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Objective: We have previously shown that increased circulating interleukin-6 (IL-6)

results in enhanced CD4+ T cell signaling via signal transduction and activator of

transcription-3 (STAT3) in early rheumatoid arthritis (RA). We tested the hypothesis that

transcriptional “imprinting” of T-cells by this mechanism skews downstream effector

responses, reinforcing immune dysregulation at a critical, but targetable, disease phase.

Methods: We modeled naïve CD4+ T cell exposure to pathophysiological

concentrations of IL-6 in vitro, assessing the dynamic transcriptional and functional

consequences for downstream effector cells utilizing microarray and flow cytometry.

Fresh blood from treatment-naïve early arthritis patients was phenotyped in parallel

for comparison.

Results: T cell sensitivity to IL-6 was most marked in the naïve subset, and related

to gp130 rather than IL-6R expression. Exposure of healthy naïve CD4+ T cells to IL-6

induced the same STAT3 target genes as previously seen to discriminate RA patients

from disease controls. After TCR stimulation IL-6 pre-exposed cells exhibited enhanced

proliferative capacity, activation, and a propensity toward Th1 differentiation, compared to

non-exposed cells. An entirely analogous phenotype was observed in early RA compared

to control CD4+ T cells.

Conclusions: Sustained IL-6 exposure at a critical point in the natural history of

RA “primes” the adaptive immune system to respond aberrantly to TCR stimulation,

potentiating disease induction with implications for the optimal timing of targeted therapy.

Keywords: interleukin-6, CD4+ T cell, early rheumatoid arthritis, pathogenesis, transcriptional programming

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.01535
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.01535&domain=pdf&date_stamp=2019-07-03
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:arthur.pratt@ncl.ac.uk
https://doi.org/10.3389/fimmu.2019.01535
https://www.frontiersin.org/articles/10.3389/fimmu.2019.01535/full
http://loop.frontiersin.org/people/502041/overview
http://loop.frontiersin.org/people/682133/overview
http://loop.frontiersin.org/people/516975/overview
http://loop.frontiersin.org/people/535079/overview
http://loop.frontiersin.org/people/680151/overview
http://loop.frontiersin.org/people/22330/overview


Ridgley et al. IL-6 Programmes RA T Cells

INTRODUCTION

Rheumatoid arthritis (RA) is an inflammatory arthropathy
characterized by dysregulated adaptive immune responses, in
which cytokine networks play an increasingly appreciated
orchestrating role during disease initiation (1). We have
reported and extensively validated a gene expression signature
in circulating CD4+ T cells that discriminates early RA patients
from disease controls, and is enriched for signal transduction
and activator of transcription-3 (STAT3) regulated genes
(2–4). These data, since independently corroborated by others
(5, 6), highlight a transcriptional programme of enhanced IL-6
signaling during the earliest clinical stage of RA. Of interest, this
pathway’s activation is observed most prominently amongst anti-
citrullinated peptide autoantibody (ACPA) negative patients,
amongst whom evidence for classical autoimmunity as a basis
for disease induction has remained elusive. Determining whether
our findings reflect an antigen-independent mechanism of
disease potentiation—for example through cytokine “priming”
of CD4+ T cells—rather than a mere consequence of systemic
inflammation, could yield critical insights into pathogenesis and
novel strategies for treatment and prevention.

IL-6 signals via gp130, a ubiquitously expressed membrane
bound β receptor subunit shared by other cytokines of the IL-
6 family, coupled with an α receptor subunit IL-6R (CD126).
Surface expression of IL-6R is restricted to certain leukocyte
subsets and hepatocytes where it facilitates classical signaling,
with other cell types dependent upon a soluble form (sIL-
6R; trans-signaling) (7). Biologically divergent consequences of
classical and trans signaling are now being dissected, along
with their respective dominance in driving regulatory vs.
inflammatory responses (8). IL-6 has long been known to be
important in the induction of experimental models of disease,
including collagen-induced arthritis (CIA) and autoimmune
inflammatory arthritis (AIA), with mutations in gp130 also
resulting in autoimmune arthritis (9–12). Indeed, the efficacy
of therapeutically targeting IL-6 signaling in RA emphasizes the
relevance of this cytokine to human disease progression (12, 13).
However, IL-6 drives aberrant T cell effector function by complex
and variedmeans and those pertinent to the pathogenesis of early
RA have yet to be characterized (14, 15).

