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ABSTRACT: Diesel-powered road vehicles are important sources
for nitrogen oxide (NOx) emissions, and the European passenger
fleet is highly dieselised, which has resulted in many European
roadside environments being noncompliant with legal air quality
standards for nitrogen dioxide (NO2). On the basis of vehicle
emission remote sensing data for 300000 light-duty vehicles across
the United Kingdom, light-duty diesel NOx emissions were found to
be highly dependent on ambient temperature with low temperatures
resulting in higher NOx emissions, i.e., a “low temperature NOx emission penalty” was identified. This feature was not observed
for gasoline-powered vehicles. Older Euro 3 to 5 diesel vehicles emitted NOx similarly, but vehicles compliant with the latest
Euro 6 emission standard emitted less NOx than older vehicles and demonstrated less of an ambient temperature dependence.
This ambient temperature dependence is overlooked in current emission inventories but is of importance from an air quality
perspective. Owing to Europe’s climate, a predicted average of 38% more NOx emissions have burdened Europe when
compared to temperatures encountered in laboratory test cycles. However, owing to the progressive elimination of vehicles
demonstrating the most severe low temperature NOx penalty, light-duty diesel NOx emissions are likely to decrease more
rapidly throughout Europe than currently thought.

■ INTRODUCTION

European roadside environments remain polluted with nitro-
gen oxides (NOx), and legal standards for ambient
concentrations of nitrogen dioxide (NO2), the regulated
component of NOx, are widely exceeded throughout Europe.

1,2

The lack of compliance to the legal standards has resulted in a
range of potentially disruptive air quality management and
intervention actions in an attempt to accelerate the reduction
in concentrations to below limit values such as banning of
private vehicles, low emission zones, and the introduction of
progressively stringent emission standards.3−6 The principal
challenge is meeting the annual mean NO2 of 40 μg m−3 close
to roads across European urban environments.
The recent focus for vehicle emissions research has been the

quantification of the discrepancy between type approval and
real-world emissions performance of diesel passenger cars.7

Much of this focus stems from the Volkswagen diesel emission
scandal, also known as “dieselgate” in late September 2015.8−10

On-road NOx emissions from diesel vehicles have been found
to be much higher than thought prediesel emission scandal,
and many Euro 6 vehicles have been found to have inadequate
NOx control when operated in real-world situations.11−15 It
has been known for many years that type approval laboratory-
based emission measurements are lower than on-road
measurements, and for this reason, emission factor databases
such as COPERT do not use type approval emission
measurements.16

There are a myriad reasons for discrepancies between
laboratory and on-road emissions. However, there is a growing
body of evidence from laboratory testing that NOx emissions
from vehicles are highly dependent on ambient temper-
ature.17−22 Specifically, NOx emissions are suggested to be
higher during temperatures below ≈15 °C for diesel-powered
vehicles with Euro emission standards of 3 to 5 (vehicles
manufactured between approximately 2000 and 2015).17

There is also evidence for the two primary NOx after-
treatment technologies employed for Euro 6 diesel compli-
ance: lean NOx traps (LNT or NOx absorbers) and selective
catalytic reduction (SCR) behave differently in real world
situations.23,24 This temperature dependence needs to be
thought of as independent of cold start emissions where
internal combustion engines require fuel−air ratio enrichment
and other strategies while the engine, lubricants, and catalytic
devices reach operating temperatures which all result in greater
emissions of pollutants for a short period of time.25,26

Type approval emission testing in Europe is performed
between 20 and 30 °C.14 While the standardization of the test
cycle is a benefit from the perspective of ensuring consistent
test conditions, it does not necessarily reflect prevailing
ambient conditions across Europe or in many other regions
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of the world. The particular temperature range used for test
cycles is a pragmatic choice because these temperatures are
easily achieved without excessive heating or cooling require-
ments when vehicles are operated in laboratory settings.
However, some emission factor databases such as the
Handbook Emission Factors for Road Transport (HBEFA)
have introduced preliminary NOx emission correction factors,
which will be revised when more data become available.19 It is
important to note that although effective NOx control has
proven to be a challenge for diesel-powered passenger vehicle
manufacturers,27,28 the technology does exist to comply with
current NOx emission limits.14

