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Highlights
Cellular stress response pathways,

such as the heat shock response

and unfolded protein responses in

the endoplasmic reticulum and

mitochondria, are regulated cell-

non-autonomously via intercellular

signaling processes.

Immune signals can be compo-

nents of the expanded cell-non-

autonomous proteostasis network

that activate protein quality control

mechanisms from one cell to

another.

Transcellular chaperone signaling

is a systemic proteostasis mecha-

nism that requires transcellular

signaling molecules such as neuro-

transmitters, neuropeptides, and

immune effectors for the intercel-

lular activation of protective chap-

erone expression.

The cell-non-autonomous co-ordi-

nation of proteostasis and immune

responses is implicated in human

pathological conditions including

cancer.
Stress response pathways regulate proteostasis and mitigate macromolecular damage to pro-

mote long-term cellular health. Intercellular signaling is an essential layer of systemic proteosta-

sis in an organism and is facilitated via transcellular signaling molecules that orchestrate the acti-

vation of stress responses across tissues and organs. Accumulating evidence indicates that

components of the immune response act as signaling factors that regulate the cell-non-autono-

mous proteostasis network. Here, we review emergent advances in our understanding of cell-

non-autonomous regulators of proteostasis networks in multicellular settings, from the model

organism, Caenorhabditis elegans, to humans. We further discuss how innate immune responses

can be players of the organismal proteostasis network and discuss how both are linked in cancer.

The Cellular and Organismal Proteostasis Network

The ability to maintain homeostasis in a dynamic environment is one of the most fundamental aspects

of survival for all organisms. Each individual cell is a site of constant activity possessing rapid turnover

of RNA, proteins, and other cellular components. As most cellular activities are performed by pro-

teins, the maintenance of proteostasis (see Glossary) is a high priority. Because the function of

each protein is determined by its structure, a functional proteome relies heavily on molecular chap-

erones, important components of the proteostasis network (PN) [1,2]. Chaperones are vital for

cellular and organismal physiology as they form core constituents of the translational machinery by

assisting in co-translational folding at the ribosome [3]. Because of their importance for the PN,

the ‘human chaperome’ comprises a vast network of 330 chaperone components, consisting of

distinct gene families with different functions toward substrate proteins [4,5]. Many chaperones are

upregulated by robust stress response mechanisms to counteract protein misfolding and cellular

damage imposed by proteotoxic stresses; such stresses include heat, oxidative stress, and patho-

genic infections [6–8]. Another important aspect of the PN is the removal of misfolded or aggregated

proteins by proteolytic degradation. This is accomplished by two major pathways: the ubiquitin pro-

teasome system (UPS) and autophagy [9]. While the UPS is mainly responsible for targeting individual

proteins to the proteasome, autophagy contributes to the clearance of large aggregates [9]. The UPS

also interfaces with protein synthesis to remove defective nascent chains as part of the ribosomal

quality-control pathways [10].

With the increasing complexity of multicellular organisms, regulation of stress responses and other

protein quality control mechanisms relies on intercellular signaling pathways to systemically coordi-

nate protein quality control processes across tissues and organs. This requires differential activation

of appropriate tissue-specific PN components, as different cell types and tissues are characterized by

their specific proteomes and different PN requirements [4,11,12]. Transcellular activation of stress re-

sponses is achieved by endo- and paracrine signaling pathways including hormones, cytokines, and

other secreted peptides, as well as long-range neuroendocrine signaling mechanisms that are medi-

ated via neurotransmitters and neuropeptides to induce protective transcriptional responses from

one tissue to another [13–17].

The idea that cells and tissues experiencing proteotoxic stress communicate and transmit stress to

other tissues is highly reminiscent of danger signals that activate immune defense responses across

different cells [18] (Box 1). It also raises the question of whether intercellular immune signals used in

the immune response could function as signaling components to mediate systemic proteostasis
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Glossary
Cell-autonomous: cellular process
initiated within and affecting a
single cell.
Cell-non-autonomous: cellular
process initiated within one cell
that affects other cells via inter-
cellular signalling processes.
Exosomes: lipid vesicles pro-
duced inside intracellular endo-
somes. Upon fusion of the endo-
some with the cell membrane,
exosomes within the endosomal
lumen are released from the cell
as a method of cell–cell signalling.
Heat shock regulatory element:
DNA consensus sequence
(nGAAnnTTCn) in the promoter of
heat shock factor 1 (Hsf1) –
responsive genes, leading to
transcription of heat shock
response genes.
Heat shock response (HSR):
cytosolic stress response to con-
ditions that adversely affect pro-
tein structure or function, such as
extreme temperature. The HSR is
mediated by Hsf1 and promotes
increased levels of molecular
chaperones in order to maintain
normal protein function under
these conditions.
Immune peptides: proteins such
as antimicrobial peptides that
mediate immune responses.
Innate immune response: im-
mune mechanisms that are
nonspecific rather than targeted
to a particular invading organism,
enabling a fast but generalized
response to infection.
Intracellular pathogen response:
a C. elegans transcriptional im-
mune response occurring upon
infection with intracellular patho-
gens such as Nematocida parisii.
Mitogen Activated Protein Ki-
nase (MAPK) pathways: kinase
signalling cascades that are acti-
vated downstream of cell surface

Box 1. Linking Stress Response and Immune Response Mechanisms: Of DAMPS, Extracellular Chaper-
ones, and Cytokines

Stress responses and immune responses are different, yet share striking similarities. While immune responses

are specifically designed to target foreign molecules and pathogens in an organism, cellular stress response

mechanisms generally act to promote and maintain proteostasis in response to environmental stress or chronic

intracellular stress conditions that challenge the integrity of the cellular proteome. The fact that both are con-

nected and more closely related than they first appeared was recognized in the 1990s by several observations.