Here, we sought a deeper understanding of the consequences
of IL-6 mediated STAT3 signaling in CD4+ T cells of
early RA patients. In particular, we hypothesized that non-
specific, chronic exposure of these cells to the cytokine might,
through transcriptional imprinting, programme aberrant effector
responses following T cell receptor (TCR) activation, and so
contribute to tolerance loss and disease progression.

MATERIALS AND METHODS

Subjects
Peripheral blood was obtained from patients recruited from
the Northeast Early Arthritis Cohort (NEAC) (3) prior to
commencement of immunomodulatory treatment. Clinical
characteristics of patients recruited in addition to those
previously described from these cohorts are provided in

TABLE 1 | Clinical characteristics of early arthritis patients.

Early arthritis Early RA

“Cohort A” “Cohort B” “Cohort C”

Number of patients 26 20 14

Age; yearsa 51 (20–82) 66.5 (33–87) 65 (21–89)

Female, n (%) 15 (58) 7 (70%) 9 (64)

ESR, mm/seconda 9 (2–84) 26 (9–122) 21 (9–122)

CRP, g/La 5 (<5–65) 26.5 (4–278) 8.5 (4–150)

ACPA+, n (%) 8 (31) 55 57

RF+, n (%) 10 (39) 55 57

DAS28 (RA only)1 4.8 (1.33–8.46) 5.12 (2.49–7.83) 3.68 (2.12–6.29)

Diagnosis, n (%):

RA: 10 (38%) 20 (all) 14 (all)

Inflammatory, non-RA: 6 (24%) – –

OA/non-inflammatory: 10 (38%) – –

Distinct cohorts were recruited for measuring circulating CD4+ T-cell parameters in

distinct experiments as indicated in the text. Surface IL-6R and gp130 expression was

measured in Cohort A, CD25 expression in Cohort B and intracellular interferon-γ and

IL-17 expression following in vitro stimulation in Cohort C.
aMedian and range are presented; ESR, erythrocyte sedimentation rate; CRP, C-reactive

protein; ACPA, anti-citrullinated peptide autoantibody; RF, rheumatoid factor; DAS28,

disease activity score, 28 joints; RA, rheumatoid arthritis; OA, osteoarthritis.

Table 1. Healthy donor blood for in vitro culture and dynamic
transcriptional profiling was drawn from volunteers into citrate
vacuette tubes (Greiner Bio-One, Kremsmünster, Austria). For
functional experiments leukocyte reduction system (LRS) cones
from platelet donations were used. In relation to ex vivo
peripheral blood CD4+ T cell Ki67 measurements only, data
were similarly available from 25 drug-naïve RA patients recruited
from the Leeds Early Arthritis Clinic (LEAC), together with
48 age- and sex-matched healthy donors enrolled as previously
outlined (16). Diagnoses of RA were assigned according to
contemporaneous classification criteria (17, 18). All donors gave
written informed consent for inclusion in the study and ethical
approval was obtained from local ethics committees.

Serum IL-6 Measurement
IL-6 in patient serum at baseline was measured as
previously described (3), using electro-chemiluminescence
immunosorbance detection system (Meso Scale
Discovery, Gaithersberg, Maryland, USA) according to
manufacturer’s instructions.

Cell Subset Isolation
Naïve and memory CD4+ T cells were isolated using a
RosetteSep Human CD4+ T cell Enrichment Cocktail (Stemcell
Technologies) followed by CD45RO MicroBeads (Miltenyi
Biotech), achieving consistent median purities of 82.4 and
78.7%, respectively. For whole CD4+ T cell experiments cells
were isolated using monocyte depletion by immuno-rosetting
followed by automated magnetic bead-based positive selection
(median 99.1% purity; Stemcell Technologies). Peripheral
blood mononuclear cells (PBMCs) were isolated by density
centrifugation on Lymphoprep (Axis-Shield Diagnostics,
Dundee, UK).
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Culture of CD4+ T-Cells
Culture of 1 × 106 cells/ml freshly isolated CD4+ T-cells was
in serum-free medium alone (TexMACS, Miltenyi Biotech) or
with indicated final concentrations of IL-6 and equimolar sIL-
6R (both PeproTech EC) in a 1ml total volume (24-well plate)
or 0.5ml volume (48-well plate) for 72 h at 37◦C with 5%
CO2. Naïve CD4+ T cells were labeled with 0.5µM CFSE
(eBioscience). Cells were harvested and washed twice, to remove
IL-6/sIL-6R, before stimulation for 3–6 days with plate bound
anti-CD3 (0.2 or 0.5µg/ml; eBioscience) and 1µg/ml soluble
anti-CD28 (BioLegend). IL-6 in patient serum at baseline was
measured as previously described (3).