Despite the focus on temperature, humidity is also an
important atmospheric parameter to consider for diesel and
gasoline NOx emissions.29 High humidity within a combustion
chamber offers a physical mechanism for reducing NOx

formation due to the reduction of peak flame front
temperature and an increase of combustion duration.30,31

The amount of water vapor contained in inlet air is the driver
of this effect, and therefore absolute humidity (AH) is the
measure used rather than relative humidity (RH). The United
States MOtor Vehicle Emission Simulator (MOVES) takes
humidity (and temperature) effects into account and adjusts
emissions to reference conditions.32,33 However, such adjust-
ments do not necessarily represent real-world vehicle operation
where it is important to understand such influences and their
potential to affect ambient pollutant concentrations.
Low ambient temperatures are important from the

perspective of the dispersion of air pollutants. During periods
of low temperatures, concentrations of locally emitted, ground-
level sources tend to be at their highest due to less effective
dispersion resulting from stable atmospheric conditions and a
lack of wind.34 Low temperatures also result in increased
emissions of many atmospheric pollutants due to increases in
anthropogenic energy demands which are generally met by
combustion activities.35 When these meteorological conditions
persist for several days, often an air pollution episode is
experienced. The combination of meteorological factors and
increased emissions due to some activities such as space
heating are well documented.36,37 However, it remains difficult
to understand the relative contributions of increased source
emissions and meteorological influences on the concentrations
of atmospheric pollutants such as NOx. In the case of vehicle
emissions, understanding the effect of ambient temperature is
of primary importance given the impact that vehicle emissions
have on the exposure of urban populations.
The implications for increased NOx emissions at lower

temperatures for roadside European air quality are poorly
understood but are of importance. Currently, emission
inventories such as the United Kingdom National Atmospheric
Emissions Inventory (NAEI) do not account for a dependence
between vehicular emissions and ambient temperature, which
would result in less than optimal modeling of emissions and
ambient concentrations. This situation is especially relevant for
cold periods where the combination of poor dispersion and
increased emissions could combine, resulting in more extreme
poor air quality episodes than would be expected without
taking into account the temperature effect. Such an effect will
be unevenly distributed throughout Europe because of the
range of climatic conditions experienced. Countries or cities
located in cooler areas would have been burdened with
increased NOx emissions once diesel vehicles began to
significantly penetrate the European passenger vehicle fleet,

beginning in the mid-1990s assuming similar diesel uptake
rates. This effect would also perturb the estimations of health
burdens resulting from NOx emissions, which has been
extensively considered after the diesel emission scandal.38−40

The effect of ambient temperature on vehicle emissions is
difficult to robustly quantify using chassis dynamometers
(rolling roads) or portable emission measurements systems
(PEMS) because it is only practical to test a relatively small
number of vehicles.17,41 In principle, using a remote sensing
technique is attractive because it offers the potential to
measure far greater numbers of vehicles under a wide range of
driving conditions. The remote sensing approach also offers
the benefit of real-world measurements, driven by their drivers
with very little chance of the vehicle detecting that it is
undergoing an emissions test.20 The remote sensing technique
captures vehicles under a range of vehicle operating conditions.
However, it is not possible to establish the specific operating
conditions of individual vehicles such as whether they have hot
or cold engines and whether vehicle aftertreatment technolo-
gies such as SCR are operating at optimum temperature.
Instead, by measuring at a wide range of locations (26 in the
current case) under a wide range of driving conditions, the
emission characteristics of typical urban driving are quantified.
The primary objective of this work is to investigate and

quantify the influence of ambient temperature on light-duty
vehicle NOx emissions using on-road remote sensing
observations from field campaigns conducted between 2017
and 2018. A further objective is to consider the implications of
any temperature dependence of vehicular NOx emissions on
roadside air quality in Europe.