For example, cells exposed to heat shock prior to pathogenic infection are protected against the conse-

quences of pathogenic infection, due to increased levels of the heat-inducible Hsp72 chaperone [133]. Later

on, the discovery that HSPs such as Hsp70 and Hsp60 also exist extracellularly [134,135] led to the realization

that HSPs are also modulators of the immune system by regulating the production and secretion of immuno-

regulatory cytokines [86,87,131]. Cytokines are a large group of small proteins facilitating paracrine and auto-

crine intercellular signalling processes that have been associated with immunity and inflammation [136]. They

are induced by PAMPs as a first line of response to pathogenic microbial infections. In 2002, Polly Matzinger

described the concept of danger signals in the immune response as a mechanism to respond to danger mol-

ecules such as free radicals, nucleotides, pathogens, and HSPs among many others [18]. This concept was then

merged with the concept of PAMPs to result in the acronym DAMPs: damage-associated molecular patterns

[137]. eHSPs can act as DAMPs and so function as signalling molecules that regulate the production and secre-

tion of cytokines in response to pathogenic infection and inflammation. It is now well established that eHSPs

function as inducers of proinflammatory cytokine production [138], and, conversely, molecular chaperone

expression can be upregulated by cytokines in response to an infection [116]. For example, eHsp70 stimulates

macrophage proinflammatory cytokine synthesis [93], whereas exposure of cardiomyocytes to cytokines pro-

motes expression of Hsp70 [139]. Thus, cytokines and eHSPs appear to be the interface where intercellular re-

sponses relevant for proteostasis and innate immunity converge.
across tissues. Indeed, both immune responses and stress response pathways are tightly linked and

can be activated by either proteotoxic stress or pathogen infection to provide cellular protection – a

concept that was recognized early on in the field (Box 1) [19–21]. These intercellular protection mech-

anisms come at a cost, however. In cancer, both immune and stress responses are hijacked to pro-

mote survival of cells in the stressful tumor microenvironment [22–26].

In this review, we first highlight how canonical stress responses are regulated via cell-non-auton-

omous signaling pathways. Because the majority of these findings were discovered using

Caenorhabditis elegans, we provide a particular emphasis on this model organism when

describing the distinct systemic stress response pathways and their related endocrine signaling

molecules. We then characterize innate immune response pathways in both vertebrates and inver-

tebrates and connect them to proteostasis, by exploring systemic stress signaling pathways and

how molecular chaperones are involved in the innate immune response. Vice versa, we also

discuss how immune effectors, such as cytokines in mammals and potential secreted immune

peptides in C. elegans could act as regulators of systemic proteostasis. Finally, we describe

how cancer cells connect systemic stress signaling with immune responses to promote their sur-

vival at the expense of the host.

receptors and communicated to
intracellular components, leading
to changes in gene expression or
protein function related to cell
survival or proliferation.
Molecular chaperones: proteins
that mediate the folding or re-
folding of other proteins into
functional structural
conformations.
Proteome: entity of all proteins at
the cellular or organismal level.
For example, the proteome of a
cell would be all proteins within
that cell.
Regulation of Stress Response Pathways in a Systemic Manner: The Search for the Cell-

Non-autonomous Stress Signal

Heat Shock Response in Systemic Stress Signaling

The heat shock response (HSR) is arguably one of the most well-characterized stress responses and is

activated by misfolded proteins in the cytosol or nucleus [27,28]. The eukaryotic HSR is coordinated

by the highly conserved transcription factor heat shock factor (Hsf)1, which, under basal conditions, is

maintained in an inactive form in the cytosol through post-translational modifications and interaction

with heat shock proteins (HSPs) including Hsp90 and Hsp70 [29]. Upon proteotoxic stress, these chap-

erones preferentially bind tomisfolded proteins and dissociate fromHsf1, enabling it to trimerize and

translocate into the nucleus [30,31]. Nuclear Hsf1 trimers then bind heat shock regulatory elements in

DNA [28], promoting rapid upregulation of HSR genes including Hsp70, increased protein folding,
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Proteostasis: protein homeosta-
sis, or the maintenance of a func-
tional proteome. This includes
protein synthesis, folding, refold-
ing, and degradation, in order to
promote normal protein function,
prevent misfolding and as well
clear the cell from irreversibly
misfolded or aggregated
proteins.
Proteostasis network (PN):
network of cellular components
that maintains proteostasis. This
includes molecular chaperones,
cochaperones, and elements of
the proteasome system.
Proteotoxic stresses: conditions
that challenge proteostasis by
promoting increased occurrence
of damaged or misfolded pro-
teins, such as extreme tempera-
ture, oxidative stress, or chronic
expression of aggregation-prone
disease proteins.
Transcellular activation: cell-non-
autonomous activation of a
cellular process.
Transcellular chaperone signal-
ling (TCS): cell-non-autonomous
regulation of chaperone protein
and a return to proteostasis [30]. Once the stress is resolved, excess Hsp70 exerts negative feedback

on Hsf1, which in combination with various post-translational modifications returns the system to its

original state [32].

Evidence for the existence of a cell-non-autonomous HSR began to emerge as early as the 1990s

with the demonstration of neuroendocrine activation of the adrenal HSR in rats upon behavioral

stress [33]. This was followed by numerous studies of thermolocomotion in the nematode

C. elegans, which have provided further insight into neuronal regulation of the organismal HSR

[13,34–39]. C. elegans thermosensation is primarily mediated by a pair of amphid finger (AFD)

neurons and their postsynaptic amphid Y (AIY) interneurons in response to temperature changes

[34]. Briefly, in AFD neurons, the transmembrane guanylyl cyclases GCY-8, GCY-18, and GCY-23

are activated by increasing temperatures, enabling activation of the cGMP-gated ion channels

TAX-2 and TAX-4 and subsequent generation of Ca2+ gradients [37,39]. The postsynaptic AIY in-

terneurons signal via the LIM homeobox protein TTX-3 to motor neurons innervating the body

wall muscle and promotes movement of the organism towards areas of previous cultivation tem-

peratures [38]. However, this thermosensory neural circuit has an additional function: activation of

the organismal HSR. Mutation of either GCY-8 or TTX-3 prevents the upregulation of heat-induc-

ible C. elegans HSP-70 (Hsp72) across various tissues following acute heat stress [13], demon-

strating that activation of the somatic HSR is dependent on the activity of the AFD and AIY neu-

rons (Figure 1). Recently, the identity of the endocrine signaling molecule that activates HSF-1 in

nonneuronal somatic tissues has been identified as the neurotransmitter serotonin [36]. For

example, direct optogenetic activation of the AFD neuron activates HSF-1 in noninnervated germ-

line cells, even in the absence of stress in a serotonin-dependent manner [36]. This induces the

increased expression of hsp-70 at an organism-level and was shown to suppress aggregation of

disease proteins expressed in C. elegans muscle tissue [36,40].