Th1 and Th17 Differentiation
Naïve and memory CD4+ T cells were differentiated toward
T-helper 1 (Th1) or T-helper 17 (Th17) cells, respectively,
according to a previously developed protocol (19, 20). For
Th1 cell differentiation experiments, following incubation with
serum-free medium alone vs. in the presence of IL-6/sIL-6R naïve
CD4+ T cells were cultured in a total volume of 1ml in a 24-
well plate at 1 × 106 cells/ml in Iscove’s modified Dulbecco
medium (IMDM) supplemented with 10% FCS. These cells were
then cultured with 10 IU/ml IL-2 (Proleukin, Roche, Basel,
Switzerland), 1 ng/ml IL-12 (PeproTech), 10µg/ml anti-IL-4
(BioLegend), and stimulated with anti-CD3/anti-CD28 coated
Dynabeads (Invitrogen, Carsbad, California, USA) at 1 bead:
10 cells ratio. For Th17 differentiation, memory CD4+ T cells
were cultured in a total volume of 1ml in a 24 well plate
at 1 × 106 cells/ml in IMDM supplemented with 10% serum
replacement (Invitrogen). Cells were cultured with 10 ng/ml IL-
1β (PeproTech), 10 ng/ml IL-23 (PeproTech), 10 ng/ml TGF-β
(PeproTech), and stimulated with anti-CD3/anti-CD28 coated
Dynabeads (Invitrogen) at 1 bead: 50 cells ratio. Cells were
cultured 37◦C with 5% CO2 and split or refreshed as required.
On day six beads were removed using EasySep magnet and cells
were rested in IL-2 (10 IU/ml) for 4 days.

Multiparameter Flow Cytometry
All antibodies used in this paper were mouse anti-human.
Phosflow was performed on unstimulated whole blood as
previously described (3), employing the following antibodies:
anti-CD3-Pacific Blue (UCHT1), anti-Stat3 (pY705)-Alexa Fluor
647 (4/P-STAT3; all BD Biosciences, Oxford, UK), CD45RA-
PerCP-Cy5.5 (HI100; all BD Biosciences, Oxford, UK); CD62L-
PECy7 (DREG-56; both BioLegend); anti-CD4-APC-eFluor 780
(SK3; eBioscience, Hatfield, UK); CD62L-PECy7 (DREG-56;
BioLegend). BD Phosflow Lyse/Fix and BD Phosflow PermBuffer
III (both BD Biosciences) were used as per the manufacturers’
instructions, data collected on a BD FACSCanto II (BD
Biosciences) and analyzed using FlowJo (Treestar, Ashland,
Oregon, USA) using fluorescence-minus-one (FMO) gating.

To measure constitutive IL-6 receptor expression in CD4+
T-cell subsets, whole blood was stained using CD3-BV510
(UCHT1), CD62L-PECy7 (DREG-56), gp130-PE (2E1B02;
all BioLegend), CD4-APCef780 (SK3), IL-6R-PerCPeF710
(47.797.1F2; eBioscience), and CD45RA-FITC (HI100; BD
Biosciences) before red blood cell lysis and white blood cell
fixation using BD FACS Lysing solution (BD Biosciences), as

per manufacturer’s instructions. A gating strategy, as depicted
in Supplementary Figure 1, was used to determine positive
IL-6R or gp130 staining. In brief, debris was excluded by SSC-A
vs. SSC-W and lymphocytes were gated based on SSC-A vs.
FSC-A. A plot of CD4 vs. either IL-6R or gp130 containing
all CD3 positive cells was used to determine IL-6R or gp130
positivity. This positive gate was then copied onto the relevant
cell population.