■ MATERIALS AND METHODS

Measurement Locations. Remote sensing of on-road
vehicle emissions was conducted in ten regions and 26 sites
throughout the United Kingdom (England, Scotland, and
Wales) in 2017 and 2018 (Table 1 and Figure 1). All sites were
suburban in nature with the exception of the A10/M25
Junction site which was a motorway on-ramp (a slip road).
The ambient temperature range experienced across these field
campaigns was 0.5−24.8 °C with the greatest number of
vehicle captures being conducted in the midteens (Figure S1).
Such temperatures are typical for most of the United Kingdom,
but there was some bias toward warmer temperatures due to
more favorable field conditions. All field campaigns were
conducted during Mondays and Fridays and in daylight hours
(06:00−18:00), with some periods where monitoring stopped
due to rain. The mean vehicle speed for valid captures was
36.1km h−1 with a standard deviation of 9.1km h−1.

Instrumentation. The equipment used to capture on-road
vehicle emissions included three main components: a
spectroscopic remote sensing device (RSD), speed bar lasers,
and a video camera. A RSD was set up perpendicular to the
flow direction of a single lane of traffic, such that the light
source is directed through individual vehicle exhaust plumes.
Measurements were obtained using two RS instruments: the
fuel efficiency automobile test (FEAT) research instrument
supplied by the University of Denver and an Opus RSD
5000.42,43 The development and operation of the FEAT has
been described elsewhere,44−46 and an intercomparison of the
two RSD instruments conducted in the United Kingdom
(Leeds, England) has been previously reported.47

The Denver FEAT instrument consists of a nondispersive
infrared (NDIR) system and a dispersive ultraviolet system.
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The system contains a dual-element light source (silicon
carbide gas drier igniter and a xenon arc lamp) and a detector
unit. The attenuation of light as it passes through the exhaust
plume provides a measure of the incremental concentrations of
various pollutants of interest compared to ambient background
levels. Carbon monoxide (CO), carbon dioxide (CO2),
hydrocarbons (HCs), and a background reference are obtained
using nondispersive infrared (IR) spectroscopy, while UV
spectrometers are used to determine ammonia (NH3), nitric
oxide (NO), and NO2. All species are quantified as a ratio to
CO2 to account for variation in the density, position, and path
length of the vehicle exhaust plume. Unlike the Denver FEAT
instrument, the Opus RSD 5000 does not have a dedicated
spectrometer for NO2.

47 Mean NO and NO2 for the two
instruments by the air temperatures encountered while
capturing vehicles are displayed in Figure S2.
The RS instruments were calibrated in situ every few hours

to account for changes in instrument performance, instrument

path length, and ambient CO2 concentrations (caused by
variation in local CO2 sources and atmospheric pressure). This
was achieved using certified calibration gas cylinders
containing known ratios and concentrations of gases. The
cylinders used for these calibrations were different for the two
instruments, and their details can be found in Table S1. Small
amounts of gas from the cylinders were released into the
instruments’ path to allow for a comparison of the measured
ratios from the instruments to those certified by the gas
cylinder manufacturer. The use of speed bar lasers alongside
the RSD provided a measurement of both vehicle speed and
acceleration for each passing vehicle. These variables,
combined with road gradient and vehicle mass, were used to
determine engine load for the vehicle at the instant it drives
through the RSD path. Ratios of pollutants to CO2 were used
to derive fuel-specific emission factors in g kg−1. The
calculations used for these transformations can be found
elsewhere.44,48

