f/∂xi∂xj ,
is often invaluable in optimization problems. The alternative implementation of
expressing an AQ derivative within the tree as a new 4-ary node would require
the addition of further, special nodes to handle the derivatives of the derivative
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of an AQ operator. Generating third and higher order derivatives would cause
further significant complications.

While we give an example later of the direct use of second-order derivatives
in optimization, at the present time we can suggest no immediate application
for third and higher-order derivatives; nonetheless, such quantities are frequently
used in mathematical analysis [15]. The ability to generate higher derivatives,
or to assure the analyticity of a GP model thus creates an enabling platform for
possible future research.

Detailed implementation was in the form of a function that takes the GP
tree as an argument together with the index in x of the variable of differenti-
ation, and returns a tree generated by application of the tree transformations
in Section 3. This newly created tree is completely independent of the original,
undifferentiated tree and can be recursively evaluated in the normal manner
to obtain the value of the derivative of the original tree at some arbitrary x.
Our initial implementation is in C++ and we reference both the original and
differentiated trees using C(++) pointers to the trees.

5 Experiments

In order to fully demonstrate the efficacy of automatically-calculated tree gradi-
ents, we present two example use cases of embedding of GP within conventional
optimization frameworks. Section 5.1 reports the use of first-derivative informa-
tion only while Section 5.2 describes the inclusion of explicit Hessian information.
Both cases would be typical of control or related applications of GP.

5.1 Gradient-based Minimization - I

As an initial demonstration, we have used the tutorial example in the docu-
mentation of the highly-regarded NLopt3 nonlinear optimization library [9], and
given in (9) and (10).

min
x∈R2

√
x2 (9)

s.t. 2x3
1 − x2 ≤ 0 and (−x1 + 1)3 − x2 ≤ 0 (10)

We selected ten evenly spaced points in both x1 and x2 to train three sep-
arate GP approximations to the objective function (9), and the two constraint
functions (10). We have used a fairly standard GP framework with a population
of 100 individuals, a hard depth limit of 8, and a fixed number of 10,000 function
evaluations per function. (The exact details are unimportant—we have deliber-
ately made no attempt to accurately learn the functions in (9,10) since our ob-
jective was not to try to reproduce the optimization results for this test problem,

3 We have used NLopt version 2.5 downloadable from https://github.com/

stevengj/nlopt/archive/v2.5.0.tar.gz
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but rather demonstrate the utility of our tree differentiation approach.) Having
(approximately) learned each of the three functions in (9,10), these trained trees
were incorporated into the NLopt example program. We used the sequential
least-squares quadratic programming (SLSQP) algorithm from NLopt [11] to
solve the optimization problem, which requires derivatives of both the objective
function and of the two constraint functions. Six separate trees implementing the
derivatives in x1,2 of each of the three functions described above were generated
at runtime, and evaluated as demanded by the SLSQP algorithm to return the
values of the derivatives. The optimization was set to terminate when the relative
error of the optimized parameters fell below 10−4, which required 27 function
evaluations; the optimal solution was obtained at the point (0.300489, 0.282026)
and an objective function minimum of 0.256948.

(In contrast, the original problem in (9,10) had an optimum at (0.3333, 0.2963),
a function minimum of 0.5443, and required 53 iterations with the same termi-
nation criterion. The differences can, of course, be explained by the fact that we
have solved an approximation of the original problem in (9,10) using GP trees.)

To judge whether our GP-generated solution was indeed a minimum, we
generated 1 million random points in a 2D square of 0.1 on a side and centered
on the solution point. We were unable to find any point in the neighborhood of
the solution that had a lower objective function and that satisfied the constraints.
We thus infer that the identified solution point is indeed a minimum (of that
modified problem).