expression in response to tissue-
specific alterations of Hsp90
expression levels in C. elegans.
Unfolded protein response (UPR):
stress response mechanism that
senses the presence of misfolded
proteins in the lumen of the
endoplasmic reticulum (called
UPR of the ER) or the mitochon-
drial matrix (called UPR of the
mitochondria). Activation of the
UPR in either case promotes
increased chaperone expression
and other factors required to re-
fold or degrade misfolded
proteins.
TheUnfolded Protein Response of the Endoplasmic Reticulum (UPRER) in Systemic Stress

Signaling

The unfolded protein response (UPR) of the endoplasmic reticulum (ER) consists of three pathways

coordinated by the luminal ER chaperone BiP/Grp78 [41]. Under basal conditions, BiP represses the

three transmembrane UPRER effector proteins IRE1, ATF6, and PERK by binding their domains that

project into the ER lumen [41]. If misfolded proteins accumulate in the ER lumen, BiP will preferentially

bind to these over the effectors, enabling them to activate their respective pathways [42]. When

released from BiP, the stress sensor IRE1 that is located at the ER membrane, homodimerizes and

trans-autophosphorylates, thereby gaining endoribonuclease activity. Once activated, IRE1 catalyzes

the processing of the mRNA encoding the transcription factor XBP1. This shifts the coding frame and

leads to expression of an active transcription factor known as XPB1s that promotes UPRER target gene

expression [42].

In C. elegans, the IRE1 arm of the UPRER is regulated cell-non-autonomously by the nervous system

[16,43]. While overexpression of XBP-1s in the intestine or body wall muscle results only in cell-auton-

omous upregulation of BiP/HSP-4, XBP-1s overexpression in neurons triggers BiP/HSP-4 induction in

both the neurons and the intestine (Figure 1) [16]. This cell-non-autonomous signaling coincides with

increased longevity and negates the decline in UPRER function normally seen during aging. The endo-

crine signal regulating this cell-non-autonomous response is not clear at the moment, although

several indications in C. elegans suggest that it is neurotransmitter dependent [16], and possibly

regulated via octopaminergic signaling as the UPRER-mediated innate immune response depends

on the octopamine [G-protein-coupled receptor (GPCR)] receptor OCTR-1 (Figure 1 and Figure 2,

Key Figure, pathways 1 and 3) [43].

In a mammalian example of transcellular UPRER activation, overexpression of Xbp1s in the pro-opio-

melanocortin (POMC) neurons of mice results in upregulation of both Xbp1s and its target genes in

the liver, which is accompanied by increased energy expenditure and improved liver glucose homeo-

stasis (Figure 1) [44]. Although the endocrine signalingmolecule regulating this response in mammals
Trends in Biochemical Sciences, November 2019, Vol. 44, No. 11 929
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Figure 1. Schematic Summary of Known Transcellular Signalling Processes Regulating Organismal Proteostasis.

Stress response pathways that function in a cell-non-autonomous signalling manner are indicated (black) and include the heat shock response (HSR),

transcellular chaperone signalling (TCS), the unfolded protein response in mitochondria (UPRmito), and the unfolded protein response in the

endoplasmic reticulum (UPRER). The tissues that activate the pathways are indicated (grey). So far identified neuroendocrine (e.g., neurotransmitters) or

paracrine signals that mediate the transcellular signalling process are also indicated (red). Further down the pathway are the activated chaperones in

tissues responding to transcellular signalling (light grey), as well as the corresponding phenotypic outcome (white). All shown pathways have been

observed in Caenorhabditis elegans so far, with the exception of cell-non-autonomous UPRER signalling, that has also been observed in mice, as

indicated. Abbreviations: ETC, electron transport chain; HSP, heat shock protein; k.d., knockdown; o/e, overexpression.
has not been identified thus far, it is known that Xbp1s in POMC neurons represses induction of sup-

pressor of cytokine signaling (SOCS)3 and tyrosine phosphatase 1B (PTB1B), thereby negating leptin

and insulin resistance and improving metabolic homeostasis (Figure 2, pathway 2) [44]. This shows

that neuronal control of proteostasis via the cell-non-autonomous UPRER not only has far reaching

benefits and implications for systemic metabolic control and energy balance, but that this cell-

non-autonomous signaling process is also evolutionary conserved, at least from C. elegans to

mammals.
The UPR of the Mitochondria (UPRmito) in Systemic Stress Signaling

As the primary sites of aerobic respiration and oxidative phosphorylation, mitochondria are major

producers of reactive oxygen species (ROS) in a membrane potential-dependent manner [45]. Due

to the proteotoxic nature of ROS, the UPRmito is vital for maintaining a healthy mitochondrial prote-

ome and is facilitated by chaperones Hsp10 and Hsp60, mitochondrial specific chaperones mtHsp70

and mtDnaJ, as well as proteases such as ClpP [46]. When the unfolded protein load in the matrix ex-

ceeds chaperone capability, excess misfolded proteins undergo proteolytic degradation by ClpP and

their cleavage products are exported to the cytosol by the peptide transporter HAF-1 [47]. This in-

hibits mitochondrial protein import not only by reducing nascent peptide chain influx to the organelle

but also by promoting nuclear translocation of the transcription factor ATFS-1, which in turn promotes

expression of UPRmito chaperones [48].

The UPRmito is also regulated cell-non-autonomously in invertebrate model systems [14,49,50];

whether the same occurs in vertebrates is however still unknown. In C. elegans, knockdown of the

electron transport chain (ETC) component cco-1 in neurons results in a cell-non-autonomous activa-

tion of the intestinal UPRmito and increased lifespan (Figure 1) [50]. However, there is a tissue-
930 Trends in Biochemical Sciences, November 2019, Vol. 44, No. 11



Key Figure

Innate Immune Signals Regulating Proteostasis and Components of the Proteostasis Network
Regulating Immune-Related Responses in C. elegans and Mammalian Cell Lines
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Figure 2. (1) The IRE1 branch of the unfolded protein response in the ER (UPRER) regulates endoplasmic reticulum (ER) proteostasis intracellularly, and

transcellularly via XBP-1s dependent neurotransmitter signalling. (2) Activated XBP1s in pro-opiomelanocortin (POMC) neurons (mouse) leads to