Cultured cells were stained for surface markers in FACS
buffer (PBS containing 0.5% BSA, 0.1% sodium azide and
2mM EDTA) in the presence of 4µg/ml human IgG for
30min at 4◦C; the following antibodies were used: CD4-
APCeF780 (SK3; eBioscience), CD3-BV510 (UCHT1), CD25-
PECy7 (BC96), CD40L-PE (24-31; BioLegend). Cells were
fixed with 1% formaldehyde prior to acquisition. Prior to
intracellular cytokine staining cells were cultured for 1 h
in the presence of 10 ng/ml PMA and 1µg/ml ionomycin,
before the addition of 1 mg/ml Brefeldin-A (BFA) (all Sigma
Aldrich) for 4 h. BFA-exposed cells cultured in the absence
of PMA/ionomycin were stained in parallel and used as
negative controls for gating. After staining with Zombie Aqua
viability dye (BioLegend), surface antibodies were CD3-PB
or CD3-BUV395 (UCHT1) and CD4-PerCP or CD4-BV786
(SK3; BD Biosciences); fixation and permeabilization was with
the FoxP3/transcription factor staining buffer (eBioscience)
according to manufacturer’s instructions, and intracellular
staining was with IFN-γ-FITC(4S.B3; eBioscience) and IL-17-
APC-Cy7 (BL168; BioLegend).

Constitutive intracellular levels of Ki67 were measured in
unstimulated early RA/control PBMC by staining with Zombie
Aqua viability dye (BioLegend) and then CD4-PerCP (SK3;
BD Biosciences) before fixation/permeabilization and staining
with Ki67-PE (B56; BD Biosciences) or isotype control (MOPC-
21; BD Biosciences), again using FoxP3/transcription factor
staining buffer. For measurement of constitutive surface CD25
expression, staining was with CD25 PECy7 (BC96, BioLegend),
CD3-BUV395 (UCHT1, BioLegend), and CD4-FITC (RPA-T4,
BioLegend), gated using CD3 positive, CD4 negative cells. Cells
stained for intracellular proteins were collected on a FACS
Canto II or Fortessa X20 (BD Biosciences) and analyzed using
FlowJo (Treestar, Ashland, Oregon, USA), as before. Debris was
excluded by SSC-A vs. SSC-W and live cells were gated based
on exclusion of the viability dye. CD4+ T cells were gated as
CD3+CD4+ and further examined, with further gating against
negative control cells. Proliferation was calculated using the
proliferation tool on FlowJo and reported as division index, the
average number of cell divisions a cell in the original population
has undergone.

Gene Expression of Naïve and Memory
CD4+ T Cells
RNA was extracted from naïve and memory CD4+ T-cells
at indicated experimental time-points using RNeasy Mini kit
(Qiagen), as per manufacturer’s instructions. RNAwas quantified
using a Nanodrop 1,000 UV Spectrophotometer (Thermo Fisher
Scientific) prior to generation/hybridization of cRNA to the
Illumina Human HT-12 v4.0 microarray (Illumina, San Diego,
USA). Raw data processing and further data analysis was
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performed in R software version 3.3.0, using the Bioconductor
packages. Variance-stabilizing transformation (VST) and Robust
Spline Normalization (RSN) were carried out in the lumi package
and differentially expressed genes were identified using the
moderated paired t-test implemented in the limma package,
with a fold-change of 1.5 and p < 0.05 after correction
for multiple testing using the Benjamini-Hochberg method.
Pathway analysis of differentially expressed gene lists was
carried out using Ingenuity Pathway Analysis (IPA; Qiagen).
Hypergeometric testing was carried out in order to determine
the probability of genes differentially expressed between early
RA and disease controls occurring in IL-6 exposed naïve CD4+
T cells. Expression data used in this study are available in
the Gene Expression Omnibus database (accession number
GSE131866; https://www.ncbi.nlm.nih.gov/geo).

Statistics
Additional statistical analysis was performed using GraphPad
prism 5.03 (GraphPad Software Inc). Non-parametric analysis
of variance (Friedman’s test; Dunn’s post hoc pairwise analyses),
Mann-Whitney U-tests and Wilcoxon matched pairs tests were
used for comparisons of multiple paired groups, two unpaired
groups or two paired groups, respectively. Spearman’s rank
was used for correlation analyses. P-values of <0.05 were
considered significant.