5.2 Gradient-based Minimization - II – Using Hessian Information

As a second example, we have used our GP differentiation framework within
the Ipopt [16] large-scale interior-point algorithm for nonlinear programming
that combines line-search and trust region methods [17]. We have used Ipopt
version 3.12.12 freely downloadable from http://www.coin-or.org/download/

source/Ipopt. We have used the example problem from Ipopt’s documentation:

min
x1,x2,x3,x4∈R

x1x4(x1 + x2 + x3) + x3 (11)

s.t. x1x2x3x4 ≥ 25 (12)

x2
1 + x2

2 + x2
3 + x2

4 = 40 (13)

1 ≤ x1,2,3,4 ≤ 5 (14)

which, in turn, is a standard, constrained nonlinear benchmark problem from the
collection published by Hock and Schittkowski [7]. The problem has an optimal
solution given by: x∗ = (1.00000000, 4.74299963, 3.82114998, 1.37940829) with a
minimum objective value of 17.014017140224134.

Ipopt is an interesting application of our method because, as well as need-
ing gradient values, it requires the Hessian of the Lagrangian functional, ∇2f +
λ1∇2g1 + λ2∇2g2, where f is the objective (11), g1,2 are the two constraint
functions (13) and (14), and λ1,2 are the Lagrange multipliers. If the Hessian
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information is not explicitly available, Ipopt approximates the Hessian of La-
grangian internally with some loss of accuracy. We are thus able to explore if
our approach can produce comparable results to conventional coding of the ob-
jective and constraint functions, and their first and second derivatives.

Since both the objective and constraint functions in (11)-(14) are exactly rep-
resentable with addition and multiplication operators, we have hand-constructed
GP trees for the objective function (11) and the two constraint functions (13)
and (14) only, and verified that these trees returned identical numerical results
compared to direct C coding of the functions within floating-point round-off er-
ror. We have then embedded these hand-coded trees within the example Ipopt C
code. Rather than hand-evaluate the necessary gradients and Hessians (as was
done in the Ipopt example code), we have automatically generated these quan-
tities by application of our tree differentiation procedures. Since the gradient
vectors ∇f, g1,2 are each composed of four partial derivatives, each differentia-
tion with respect to x1−4, we generated—at runtime—a total of 4×3 = 12 trees
implementing ∇f and ∇g1,2.

Similarly, we generated the 4 × 4 Hessian matrices ∇2f and ∇2g1,2 with a
second round of applications of the procedure to∇f and∇g1,2, again at runtime.
That is, we have differentiated the derivatives. Each element of each Hessian
matrix required a separate GP tree making a total of 4× 4× 3 trees to produce
the second-order information. The generation of none of the first or second-order
derivative information required any manual intervention (other than coding the
invocations of the tree differentiations).

We then compared the GP-based optimization against the use of the hard-
coded implementation of the objective, constraints, gradient, Lagrangian, and
Hessian functions. Since manually calculating Hessian matrices is usually te-
dious and error-prone, Ipopt offers the facility to internally approximate this
quantity albeit with some loss of accuracy. We thus also used this method to
provide the second-order information within our GP-based implementation of
the optimization to compare with exact, automatic generation of the Hessian by
tree differentiation. We tried various combinations of calculating the necessary
functions and their performances are shown in Tab. 1.

The basic comparison to be made is between the first and sixth rows of
Tab. 1 since these show the results of implementing the objectives and con-
straint functions, their derivatives and Hessians using hand-coded C (id = 01),
and implementing the objective and constraint function as GP trees and then au-
tomatically generating the first and second-order derivative information at run-
time by tree differentiation (id = 06). The differences between the two objective
values obtained (using standard IEEE 754:1985 double-precision floating point
arithmetic with roughly 16-17 decimal digits) occurs in the least-significant digit
and is almost certainly due to rounding error. To summarize this sub-section,
we have demonstrated that our automatic tree differentiation procedure is able
to produce accuracies that differ from the results of hand-coded evaluation by
what we believe to be rounding error alone.
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Table 1. Results for the gradient-based minimization - II. Comparison between the
use of hand-coded (CD) functions, the use of GP trees, and the use Ipopt’s Hessian
approximation (HAP). The table shows the method of calculating: the objective func-
tion (f), constraints (g), the gradient of the objective function (∇f), the Jacobian of
the constraints (J), and the Hessian (H). The final column shows the difference in the
objective value compared to the fully hand-coded solution.