(Key figure legend continued at the bottom of the next page.)
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dependent element to this form of cell-non-autonomous UPRmito signaling – while cco-1 knockdown

in the intestine or neurons increases lifespan in a nonsynergistic manner, knockdown in the body wall

muscle has the opposite effect [50]. Interestingly, the neuron-specific expression of polyglutamine

(polyQ) 40-repeat protein (Q40), an aggregation-prone, Huntington-disease- associated protein, ac-

tivates both the cell-autonomous and cell-non-autonomous upregulation of mtHsp70/HSP-6 [49]. The

neuroendocrine signal responsible for mtHsp70 induction in the intestine is the neurotransmitter se-

rotonin [49], albeit it is not clear whether this is directly mediated via ATFS-1 in the intestine. Recently,

Zhang et al. used this as the basis for a genetic screen in C. elegans. This led to the discovery of a

second endocrine signal that regulates the cell-non-autonomous induction of the UPRmito which in-

volves both canonical (b-catenin-dependent) and noncanonical (retromer-dependent) Wnt signaling

[14]. A third secreted factor and neuroendocrine signal was identified as the neuropeptide FLP-2 [51].

FLP-2 mediates neuroendocrine-regulated activation of the UPRmito in response to disruption of neu-

rospecific expression of a mutant SPG-7 protease, which also disrupts neuronal proteostasis [51].

Other paracrine signals, such as the human ortholog of ImpL2 (IGFBP7), have been identified in

Drosophila, where mild ETC perturbation in larval flight muscles upregulates expression of UPRmito

markers and promotes longevity by cell-non-autonomous upregulation of insulin suppression

markers 4e-bp and inr in the abdomen and head [52].
Transcellular Chaperone Signaling: A Systemic Stress Response Relying on Innate

Immune Signaling

Another noncanonical systemic stress response is transcellular chaperone signaling (TCS), which re-

sponds to altered tissue-specific expression of the molecular chaperone HSP-90 in C. elegans [15].

TCS leads to activation of chaperones in other, nonstressed tissues and functions independently of

HSF-1 to communicate a protective chaperone response across different tissues [15]. For example,

tissue-specific HSP-90 over-expression in the intestine or neurons of C. elegans can protect against

metastable myosin misfolding or amyloid b (Ab) aggregation in the body wall muscle due to transcel-

lular upregulation of HSP-90 (Figure 1) [15,17]. TCS is mediated by the zinc finger transcription factor

PQM-1, which is normally associated with the innate immune response [53], along with its down-

stream effectors the innate-immunity-associated c-type lectin clec-41 and aspartic protease asp-

12. All three function as signaling nodes required to activate increased hsp-90 expression in

C. elegansmuscle cells (Figure 1 and Figure 2, pathway 4) [17]. Thus, TCS demonstrates how compo-

nents usually associated with the immune response can activate chaperone expression from one tis-

sue to another. While CLEC-41 is required to activate hsp-90 expression in the muscle via glutama-

tergic neuronal signaling, it is currently not clear whether it also is the ‘sought after’ signaling

molecule itself, as it may associate with membrane-spanning proteins such as neuronal receptors

or ion channels through its CUB domain [17]. ASP-12, which is induced by TCS in the gut, has the po-

tential to be secreted and thus could act as a true intercellular signaling molecule between the intes-

tine and the muscle to activate hsp-90 expression [17]. Thus, this form of systemic stress signaling
upregulation of BiP and improved glucose metabolism in hepatocytes. (3) ER stress activates the neuronal G-protein-coupled receptor (GPCR) OCTR-1 in an

IRE1-dependent manner that regulates innate immune responses. (4) Increased tissue-specific expression of Hsp90 activates transcellular chaperone

signalling (TCS), a response mediated through PQM-1 and innate immune effectors asp-12 and clec-41. Potential secretion of these effectors promotes

Hsp90 expression in distal muscle cells to protect against protein misfolding. (5) Extracellular heat shock proteins (HSPs) can function as damage-

associated molecular patterns (DAMPs) to regulate the expression of proinflammatory cytokines in other cells. (6) Heat shock factor (HSF-1) upregulates

expression of molecular chaperones, including Hsp70, Hsp90, and Hsp60 that can be secreted via exosomes to replenish proteostasis in mammalian

cells affected by protein misfolding or via noncanonical secretory pathways. (7) Stress-responsive transcription factors HSF-1, DAF-16/FOXO, and PQM-1

respond to proteotoxic stresses such as heat or oxidative stress, as well as pathogen infections. (8) DNA damage and pathogen infection stimulate p38

and ERK MAPK (mitogen-activated protein kinase) signalling cues to upregulate secreted innate immune peptides that trigger activity of ubiquitin

proteasome system. (UPS) transcellularly in other somatic tissues. (9) Pathogen infection or proteasome inhibition stimulates an HSF-1 independent

pathway regulating IPR genes such as cul-6, that contribute to increased organismal proteostasis and immunity in C. elegans. (10) Cancer cells transmit

ER stress intercellularly via transmissible ER stress (TERS) which depends on upregulated cytokines, Wnt signalling, and reduced activation of the PERK

arm of the UPRER. (11) Cytokines transforming growth factor beta (TGF-b) and SDF1 activate a cancer specific HSF1 transcriptional program transmitted

from cancer-associated fibroblast (CAF)s to adjacent cancer cells. Abbreviations: TLR, Toll-like receptor.
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relies on potentially secreted innate immune peptides to mediate chaperone expression across tis-

sues and to enhance organismal proteostasis.

In summary, it is interesting to note that the same signaling molecule can regulate neuroendocrine

activation of different stress responses (Figure 1). For example, serotonin mediates cell-non-autono-

mous activation of both the HSR and the UPRmito [36,49]. Vice versa, the UPRmito can also bemediated

via Wnt dependent signals or a neuropeptide [14,51]. The reason for this diversity could be the

different stress conditions in the sender tissue, that is, neuron-specific expression of PolyQ 40 versus

a neuronally expressed mutant protease.

While the search for the cell-non-autonomous signaling molecule regulating systemic stress re-

sponses is still ongoing, the overall picture is becoming more refined in C. elegans, and so far implies

that systemic stress responses likely require a network of different endocrine and paracrine signaling

molecules responding to different activating conditions in a variety of target tissues.

Although many of these systemic stress responses are regulated via neuroendocrine signalling (i.e.,

neurotransmitters and neuropeptides), some depend on potentially secreted peptides that are nor-

mally involved in the innate immune response as observed in TCS. We further explore the connection

between systemic stress responses and immune responses in the following sections and give specific

examples of how proteostasis mechanisms are linked with immunomodulatory roles.