A video camera was used to photograph the vehicle
registration plate of each vehicle passing the RSD. The
registration plate images were digitized and sent to a data
service to retrieve vehicle technical information.49,50 The
vehicle technical data included a diverse number of variables,
most relevant of which were manufacturer make and model,
fuel type, engine displacement, mass, type approval category,
date of manufacture, and Euro status. The data are generally
obtained from the Motor Vehicle Registration Information
System (MVRIS).51 Diesel Euro 6 vehicles were further
manually classified by their known postcombustion NOx

control technology, either LNT or SCR systems. The
classification of after-treatment technology used a number of
sources, most notably Yang et al.,52 and was conducted by an

Table 1. Information about the 26 Monitoring Sites Where
on-Road Remote Sensing Took Place in 2017 and 2018a

Site
Road
ref. Region Lat. Long.

Elevation
(m)

Queen Margaret
Drive

Glasgow 55.88 −4.29 34

Clydeside
Expressway

A814 Glasgow 55.87 −4.32 9

Nelson Mandela
Place

Glasgow 55.86 −4.25 16

East Mains Road B783 South
Lanarkshire

55.77 −4.17 162

Clifton Moor
Gate

York 53.99 −1.09 16

Poppleton
Roundabout

A59 York 53.97 −1.14 21

University of
York
University
Road

York 53.95 −1.05 26

Barton Dock
Road

B511 Manchester 53.47 −2.35 26

Stafford Street A601 Derby 52.92 −1.48 53

Mercian Way A601 Derby 52.92 −1.48 53

St. Quentin Shropshire 52.67 −2.44 143

Headington A420 Oxfordshire 51.75 −1.24 64

A10/M25
Junction

M25 London 51.68 −0.05 39

Hafod-yr-ynys
Road

A472 Caerphilly 51.68 −3.12 211

Rowstock A4185 Oxfordshire 51.60 −1.31 98

Harwell Campus
out-bound

Oxfordshire 51.58 −1.31 122

Harwell Campus
in-bound

Oxfordshire 51.58 −1.31 122

West End Road A4180 London 51.57 −0.42 47

Greenford Road A4127 London 51.52 −0.35 6

Stockley Road
link

A408 London 51.51 −0.45 39

Dawley Road London 51.50 −0.43 32

Heston Road A3005 London 51.49 −0.37 29

Woolwich
Common

A205 London 51.48 0.06 31

Putney Hill A219 London 51.46 −0.22 37

Christchurch
Road

A205 London 51.44 −0.11 59

Callington Road A4174 Bristol 51.43 −2.56 34
aFor locations of the regions, see Figure 5.

Figure 1. Ten regions where on-road remote sensing sessions were
conducted in the United Kingdom during 2017 and 2018.
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expert with extensive vehicle knowledge (Sujith Kollamthodi
(Ricardo Energy & Environment), personal communication,
August 2017). Seventy eight percent of diesel-powered Euro 6
passenger vehicles could be classified into these two additional
groups.
Data. The data sets from the measurement campaigns were

processed to conform to a formal relational data model
outlined in the emitr R package, and the database system used
was PostgreSQL.53−55 The data set was filtered to contain a
select set of vehicles with reliable and complete vehicle
technical information. The data used in the analysis consisted
only of vehicle type approval categories of M1 (passenger cars)
and N1 (light-duty vans <3.5 tonnes), engine types of diesel
and gasoline, and vehicles with Euro status between 3 and 6.
This process resulted in a set with 300000 observations with
approximately 201000 unique vehicle registrations. For counts
of vehicles by their type, fuel type, and Euro status, see Table
S2.
Meteorological observations were sourced from meteoro-

logical monitoring sites nearby the road sections used for
remote sensing and were accessed from the NOAA Integrated
Surface Database (ISD).56 The meteorological observations
were joined to the vehicle capture data so every capture had an
ambient temperature, relative humidity, and wind speed and
direction observation. However, the data sourced from the ISD
are of hourly resolution but vehicles and their emissions can be
captured every few seconds. To accommodate this, the hourly
observations for each session were padded to generate a time
series at second resolution. The missing observations between
the hour observations were then interpolated with a linear
function and joined to the captured set.
Data Analysis Approach. A single RSD measurement has a

sampling time of 0.5 s and therefore each capture is a snapshot
of a vehicle for a short duration which may or may not
represent typical driving behavior. RSD measurements benefit
from not being limited to single observations and typical
behavior can be determined by using large numbers of
observations. Many measurements, typically hundreds, are
used to form useful conclusions and illuminate average
patterns. Aggregations are often used with such data to obtain
mean emissions and uncertainties for groups of observations.7