id f g ∇f J H Objective Difference

01 CD CD CD CD CD 17.014017140224134 n/a
02 GP CD CD CD CD 17.014017140224134 0
03 GP GP CD CD CD 17.014017140224137 +3× 10−15

04 GP GP GP CD CD 17.014017140224134 0
05 GP GP GP GP CD 17.014017140224137 +3× 10−15

06 GP GP GP GP GP 17.014017140224137 +3× 10−15

07 CD CD CD CD HAP 17.014017140224176 +4.2× 10−14

08 GP CD CD CD HAP 17.014017140224176 +4.2× 10−14

09 GP GP CD CD HAP 17.014017140224176 +4.2× 10−14

10 GP GP GP CD HAP 17.014017140224180 +4.6× 10−14

11 GP GP GP GP HAP 17.014017140224176 +4.2× 10−14

The first six rows of Tab. 1 show various combinations of using hand-coded
functions, derivatives and Hessians and the corresponding quantities evaluated
using GP trees. Any differences that do exist also appear due to rounding errors
rather than issues with the accuracy of the GP derivative trees.

Rows id = 07 to id = 11 show the results of using Ipopt’s internal approx-
imation of the Hessian information. The differences compared to row id = 01
are all very similar and would thus all appear dominated by the errors due to
Ipopt’s internal Hessian approximation. A noteworthy point here is that hand-
coding Hessian information is well-known to be a tedious and error-prone process
due to the increasing complexity of the derivative-of-derivative expressions. Us-
ing automatic tree differentiation, however, there is a negligible cost to exact
evaluation of the second-derivative information.

To summarize this sub-section, we have demonstrated that our automatic
tree differentiation procedure is able to produce accuracies that differ from the
results of hand-coded evaluation by what we believe to be rounding error alone.

6 Discussion and Future Work

Although the analytic quotient operator (AQ) [13] allows us to produce the
transformation in Section 3.1, it is almost certainly not the only suitable function.
Other analytic, quotient-type operators may be preferable, but the property
of AQ of being able to construct derivatives of any order without extending
the function set is very attractive for easily generating higher-order derivatives.
Consideration of other quotient options is an area for future work.
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Another area for future work is extension to additional function nodes (e.g.
circular and other transcendental functions). Extension to sine and cosine would
appear straightforward since these generate complementary derivatives. That
is, the derivative of a sine function is a cosine, and vice versa. Similarly, the
derivative of an exponential function is another exponential. The consequence is
that forming higher derivatives by repeated transformation of already-calculated
derivative trees is straightforward, and would not require extension of the GP
function set. Other functions commonly used in GP might be more problematic.

We have framed the present paper in terms of tree transformations, but auto-
matic differentiation (AD) of computer code has received considerable attention—
see [1], for example, for a review. AD is, of course, also based on the chain rule of
calculus but allows users to generate derivatives of expressions in conventional
computer code by instrumenting that code, and typically using a pre-processor
system to substitute compilable code implementing the required derivatives. The
discriminating factor between AD and the present work is that GP trees are not
usually manually programmed in conventional languages, but rather exist as
trained tree models in the computer’s memory. Our automatic differentiation
operates directly on the in-memory data structures. Nonetheless, there may be
opportunities for cross fertilization with the AD literature. In this context, Bay-
din et al. [2] have recently reviewed the links between AD and machine learning.

One major area of our future work will be to exploit GP tree derivatives
in model predictive control (MPC) [3], as set out in Section 1. Results will be
published elsewhere.

7 Conclusions

In this paper, we have introduced a series of tree transformations that can be
applied recursively to generate independent trees for the evaluation of the deriva-
tive of the function implemented by the original tree. Since the differentiated tree
can be expressed in terms of the original function set, we can apply the tree dif-
ferentiation procedure any numbers of times to produce, again independent, GP
trees, that implement higher-order derivatives.

We have demonstrated the application of our tree differentiation procedure on
two representative constrained, non-linear optimization problems. These demon-
strators involved conventional optimization in which both the objective and con-
straint functions were implemented with genetic programming trees.

The present paper thus makes an important contribution to extending the
application of genetic programming to novel, real-world problems, especially
control.
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