Innate Immune Response Signaling Pathways during Infection and Inflammation

Regulation of the Innate Immune Response in Invertebrates by Mitogen-Activated

Protein Kinase Pathways

In addition to the canonical cell stress pathways described above,Mitogen Activated Protein Kinase

(MAPK) pathways comprise another conserved group of response pathways that are stimulated by

proteotoxic stress, as well as pathogenic threats in evolutionary diverse organisms [54,55]. For

example, in C. elegans, the PMK-1/p38 and MPK-1/ERK MAPK pathways are core signal transduction

cues regulating protective responses to fungal or pathogenic bacterial infections, while the ortho-

logues corresponding MAPK pathways in yeast, Hog1/p38 and Slt2/ERK respectively, respond to os-

motic or thermal stress [56,57].

More specifically, in C. elegans, the PMK-1/p38 pathway is activated via stimulation of the Toll–inter-

leukin-1 receptor (TIR) domain adaptor protein TIR-1, followed by signaling through NSY-1/SEK-1/

PMK-1 (Figure 3A) [58–60]. This signaling pathway functions in the intestine to promote resistance

to pathogenic bacteria and in the epidermis in response to fungal infection or wounds [61]. Down-

stream targets of PMK-1/p38 in response to bacterial infection of the intestine include ATF-7, a tran-

scriptional repressor that is activated upon phosphorylation by PMK-1 [62]. This results in the expres-

sion of predicted secreted innate immune peptides, including C-type lectins, CUB domain proteins

and antimicrobial peptides [62,63].

Additionally, the MPK-1/ERK pathway (Figure 3A) is activated upon infection of rectal epidermal cells

by Microbacterium nematophilum, a Gram-positive bacterium that adheres to rectal cuticle and in-

duces a tail-swelling response after passage through the C. elegans intestine [64]. Although the tran-

scriptional response mediated by MPK-1 is similar to the one promoted by PMK-1 as mentioned

above, the exact nuclear factor triggering gene expression in this case is still unknown [63].

The Innate Immune Response in Mammals: Toll-like Receptor (TLR) Signaling Pathways

In contrast to C. elegans, vertebrates use a specialized set of cells that regulate innate immune re-

sponses by inducing specific signaling pathways to clear pathogenic infections. These include

mast cells, neutrophils, monocytes, macrophages, dendritic cells (DCs), and natural killer cells

(NKs) [65]. They are able to recognize a broad range of pathogen-associated molecular patterns

(PAMPs), such as bacteria and viruses, and so-called damage-associated molecular patterns (DAMPs)

or danger signals, which includes molecular chaperones (Box 1). Both PAMPs and DAMPs are
Trends in Biochemical Sciences, November 2019, Vol. 44, No. 11 933



TLR-1,2,4,5,6

MYD88

TRAF6
IRAK1

IRAK4
IRAK2

TAK1/TAB

MKKs

ERKp38 JNK

HSP90

HSP70

HSP40

HSP27IKKs

NF- B

CREB AP-1

Proinflammatory cytokines

HSP70

HSP70

HSP90

Cdc37

(B)(A)

Pathogenic bacteria, fungi

TIR-1

NSY-1

SEK-1

PMK-1/p38

ATF-7

M. nematophilum

LIN-45

?

MEK-2

MPK-1/ERK

??

Lysozymes, C-type lectins, 
CUB domain proteins etc.

Antimicrobial defence and immunity

C. elegans  MAPK pathways 
regulating innate immunity

Mammalian TLR responsive and MAPK pathways
regulating innate immunity

NF- B

Cdc37

TrendsTrends in BiochemicalBiochemical Sciences Sciences

Figure 3. Innate Immune Signalling Pathways in Caenorhabditis elegans and Mammals.

(A) C. elegans antimicrobial response mediated by conserved mitogen-activated protein kinase (MAPK) signalling pathways. Exposure to fungi or

extracellular bacterial intestinal infection induces the p38/PMK-1 signalling cascade via kinases NSY-1 and SEK-1 and the scaffold protein TIR-1. p38/

PMK-1 activates the transcription factor ATF-7, which leads to expression of innate immune peptides. The MAPK homologue MPK-1/ERK is activated

upon infection with Microbacterium nematophilum leading to signalling through LIN-45 and MEK-2 kinases. MPK-1 activates a, as yet unknown,

transcription factor, leading to a similar transcriptional response as the p38/PMK-1 pathway. (B) Mammalian Toll-like receptor (TLR) signalling pathways

involved in the innate immune response. TLRs at the cell surface initiate the MyD88-dependent signalling pathway, resulting in activation of the

downstream IKK/NF-kB and MAPK signalling routes. Each of these signalling routes induces expression of proinflammatory cytokines including tumor

necrosis factor alpha (TNF-a), and interleukin (IL)-6 by the transcription factors NF-kB, CREB, and AP-1. Regulatory interactions of heat shock proteins

with the individual signalling components are indicated by red arrows. Abbreviations: HSP, heat shock protein; TIR, Toll–interleukin-1 receptor.
recognized by pattern recognition receptors (PRRs) such as TLRs (Figure 3B). TLRs are membrane-

spanning receptors that activate either the transcription factor NF-kB via TAK1/IKK signaling or the

MAPKs p38, JNK, and ERK pathway which subsequently activates the transcription factors CREB

and AP-1 [66]. Both NF-kB and AP-1 promote expression of proinflammatory cytokines, including tu-

mor necrosis factor (TNF)a, interleukin (IL)-6, IL-1b, and chemokines. Although invertebrates such as

C. elegans lack the NF-kB-like transcription factor, the p38 MAPK pathway is considered as its

analogue ancestral immune pathway, conserved in yeast, invertebrates and vertebrates alike [67].
Systemic Stress Signaling Pathways Regulating Innate Immunity

HSR and the Innate Immune Response

In C. elegans, the master regulator of the HSR, HSF-1, is also involved in the innate immune response.