However, here, a different approach is used with statistical
modeling. Rather than performing aggregations using poten-
tially arbitrary groups (for example, a narrow range in ambient
temperature), generalized additive models (GAMs) with
smooth functions were used to model the data.57 GAMs
allow a convenient way to explore nonlinear relationships
among variables, and the application here is simple with only
one dependent variable: ambient air temperature. Models such
as these can also be used in a predictive way after being
developed. The smoothers used for the GAMs were thin plate
regression splines, and their basis dimension term (k) was set
to four.58 These calculations were conducted with the mgcv R
package.57

Emission Prediction. The GAMs were used to predict NOx

emissions for different air temperatures and vehicle fuel types.
If the air temperature was outside the observation space used
for GAM calculation (between 0.5 and 25 °C), the prediction
was forced to be the extreme edge of the calibration space to
avoid using the models in conditions they had not been
developed with (Figure S3). This approach resulted in the
optimistic handling of predicted NOx emissions below 0.5 °C
and above 25 °C because it seems likely that NOx emissions

would continue to increase at lower temperatures than those
experienced in the field campaigns.
To investigate the potential spatial patterns of NOx emission

based on air temperature, European modeled surface air
temperature data (variable code t2m) between 2010 and 2017
were sourced from the European Centre for Medium-Range
Weather Forecasts’s (ECMWF) ERA Interim data product.59

These data are gridded spatial raster objects and were used at
the maximum spatial resolution available, 0.125 × 0.125
decimal degrees. The data were filtered to daytime periods
(hours between 06:00 and 18:00) and then aggregated to
annual and wintertime (December, January, February) means,
and these summaries were then used to predict NOx emissions.
This spatial data manipulation was conducted with R and
vector and raster extensions,60−63 and the air temperatures
used for prediction are shown in Figure S4. When calculating
relative NOx emissions, 20 °C was used as the relative
temperature because this represents a conservative temperature
for type approval conditions.

■ RESULTS AND DISCUSSION

Vehicular NO
x
Emissions and Ambient Temperature.

Light-duty diesel vehicle NOx emissions were found to be
highly dependent on ambient air temperature (Figure 2).

Diesel vehicles emitted the least NOx at the highest ambient
temperature encountered of 25 °C. Average diesel NOx

emissions decreased at a rate of -0.36 g kg−1 ° C1− between
0 and 25 °C and had a range of 6.3 and 17g kg−1 (a difference
of 10.8 g kg−1). These results show that there is a significant
“low temperature NOx emission penalty” for diesel-powered
light-duty vehicles. NOx emissions from gasoline-powered
vehicles showed very little evidence of dependence on ambient
temperature (Figure 2). NOx emissions from diesel vehicles
were higher than gasoline vehicles and were over 10g kg−1

greater for temperatures below 14 °C (Figure 2). Diesel vehicle
CO emissions showed no air temperature dependence, but
gasoline-powered vehicles did display a slight low temperature

Figure 2. Generalized additive models (GAM) of NOx emissions
based on air temperature for light-duty diesel and gasoline-powered
vehicles. The shaded zones represent the models’ standard error for
the prediction.
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penalty indicating that a small fraction of vehicles in the data
set were captured below optimum operating temperature due
to enriched fuel−air ratios (choking; not shown).
When diesel vehicles were split by their Euro standard, the

older Euro 3 to 5 vehicles emitted NOx in a similar way and
could therefore be considered a distinct group (Figure 3). Euro