RESULTS

Amongst Circulating CD4+ T Cells of Early
Arthritis Patients, True Naïve Cells Are
Maximally Sensitive to IL-6, Reflecting
Their Increased Membrane
Gp130 Expression
Previous investigation of circulating lymphocytes from early
arthritis patients revealed constitutive pSTAT3 levels to be
higher, and correlate with paired serum IL-6 concentration
more strongly, in CD4+ T cells than in CD8+ T-cells or B-
cells (3). To extend these findings and identify a CD4+ T cell
subset most “sensitive” to circulating cytokine, we first compared
constitutive pSTAT3 levels in true naïve (TN), central memory
(CM), and effector memory (EM) CD4+ T cells [denoted
CD45RA+CD62L+, CD45RA- CD62L+ and CD45RA- CD62L-
, respectively (21)] in the same cohort of early arthritis patients
(3). We observed constitutive pSTAT3 levels to be highest, and
to correlate most strikingly with paired serum IL-6, in the TN
CD4+ T cell sub-population (Figures 1A,B). Cellular sensitivity
to IL-6 could be governed by the availability of membrane-
expressed α and/or β receptors, which may in turn reflect
cellular development (22, 23). Therefore, in fresh blood from a
newly recruited cohort of early arthritis patients (described in
Table 1, Cohort A) we compared receptor expression amongst
TN, CM, and EM CD4+ T cells. Maximal IL-6R expression was
observed on central memory cells, whereas expression of gp130
was highest on the true naïve population (median fluorescence
intensity, MFI; Figures 1C,D; analogous % positive data and
gating strategy presented in Supplementary Figures 1, 2). These

results suggest cell surface availability of gp130, rather than
IL-6R, restricts CD4+ T cell sensitivity to circulating IL-6 in
untreated early arthritis.

In vitro Exposure of Naïve CD4+ T Cells to
IL-6 Prior to TCR Stimulation Establishes a
Distinctive Dynamic Transcriptional
Programme
We and others have shown that increased circulating IL-6 levels
are present in the serum of early RA patients compared to
disease controls, and are even detectable in sera from ACPA
positive individuals yet to develop the disease (2, 3, 24, 25).
We hypothesized that sustained exposure of naïve CD4+ T
cells to IL-6 might imprint them with a distinct transcriptional
programme, whose molecular and functional consequences
following subsequent TCR ligation was relevant to disease
development. Naïve or memory CD4+ T cells freshly isolated
from healthy donors (n = 3) were cultured in serum-free
medium for 72 h with or without a pathophysiologically relevant
(0.5 ng/ml), (2, 3), final concentration of IL6 and equimolar sIL-
6R (engaging both classic and trans-signaling pathways), before
cytokine removal by washing, and then stimulation with anti-
CD3/anti-CD28 antibodies. RNA was isolated for global gene
expression analysis after 6 and 72 h of culture (time-points t1 and
t2, respectively), and again 4 h after subsequent TCR stimulation
(t3); this experimental set-up is summarized in Figure 2.

Compared with culture in medium alone, exposure of
naïve CD4+ T cells to IL-6/sIL-6R altered the expression of
565 genes by ≥1.5-fold at 6 h (t1; adjusted p < 0.05), with
only 160 genes similarly modulated amongst their memory
CD4+ T-cell counterparts (Figure 3A; gene lists provided in
Supplementary Tables 1, 2). A similar pattern was seen at
72 h (t2; 446 and 153 genes in naïve and memory CD4+
T cells, respectively; Supplementary Tables 3, 4), as well as at
4 h following subsequent removal of IL-6 and TCR stimulation
(t3; 267 vs. 34 genes; Supplementary Tables 5, 6). As further
depicted in Figure 3A, transcripts impacted in memory cells
corresponded for the most part to a subset of those impacted in
naïve cells. These data confirmed at the transcriptional level that
naïve CD4+ T cells are markedly more sensitive to sustained IL-
6 exposure, and suggested the persistence of a unique expression
programme that was maintained over time, even after removal
of the cytokine and subsequent TCR stimulation. Our remaining
experiments modeling IL-6 exposure therefore focused on naïve
cells alone.