HSF-1 activity is regulated by the insulin growth factor (IGF)-like insulin signaling pathway (ILS/DAF-2
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signalling pathway) to control cell-non-autonomous signaling processes relevant for organismal im-

munity, health-span, and longevity (Figure 2, pathway 7) [68,69]. For example, heat stress and the in-

duction of the HSR can increaseC. elegans immunity to Pseudomonas aeruginosa in an HSF-1 depen-

dent manner and the increased resistance to the pathogen particularly depends on HSF1-mediated

expression of molecular chaperones hsp-90 and hsp-16 [69].

Furthermore, in mammals, HSF1 also plays an important role in cell-non-autonomous stress signaling

and immune responses. Specifically, fever-induced HSR leads to direct binding of HSF1 to heat shock

elements (HSEs) of several chemokines in human cell lines [70]. Conversely, also in human cell lines,

cytokines such as IL-1b and transforming growth factor (TGF)-b may activate HSF1 during inflamma-

tion [71]. Such activation has been shown to induce expression of the collagen-specific molecular

chaperone Hsp47 in vitro and could thus affect collagen secretion and fibrosis [72]. This shows that

components of the mammalian innate immune and inflammatory response, such as cytokines and in-

terleukins, can function to promote activation of stress response pathways. This is an important

aspect in cancer cells and the tumor microenvironment, as discussed in a later section of this review.

The UPRER and Innate Immune Response

The UPRER plays a particularly important role in the regulation of innate immune responses due to the

increased demands on protein folding in the ER that occur during pathogenic infections (Figure 1)

[73–75]. This branch of the UPRER can be activated by exposure to P. aeruginosa and, in that respect,

is essential for survival of C. elegans larvae infected with the pathogenic bacteria [43,62,76]. UPRER

responses to pathogenic infection are controlled cell-non-autonomously via OCTR-1, a neuronal

catecholamine receptor expressed in ASH and ASI neurons that mediates expression of BiP/HSP-4

and other genes in distinct tissues of the animal to confer immunity (Figure 1 and Figure 2, pathway

2) [43,77].

An interesting link between ER stress and the innate immune response can be drawn in mammals,

where, similar to C. elegans, pathogenic bacteria in the intestine activates ER stress in intestinal

epithelial (Paneth) cells [78]. This triggers secretory autophagy in Paneth cells and mediates antimi-

crobial protein secretion required for intestinal defense [78]. This apparent link between the UPRER

and a pathogen response effectively demonstrates how a proteostasis-related stress signaling

pathway can be involved in the innate immune response.

The UPRmito and Innate Immune Response

Activation of the UPRmito can also induce innate immunity via ROS production to counteract patho-

genic microbial infection [79,80]. For example, hyperactivation of the transcription factor ATFS-1 im-

proves clearance of P. aeruginosa from the C. elegans intestine and increases survival to pathogen

infection [80], that depends on ATFS-1-mediated expression of innate immunity target genes [81].

Although the UPRmito is involved in the promotion of metastasis in human cancer [82], it yet needs

to be determined whether it is required for the mammalian innate immune response.

Molecular Chaperones Link Proteostasis and Immunity

Molecular chaperones are a group of key effectors of the proteostasis network [1,83]. As such, they are

also involved in the regulation of innate immune signaling processes by facilitating the function of

their client proteins p38, ERK, JNK, and IKK (Figure 3B). For example, Hsp90 and its cochaperone

Cdc37 are required for the activation of the IKK complex [84], whereas Hsp70 inhibits TRAF6 ubiqui-

tination and so prevents activation of inflammatory signaling responses [85]. Hsp90 and Cdc37 are

also crucial for the function of the p38 and ERK MAPK orthologues Hog1 and Slt2 in Saccharomyces

cerevisiae [145], corroborating the functional interdependence and evolutionary involvement of

chaperones with immune response signaling cues. In addition, Hsp70 can bind to and inhibit JNK

and NF-kB activation [86,87].

The link betweenmolecular chaperones and the innate immune response pathways is, however, more

intertwined than just chaperoning the activity of its signaling kinase clients. In addition to being an
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integral component of the intracellular chaperone machinery, HSPs act as important immunomodu-

lators controlling inflammation [88]. For example, Hsp60, Hsp70, Hsp90, and Hsp110 can be secreted

and function as DAMPs [89] that directly bind to TLRs and activate innate immune signaling cues to

increase the release of inflammatory cytokines (Figure 2, pathway 5) [20,90]. Although controversial,

Hsp70 and Hsp60 in particular are indicated to have both pro- and anti-inflammatory roles. The proin-

flammatory role is evidenced through their interactions with monocytes, macrophages, and DCs, by

activating the innate immune response and cytokine production [91–94]. Their anti-inflammatory ef-

fects are shown through their ability to downregulate inflammation by promoting T cells to produce

regulatory cytokines IL-4 and IL-10 [95–98]. The particular immunomodulatory function of Hsp90 in

both C. elegans and mammalian cells is described in Box 2. It is now widely established that HSPs

such as Hsp40, Hsp60, Hsp70, and Hsp90 can be secreted from many cell types via nonclassical path-

ways [99–102]. Once released, these extracellular HSPs (eHSPs) can elicit immune responses through

binding to cell surface receptors on antigen presenting cells (APCs) and presentation of peptides

from chaperoned clients [93,103–105]. In cancer, such antigen presenting activities are tumor sup-

pressive. Yet, eHSPs play important tumor-supportive roles through binding to oncogenic cell surface

receptors such as HER2 [106,107] and chaperoning of metalloproteases [108–110].

More recent advances indicate that eHSPs could also be utilized to integrate proteostasis systemi-

cally across tissues. For instance, in mammalian cell lines, Hsp70/Hsp40 and Hsp90 can be shuttled

between different cell types via exosomes to replenish and improve proteostasis in a damaged

cell in need (Figure 2, pathway 6) [102]. This can suppress the formation of polyQ aggregates in

polyQ-expressing cells, indicating that chaperones can cell-non-autonomously improve the pro-

tein-folding environment via exosome-mediated transmission [102]. In cancer, increased secretion

of Hsp90, Hsp70, and Hsp60 via exosomes contributes to the antitumor immune response by stimu-

lating the migratory and cytolytic activity of NK cells [111,112].

Innate Immune Pathways Regulating Organismal Proteostasis

While stress response pathways and chaperones can be involved in the regulation and activation of

immune signaling pathways, the converse is also true as innate immune effectors (such as cytokines in

mammals; Box 1) can activate chaperone expression and other protein quality control mechanisms;

this has been observed in both invertebrate and vertebrate model organisms alike [17,113–116]. Spe-

cific examples of how secreted immune peptides can regulate protein quality control mechanisms

cell-non-autonomously in an organism such as C. elegans are given below.