6 diesel vehicles emitted less NOx and demonstrated a weaker
absolute ambient temperature dependence compared to older
vehicles compliant to preceding Euro standards. For
manufacturers to achieve the diesel Euro 6 NOx compliance,
additional technological development was necessary in the
form of new after-treatment technology. Two principal
postcombustion after-treatment technologies have been widely
adopted: LNT and SCR systems.52 The use of these
technologies represent a significant step in light-duty diesel
vehicle emission control, and the remote sensing observations
indicate that these devices make the fleet of Euro 6 diesel
distinct from older vehicles compliant to preceding Euro
standards (Figure 3).
The two types of postcombustion Euro 6 diesel NOx control

technology did however demonstrate markedly different
ambient temperature responses (Figure 3). On average,
vehicles with LNTs were less effective at reducing NOx

emissions when compared to those equipped with SCR.

LNTs also demonstrated a stronger temperature dependence
than SCR. Despite LNTs showing a greater NOx penalty, LNT
and SCR vehicles converge at higher temperatures and by 25
°C, NOx emissions were similar, and this is within the
temperature range where type approval test cycles are
conducted. This convergence behavior could be interpreted
as potential evidence for the so-called “thermal window” where
NOx emission controls, most notably exhaust gas recirculation
(EGR), are optimized for temperatures where type approval
testing procedures are conducted.17,64,65 The better on-road
NOx control achieved by SCR over LNT has also been
reported elsewhere with PEMS instrumentation.23,24

LNTs operate under a cycle of chemical adsorption and
regeneration once NOx saturation is reached. LNT store NOx

until their reduction rates drop below a threshold, and then a
regeneration is initiated by a short period of fuel-rich
combustion where exhaust temperatures increase. The NOx

stored in the trap is then reduced to nitrogen and emitted out
the tailpipe. Certain operating conditions are necessary before
regeneration can occur efficiently, and there is evidence that
while LNT performance can be very good when used in open-
road and constant speed conditions, their NOx capturing
performance can be very poor in urban driving conditions.24

This is explained by inefficient regeneration or when
regeneration is not triggered when NOx saturation has
occurred, most probably due to certain other operating
conditions not being met. SCR technology does not rely on
the same cyclical operation principle which could explain why
SCR is shown to be a better NOx control strategy on an
average based on on-road remote sensing observations (Figure
3). These insights suggest that manufacturers will most likely
need to embrace SCR technology (or a combination of SCR
and LNT) rather than LNT alone to ensure compliance to the
increasingly stringent future European NOx emission limits
which will be tested with real driving emission (RDE) tests.
Diesel LCV compliant to Euro 6 are also shown in (Figure

3). These vehicles showed little ambient temperature depend-
ence, but uncertainty below 5 °C and above 20 °C was higher
due to fewer vehicles being sampled. These vehicles are almost
exclusively equipped with SCR, and therefore their NOx

emission behavior is more similar to SCR passenger vehicles
than any other group.
Diesel emission factor multipliers based on type approval

temperatures (assumed to be 20 °C) are shown in Table 2.
These multipliers are analogous to conformity factors used for
RDE tests and are of use for modellers and those preparing
emission inventories. Interestingly, despite the lower absolute
NOx emissions by Euro 6 vehicles with identified after-
treatment technologies (Figure 3), these vehicles still
demonstrate a significant relative low temperature NOx

emission penalty (Table 2). However, because of much
lower absolute emissions, the air quality consequences of this

Figure 3. Generalized additive models (GAM) of NOx emissions
based on air temperature for groups of diesel-powered passenger
vehicles. Passenger cars have been abbreviated to PC and further by
their NOx emission control technology: selective catalytic reduction
(SCR) and lean NOx traps (LNT). Euro 6 Light commercial vehicles
(LCV) have also been displayed but without their emission control
technology due to a small sample size. The shaded zones represent
the models’ standard error for the prediction.