IL-6 Transcriptional Programme Mirrors
Previously Described Early RA CD4+ T Cell
Signature and Suggests Dysregulated
Proliferative Capacity and Survival
Pathways
Scrutiny of the genes observed to be up-regulated in naïve CD4+
T cells after 6 h of IL-6 exposure (t1) compared with untreated
cells confirmed the presence of a substantial component of our
previously described 12-gene signature that discriminates early
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FIGURE 1 | (A) pSTAT-3 expression was determined in true naïve (TN; CD62L+ CD45RA+), central memory (CM; CD62L+ CD45RA-), and effector memory (EM;

CD62L- CD45RA-) CD4+ T-cells in peripheral blood of a previously described early arthritis patient cohort (3) using flow cytometry. (B) In the same cohort, the

relationship between pSTAT-3 and paired circulating interleukin (IL)-6, measured by MSD immunoassay, was assessed by Spearman correlation coefficients (rho);

gradients of best-fit lines differ significantly (analyses of covariance p < 0.001). Amongst newly-enrolled early arthritis patients (cohort A; see Table 1), surface IL-6R

expression (C) and surface gp130 expression (D) was determined in TN, CM and EM CD4+ T-cells in the peripheral blood using flow cytometry [left panels; n = 26;
**p < 0.001, ***p < 0.0001, non-parametric analysis of variance (Friedman’s) with Dunn’s post hoc pairwise analyses; associated p-value are depicted]. Exemplar

FACS plots are also shown (right panels).
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FIGURE 2 | Naïve or memory CD4+ T cells were isolated from 3 healthy donors and cultured with 0.5 ng/ml IL-6 and equimolar sIL-6R for 72 h prior to washing and

stimulation with 0.2µg/ml anti-CD3 and 1µg/ml anti-CD28 for 4 h. RNA was extracted at baseline (t0), after 6 or 72 h exposure to IL-6 (t1, t2) and 4 h post-TCR

stimulation (t3) as depicted by the red arrows.

FIGURE 3 | (A) Venn diagrams showing the number of differentially expressed genes between untreated and IL-6 pre-exposed naïve and memory CD4+ T cells

isolated from 3 healthy donors at t1–t3 using a moderated paired t-test with fold change of 1.5 and Benjamini-Hochberg adjusted p-value of <0.05. (B) Dynamic

profiles of genes significantly dysregulated at indicated time-points amongst naïve CD4+ T-cells. Fold- expression in IL-6 exposed cells is depicted relative to that in

non-exposed cells at each time-point (FC > 1.5, corrected p < 0.05 for inclusion). Genes previously observed to be differentially expressed (DE) in early RA (eRA) are

indicated (heavy lines), and specific STAT-3 targets labeled (solid lines), FC, fold-change in expression, see text.
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RA patients from disease controls, including genes known to be
regulated by STAT-3 (2, 4) (Figure 3B). Induction of these STAT-
3-regulated genes, including BCL3, PIM1, SOCS3, SBNO2, and
MUC1, was achieved or maintained after 72 h of IL-6 exposure
(t2; Figure 3B). Indeed, following this sustained in vitro IL-6
exposure, dysregulated genes overlapped more than could be
expected by chance with an extended list of 96 genes differentially
expressed between unstimulated cells of early RA patients and
controls [Pratt et al. (2)]. Supplementary Gene List 1; p= 3.42×
10−14 at t2. These data strongly support the biological relevance
of the transcriptional programme imprinted in naïve CD4+ T
cells by IL-6 exposure in our in vitromodel.

We next used pathway analysis to examine the potential
molecular consequences of sustained naïve CD4+ T cell
IL-6 exposure on effector function following subsequent
TCR-stimulation. We focused on the list of 267 genes
differentially expressed between untreated and IL-6 pre-
exposed cells 4 h after cytokine removal and TCR stimulation,
(t3; Supplementary Table 5). An over-representation of genes
involved in biological functions associated with increased cell
growth and proliferation, cell movement, cell development,
and cell death and survival was seen. This is consistent
with the capacity of IL-6 to imprint a molecular programme
amongst naïve CD4+ T cells that mediates hyper-proliferative
effector function.