DNA-Damage Response Regulates the UPS via Induced Immune Signals

DNA damage occurring in the C. elegans germline not only induces the immune responsive ERK/

MAPK signaling pathway within that tissue, but also the p38 MAPK pathway in the intestine, which

then triggers proteostasis mechanisms in other somatic tissues (Figure 2, pathway 8) [115,117]. The

transcriptional response mediated by these MAPK pathways is associated with an increased
Box 2. Hsp90 – Proteostasis Effector or Immunomodulator?

In addition to the role of secreted Hsp90 as a DAMP that activates immune response pathways, altered intra-

cellular levels of this chaperone can be a signal that triggers proteostasis or innate immune response pathways.

InC. elegans, depletion of themolecular chaperone HSP-90 (hsp-90) by RNAi not only mounts the HSF-1-medi-

ated HSR to induce hsp-16 and hsp-70 expression, but also activates genes associated with the innate immune

response, possibly via a DAF-16-dependent signalling cue [140]. Expression of these genes occurs primarily in

the C. elegans intestine and is shared with the immune response to Vibrio cholerae and P. aeruginosa

[141,142], although it remains to be tested whether hsp-90 RNAi can be protective against the same patho-

gens. That HSP-90 itself has a protective effect to P. aeruginosa infection is shown by TCS, where neuron-spe-

cific overexpression of HSP-90 activates systemic expression of the same chaperone and increases immunity

against the pathogen, in addition to enhancing systemic proteostasis [15,17]. Interestingly, such a role is re-

ported for Hsp90 in mammalian cells, where extracellular Hsp90 induces inflammatory effectors and the secre-

tion of cytokines in response to pathogenic stress [143,144].
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expression of putatively secreted immune peptides, such as C-type lectins and lysozymes, which have

been proposed to activate the UPS and hence increase C. elegans stress resistance. In addition to

MAPK signaling, many genes induced by DNA damage in C. elegans are also targets of DAF-16/

FOXO [118]. Indeed, DNA damage causes the translocation of DAF-16 to intestinal nuclei, where it

acts with a GATA transcription factor to govern target gene expression and maintain cellular homeo-

stasis [118]. Similarly, defense genes are induced in Drosophila as a response to fragmented DNA in

germ cells [119]. DNA damage therefore appears to represent a stressor that can activate both im-

mune responses and proteostasis mechanisms such as the UPS, leading to whole-organism effects

on systemic stress resistance.
Intracellular Pathogen Response Pathway

Another example that links innate immunity with proteostasis is the recently discovered intracellular

pathogen response pathway in C. elegans [114,120]. The transcriptional response activated by this

pathway provides resistance against pathogens such as microsporidia and Orsay virus, but also en-

hances thermotolerance and protects animals cell-non-autonomously from proteotoxic stress via

increased expression and activity of CUL-6, a cullin-containing ubiquitin ligase (Figure 2, pathway

9) [114]. This pathway is not dependent on canonical response pathways through p38 MAPK, ILS/

DAF-16, or HSF-1 signaling, suggesting that immune responses are novel enhancers of proteostasis

which promote resistance against diverse stressors [114]. Thus, immune-responsive pathways can

function as activators of chaperone expression and other protein quality control mechanisms, thereby

increasing both immunity and also general stress resistance.

While the majority of these findings using the invertebrate model C. elegans show how immune ef-

fectors can regulate proteostasis in an organismal setting, they may also compensate for the lack

of an adaptive immune system in invertebrate species lacking such a system. However, comparable

observations are found in mammals, particularly with relation to cancer as described in the next sec-

tion, where cytokines are hijacked to activate PN components such as HSF1 and chaperone expres-

sion [24,26,121–126]. The cell-non-autonomous co-ordination of immune responses and proteostasis

is therefore potentially a novel avenue for cancer research in humans.
Proteostasis and Immune Signals in Cancer

Tumors are stressful environments, and chaperones such as Hsp70 and Hsp90 are often overex-

pressed in tumors where they carry out both their canonical chaperone activities, as well as noncanon-

ical activities [124,127–129]. Prominent among these noncanonical activities is the modulation of im-

mune responses in cancer cells and, importantly, in the tumor microenvironment [24,26,127–130]. The

ER chaperone BiP, for example, is activated in macrophages and T cells in the tumor microenviron-

ment, where it regulates the activity of several cancer-associated cytokines, such as MIF, IL-6, TGF-

b, and IL-10 [131]. The cytosolic Hsp70 is also activated in macrophages, and this activation promotes

macrophage migration into tumors [130].

A form of TCS has also been reported in cancer. In this form of TCS, termed transmissible ER-stress,

conditioning of macrophages with medium from ER-stressed cancer cells leads to induction of ER

stress in the macrophages themselves, with upregulation of Grp78 and the Xbp1 arm of the UPRER

[26], as well as proinflammatory cytokines and activation of Wnt signaling (Figure 2, pathway 10) [123].

The coevolution of cancer cells with cells of the tumor microenvironment is mediated by another form

of cell-non-autonomous stress-response activation regulated by HSF1. HSF1 is activated in cancer

cells where it promotes proliferation, invasion, and migration through activation of a set of genes

that is distinct from the classic HSR [25]. In addition to this cell-autonomous tumor-promoting

pathway, HSF1 is also activated in cancer-associated fibroblasts (CAFs) in the tumor microenviron-

ment. In these nonmalignant cells, HSF1 drives a protumorigenic transcriptional program, promoting

growth and malignancy of the adjacent cancer cells in a cell-non-autonomous manner (Figure 2,

pathway 11) [24,132]. The transcriptional program activated by HSF1 in CAFs is distinct from the
Trends in Biochemical Sciences, November 2019, Vol. 44, No. 11 937



Outstanding Questions

What is the identity of transcellular

(paracrine, endocrine) signals that

activate cell-non-autonomous

stress responses, and could these

signals form a specific transcellular

proteostasis network?

How is the specificity of a cell-non-

autonomous stress response deter-

mined? For example, which recep-

tors and downstream signaling cas-

cades are activated by a specific

transcellular signal in the respon-

sive tissues?

Is there amap of tissue circuitry that

responds to different extracellular

or intracellular proteotoxic stress

conditions in an organism?