Table 2. Relative NO
x
Emission Factors from 20° C for Different Diesel Passenger Vehicles’ Euro Statusesa

Vehicle type 0 °C 5 °C 10 °C 15 °C 20 °C 25 °C

Pre-Euro 6 PC 1.67 ± 0.37 1.44 ± 0.12 1.28 ± 0.07 1.2 ± 0.09 1 ± 0.15 0.67 ± 0.47

Euro 6 PC 1.62 ± 0.45 1.51 ± 0.15 1.43 ± 0.09 1.32 ± 0.11 1 ± 0.19 0.52 ± 0.58

Euro 6 LNT PC 1.82 ± 0.63 1.78 ± 0.23 1.68 ± 0.12 1.42 ± 0.14 1 ± 0.26 0.51 ± 0.71

Euro 6 SCR PC 2.03 ± 0.49 1.48 ± 0.16 1.14 ± 0.1 1.11 ± 0.13 1 ± 0.25 0.72 ± 0.71

aThe uncertainty around the emission factors represents the standard error of the GAM models’ predictions.
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behavior will be far less severe when compared to pre-Euro 6
vehicles.
When pre-Euro 6 diesel vehicles were grouped by

manufacturer, all manufacturers demonstrated evidence of a
low temperature NOx emission penalty (Figure 4). The two

highest-emitting manufacturer groups, General Motors (GM)
and Mazda had penalties of 9 and 8.6 g kg−1 while BMW and
Mitsubishi, the least polluting groups, had penalties of 2.4 and
2.6 g kg−1. These findings demonstrate that some manufac-
turers on average had superior NOx control than others for

their pre-Euro 6 diesel vehicles. Figure 4 also shows evidence
of two groups of emission behavior, perhaps demonstrating
manufacturers’ preference for certain technology or strategies
for NOx emission control. The differential in emissions
performance and temperature dependence seen between the
different manufacturers could have implications for NOx

emissions throughout Europe. For example, countries with
higher proportions of pre-Euro 6 diesel GM and Mazda
vehicles in the fleet would tend to be associated with higher
overall emissions of light-duty diesel NOx emissions.
Despite the focus on ambient temperature, changes in

absolute humidity could be a contributory factor to help
explain the results presented. Absolute humidity in cooler
periods tends to be lower than during warmer periods (Figure
S5), and because NOx emissions are inversely related to
humidity, some of the identified low temperature penalty could
be driven by low humidity conditions.29 However, when NOx

emissions were adjusted for ambient humidity by a common
technique in an attempt to explain the dependence on ambient
temperature (Equation S1),33 the results showed a small
reduction in NOx emissions relative to ambient humidity
(Figure S6) but could not explain the observed behavior seen
in Figure 2 or Figure 3. Therefore, reduction in absolute
humidity was a small contributing factor which did not explain
the observations presented. It should also be recognized that it
is questionable whether existing adjustment factors are suitable
for modern light-duty vehicle fleets when characterizing their
on-road and in-service emissions.

Air Quality Implications. Roadside NOx concentrations
tend to be at their highest during periods of low temperatures,
and this is generally attributed to meteorological conditions
being less favorable for pollutant dispersion and transportation,
specifically high atmospheric stability and a lack of wind (for
example, Figure S7).66 The low temperature NOx emission
penalty demonstrated for diesel vehicles by remote sensing
would have exacerbated the effect of stagnant atmospheric
conditions and added an additional NOx burden to the

Figure 4. Average NOx emissions for pre-Euro 6 diesel light-duty
vehicles by manufacturer group between 0−10 and 20−30 °C. Only
groups with at least 40 captures have been displayed, and full
manufacturer group names can be found in Table S3.