Hyper-Proliferative, Activated Effector
Phenotype Is a Confirmed Consequence of
Prior Naïve CD4+ T Cell IL-6 Exposure,
Along With Th1 Differentiation Propensity
We carried out functional studies to investigate whether the
effector phenotype of stimulated CD4+ T cells differed following
exposure to IL-6, and whether it could be explained by the
dynamic transcriptional programme described above. CFSE
labeling experiments, in which naïve CD4+ T cells were exposed
to a range of IL-6 concentrations in our in vitro model, before
being washed to remove cytokines and stimulated via the
TCR, demonstrated a dose-dependent increase in proliferative
capacity at 6 days (Figure 4A). This increase in proliferation
is significant at the pathophysiologically relevant 0.5 ng/ml IL-
6 pre-exposure concentration used in the expression-profiling
experiments, being recapitulated when using intracellular Ki67
as an indicator of the proportion of cycling cells (Figure 4B).
Further phenotyping of stimulated cells showed prior exposure
to IL-6 and subsequent cytokine removal/TCR stimulation also
enhanced expression of the activation markers CD25 and CD40L
(Figures 4C,D). In the light of reported roles for IL-6 (14), we
anticipated that sustained, prior exposure to it would result in
altered T-helper cell differentiation even if the cytokine was
absent during TCR stimulation. This was shown to be the case
when naive CD4+ T cells were stimulated under Th1-skewing
conditions following prior exposure to IL-6 and eqimolar sIL-
6R, with increased IFN-γ production seen (Figures 4E,F). In
contrast, when IL-6/sIL-6R pre-exposed memory CD4+ T cells
were stimulated under Th17-skewing conditions reduced IL-17
production was observed (Figures 4G,H).

These findings suggest that pre-exposure of naïve CD4+
T cells to IL-6 results in an activated, hyper-proliferative effector
cell phenotype with a propensity for Th1-skewing.

Effector Phenotype of IL-6 Primed CD4+ T
Cells in vitro Is Recapitulated in Early RA
We sought parallels in effector phenotype between “IL-6 primed”
effector CD4+ T cells, assessed in our in vitro model of prior
IL-6 exposure, and ex vivo CD4+ T cells from drug-naïve early
RA patients. Used as a marker for proliferative capacity, Ki67
was found to be significantly up-regulated in CD4+ T cells of
a previously described early RA patient cohort (16) compared
with healthy donors (Figure 5A). Moreover, a higher proportion
of CD4+ T cells expressed CD25 amongst newly recruited
early RA patients (n = 20; characteristics in Table 1; Cohort B)
compared with 16 healthy donors, Figure 5B. Finally, compared
with nine healthy donors a higher proportion of early RA patient
CD4+ T cells produced IFN-γ following ex vivo TCR stimulation
(Figure 5C), with no comparable increase in IL-17 production
(Figure 5D; n= 14; patient characteristics in Table 1; Cohort C).
Clear parallels may therefore be drawn between the functional
profile of ex vivo CD4+ T cells of early RA patients and those
of healthy donors subjected to sustained IL-6 exposure prior
to stimulation.

DISCUSSION

In the current investigation we have extended and built upon
our previous findings (2–4) highlighting a potential mechanism
via which IL-6 mediated transcriptional imprinting of CD4+
T cells in the earliest stages of RA may programme effector
responses of pathophysiological relevance. Several observations
of interest arise.

First, we showed that naive CD4+ T cells are more
sensitive than memory cells to circulating IL-6 at the level
of STAT-3 phosphorylation and its downstream transcriptional
consequences. We demonstrated that this was particularly the
case for the CD45RA+CD62L+ TN sub-population (18), within
which surface expression of the cytokine’s β-receptor subunit
gp130 (but not it’s α-receptor counterpart IL-6R) is also maximal.
By contrast, CD45RA-CD62L+ CM CD4+ T cells (whose
relative surface-expression of receptor subunits was inverted)
displayed diminished sensitivity to circulating IL-6. On one
level, these observations indicate that the expression of IL-6
α- and β-receptor subunits is reciprocally linked to the CD45
isoform-defined “antigen experience” of T-cells that express
lymph node-homing receptors—adding important nuance to
previous descriptions in human populations (22, 26). On another,
having previously observed that circulating sIL-6R is always
present at molar concentrations well in excess of corresponding
IL-6 in early arthritis sera (median 60 ng/ml) (3), we interpret
the fact that surface gp130 apparently acts as a “gate-keeper”
with respect to STAT-3 signaling on CD4+ T cells to implicate
trans (rather than classical) signaling as its preferential mediator.
Our data thereby support emerging evidence for the importance
of trans IL-6 signaling in the promotion of immune-mediated
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FIGURE 4 | (A) Naïve CD4+ T-cells isolated from 6 healthy donors display increased division index after 6 days anti-CD3/CD28 stimulation following prior exposure to

increasing concentrations of IL-6. (B) CD4+ T cells isolated from healthy donors display increased Ki67 expression after 3 days anti-CD3/CD28 stimulation following

prior exposure to 0.5ng/ml IL-6. Expression of CD25 (C) and CD40L (D) is increased in naïve CD4+ T-cells after 6 days anti-CD3/CD28 stimulation following prior

exposure to 0.5 ng/ml compared to naïve CD4+ T-cells with no prior exposure to IL-6. (E,F) Increased level of IFN-γ producing cells from naïve CD4+ T cells

differentiated toward Th1 following exposure to 0.5 ng/ml IL-6 and equimolar sIL-6R prior to differentiation. (G,H) Decreased level of IL-17 producing cells from memory