Can the co-ordination of immune

responses and proteostasis mecha-

nisms be targeted for novel thera-

peutic interventions, for example,

in cancer?
classical HSR and from the cancer program, and is mediated by TGF-b, SDF1 (CXCL12), and DKK3

from one cell to another.

It is now well accepted that tumors are complex entities in which malignant and nonmalignant cells

coevolve to the detriment of the host. Similar to pathogens invading a host, tumors exploit the PN

and adapt the cell-non-autonomous stress signaling pathways described above to communicate

and thrive in their host.

Concluding Remarks and Future Directions

Our understanding of systemic regulation of the proteostasis network has made remarkable progress

in recent years. Since its recognition in 2008 [13], different layers of signaling mechanisms regulating

proteostasis at the organismal level have been identified, encompassing neuroendocrine and para-

crine signaling molecules. The apparent diversity of systemic proteostasis regulators not only high-

lights the complexity of the process, but also reflects different flavors of the proteostasis network

tailored to fit tissue-specific requirements. This suggests a highly regulated signaling circuitry be-

tween tissues, with various modalities of cell-non-autonomous signals released and received de-

pending on the cell type or tissue in which the signal originates. A striking facet uncovered in recent

years is the fact that immune signals appear to play a crucial role in the regulation of systemic proteo-

stasis and intercellular communication of stress responses. This important knowledge is now

converging with the new role for paracrine and autocrine immune signals as components of the

expanded systemic proteostasis network. Future research should focus on identifying and categoriz-

ing the network of paracrine signals capable of activating proteostasis responses, as well as mapping

out the tissue circuitry and specificity of the response, both in physiological and disease settings (see

Outstanding Questions). Identified cell-non-autonomous signals could have potential therapeutic

benefits to either enhance the capacity of the proteostasis network when needed during, for

example, conditions of age-associated protein misfolding disease, or by blocking it in tumors, which

thrive on transmitting the activation of stress responses for oncogenic transformation from one cell to

another.

Acknowledgements

The authors acknowledge funding from the NC3Rs (NC/P001203/1) to P.v.O-H., a Medical Research

Council (MRC) DiMeN doctoral studentship to J.M. and the Israel Science Foundation (401/17;

1384/1), the European Research Council (ERC grant 754320), and the Israel cancer research founda-

tion Gesher award to R.S.S. R.S.S. is also supported by the Laura Gurwin Flug Family Fund. R.S.S. is the

incumbent of the Ernst and Kaethe Ascher Career Development Chair in Life Sciences.
References

1. Hartl, F.U. et al. (2011) Molecular chaperones in

protein folding and proteostasis. Nature 475,
324–332

2. Freeman, B.C. andMorimoto, R.I. (1996) The human
cytosolic molecular chaperones hsp90, hsp70
(hsc70) and hdj-1 have distinct roles in recognition
of a non-native protein and protein refolding.
EMBO J. 15, 2969–2979

3. Wolff, S. et al. (2014) Differential scales of protein
quality control. Cell 157, 52–64

4. Sala, A.J. et al. (2017) Shaping proteostasis at the
cellular, tissue, and organismal level. J. Cell Biol.
216, 1231–1241

5. Brehme, M. et al. (2014) A chaperome subnetwork
safeguards proteostasis in aging and
neurodegenerative disease. Cell Rep. 9, 1135–1150

6. Taylor, R.C. et al. (2014) Systemic stress signalling:
understanding the cell non-autonomous control of
proteostasis. Nat. Rev. Mol. Cell Biol. 15, 211–217

7. Zuo, D. et al. (2011) Molecular chaperoning by
glucose-regulated protein 170 in the extracellular
milieu promotes macrophage-mediated pathogen
938 Trends in Biochemical Sciences, November 2019, Vol. 44
sensing and innate immunity. FASEB J. 26, 1493–
1505

8. Voth, W. and Jakob, U. (2017) Stress-activated
chaperones: a first line of defense. Trends Biochem.
Sci. 42, 899–913

9. Kwon, Y.T. and Ciechanover, A. (2017) The
ubiquitin code in the ubiquitin-proteasome
system and autophagy. Trends Biochem. Sci. 42,
873–886

10. Brandman, O. and Hegde, R.S. (2016) Ribosome-
associated protein quality control. Nature Struct.
Mol. Biol. 23, 7–15

11. Powers, E.T. et al. (2009) Biological and chemical
approaches to diseases of proteostasis deficiency.
Annu. Rev. Biochem. 78, 959–991

12. Guisbert, E. et al. (2013) Identification of a tissue-
selective heat shock response regulatory network.
PLoS Genet. 9, e1003466

13. Prahlad, V. et al. (2008) Regulation of the
cellular heat shock response in Caenorhabditis
elegans by thermosensory neurons. Science 320,
811–814
, No. 11

http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0005
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0005
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0005
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0010
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0010
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0010
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0010
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0010
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0015
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0015
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0020
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0020
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0020
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0025
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0025
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0025
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0030
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0030
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0030
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0035
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0035
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0035
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0035
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0035
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0040
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0040
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0040
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0045
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0045
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0045
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0045
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0050
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0050
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0050
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0055
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0055
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0055
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0060
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0060
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0060
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0065
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0065
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0065
http://refhub.elsevier.com/S0968-0004(19)30142-2/rf0065


14. Zhang, Q. et al. (2018) The mitochondrial unfolded
protein response is mediated cell-non-
autonomously by retromer-dependent Wnt
signaling. Cell 174, 870–883

15. van Oosten-Hawle, P. et al. (2013) Regulation of
organismal proteostasis by transcellular chaperone
signaling. Cell 153, 1366–1378

16. Taylor, R.C. and Dillin, A. (2013) XBP-1 Is a cell-
nonautonomous regulator of stress resistance and
longevity. Cell 153, 1435–1447

17. O’Brien, D. et al. (2018) A PQM-1-mediated
response triggers transcellular chaperone signaling
and regulates organismal proteostasis.Cell Rep. 23,
3905–3919

18. Matzinger, P. (2002) The danger model: a renewed
sense of self. Science 296, 301–305

19. Pockley, A.G. (2003) Heat shock proteins as
regulators of the immune response. Lancet 362,
469–476

20. Kaufmann, S.H.E. (1990) Heat shock proteins and
the immune response. Immunol. Today 11, 129–136
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