CD4+ T cells differentiated toward Th17 following exposure to 0.5 ng/ml IL-6 and equimolar sIL-6R prior to differentiation. N = 6; *p < 0.05, non-parametric analysis

of variance (Friedman’s) with Dunn’s post hoc pairwise analyses (A) and Wilcoxon matched-pairs signed rank test (B–D,F,H); associated p-values are depicted.
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FIGURE 5 | (A) PBMC were isolated form peripheral blood of healthy controls (HC) and early drug-naïve RA patients (eRA). Expression of Ki67 in CD4+ T cells was

assessed in a previously described cohort (16) by flow cytometry. (B) Expression of CD25 in CD4+ T cells from 16 healthy controls and 20 eRA patients in cohort B

was assessed by flow cytometry. (C,D) CD4+ T cells were isolated from 9 healthy controls and 14 eRA patients in cohort C, and stimulated for 6 days with 0.5µg/ml

anti-CD3 and 1µg/ml anti-CD28; IFN-γ (C) or IL-17 (D) were assessed by flow cytometry. **p < 0.001, ***p < 0.0001; Mann Whitney test.

inflammatory pathology (23), including during the earliest
stages of RA.

Next, using a model ex vivo system to explore the
consequences of human naïve CD4+ T cell exposure to
sustained IL-6 signaling, we observed an induced transcriptional
programme with striking similarity to a previously described
molecular signature discriminatory for early RA (2, 4). An
enrichment of transcripts functionally associated with cell
survival and proliferation could be readily discerned amongst
genes dynamically regulated as a consequence of IL-6/sIL-
6R pre-exposure at pathophysiological concentrations, and a
correspondingly enhanced downstream proliferative capacity
was confirmed, as well as an increased capacity for Th1
differentiation. In our model, active removal of cytokine
prior to polyclonal TCR activation tested the possibility that
this transcriptional imprint—rather than the ongoing presence
of IL-6 during stimulation itself—influenced downstream
effector function. Our findings indicate that chronic cytokine
“priming” of naïve CD4+ T cells in the circulation, which
frequently precedes the clinical onset of RA (24), could indeed
programme increased proliferative capacity and propensity for
Th1-skewing upon subsequent antigen encounter, even when
this occurs in tissue where IL-6 may no longer dominate.
The parallel observation of increased cell-cycle-commitment
amongst circulating CD4+ T cells of untreated RA patients,
together with their enhanced IFN-γ production in response
to ex vivo polyclonal stimulation, appears consistent with our
model of cytokine-priming. Contrasting reported roles of IL-6
in guiding CD4+ T cell differentiation—including in relation

to Th1/Th17 balance (27, 28), —may instead depend upon
continuous availability of the cytokine during TCR stimulation
and the presence of other mediators such as TGF-β (29), neither
of which were applicable in our “reductionist” experiments.

Approaches for targeting IL-6 that form current RA
management guidelines (30, 31) draw primarily upon its
long-established credentials as a pro-inflammatory mediator
of established disease (32). An increasingly sophisticated
appreciation of its complex biology (7), together with growing
evidence for its uniquely important role in early disease (1, 33)
now warrants a reappraisal of therapeutic strategy. Our work
may inform this process. For example, notwithstanding any
putative evolutionary advantage conferred by cytokine “priming”
of naïve CD4+ T cells in the context of infection (34),
even temporary IL-6 signal-blockade during the preclinical
phase of RA—conceivably tailored to target the trans pathway
specifically (35), —could reverse transcriptional imprinting
in a time-critical manner and favorably augment subsequent
disease progression in an identifiable subgroup of patients.
Whilst speculative, this hypothesis is already testable in
the clinic, with potential benefits for patients and health
economies alike.
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