Figure 5. Light-duty diesel NOx emission penalties when considering average daytime annual and wintertime air temperatures throughout Europe
and fleet mix captured by the on-road remote sensing field campaigns. The diesel low NOx emission penalty has been defined as the difference
between NOx emission for the locations’ mean air temperature and the NOx emission at 20 °C. The labeled cities are discussed in text.
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roadside atmosphere, which has not been accounted in
emission inventories. This additional NOx loading to the
roadside atmosphere would be especially important to consider
during poor air quality episodes when temperatures remain low
for several days and fresh emissions sequentially add to
previously emitted pollutants.
The increased NOx emissions at low temperature from light-

duty diesel vehicles would be influential for poor air quality
episodes in most European locations since the mid-1990s
when diesel vehicles began to significantly penetrate the
passenger vehicle fleet.67 This effect would be especially
important for cooler European countries or cities such as those
located in the high latitudes, located inland, or at altitude.
Figure 5 demonstrates the spatial heterogeneity of the diesel

low temperature NOx emission penalty throughout Europe
using all light-duty vehicles during the 2017 and 2018 on-road
remote sensing field campaigns. Urban areas located in
Europe’s warmest areas such as Seville, southern Spain have
suffered the smallest diesel NOx penalty, while cities located
inland and in the higher latitudes were affected to a much
greater extent. Oslo (Norway) along with most of the
Scandinavian Peninsula and the Baltic States (Estonia, Latvia,
and Lithuania) have been burdened with up to 75% greater
NOx emissions during the winter compared to NOx emissions
at a temperature where type approval testing is performed.
Even cities such as London which experience mild and
maritime climates have still been burdened with 30−45% and
45−60% greater NOx emissions from their passenger diesel
vehicle fleet during the entire year and wintertime, respectively
(Figure 5). Considering Europe as a whole, the low
temperature emission penalty represents an average of 38%
greater NOx emissions when compared to emissions at 20 °C
when using annual mean temperatures.
Using annual mean temperature as a metric, the coldest

urban areas in Europe are located in the Baltic and Nordic
regions. The urban areas located in these locations can expect
to observe a decrease in their roadside NOx concentrations at a
faster rate compared to areas which experience warmer
climates if the rates of passenger vehicle turnover are similar
among the different locations. As the older, pre-Euro 6 diesel
vehicles (with a strong absolute temperature dependence for
NOx emissions) are removed from service and replaced with
new diesel vehicles compliant to the current Euro 6 standards
and better after-treatment technologies or with gasoline,
hybrid, or electric vehicles, the importance of the low
temperature NOx emission penalty for air quality will diminish.
This decrease can be expected without any further manage-
ment or intervention efforts. This effect only relies on the
continuity of natural passenger fleet turnover and the current
European market-shift away from diesel-powered vehicles,
which indicates a positive outlook for European roadside air
quality and the compliance to NO2 ambient air quality limits.
Using Oslo and London as case studies, wintertime NOx

emissions in these cities can be compared to those predicted at
a fixed 20 °C (Figure 6). At 20 °C, the reduction in NOx

emissions when comparing a pre-Euro 6 diesel and Euro 6
vehicles equipped with SCR is 7.3 g kg−1. However, for
London and Oslo, this difference increases to 10.2 and 11 g
kg−1, respectively, during the winter (Figure 6). Therefore,
taking account of the ambient temperature dependence, there
is a greater absolute reduction in NOx emissions when
compared to not considering temperature, which reinforces the
positive outlook for European roadside NOx concentrations. In

the case of London and Oslo, this reduction is 40 and 51%
greater than predicted in the case where no temperature
dependence is considered, respectively. Vehicle fleets com-
posed entirely of gasoline-powered vehicles are also shown for
contrast in Figure 6 and demonstrate the difference of NOx

emissions between the two fuel types.
In the wake of the Volkswagen diesel emission scandal,

diesel vehicles have become less attractive than they once were
in Europe.68 New diesel car sales show a sharp decrease
between 2011 and 2017 where new diesel sales went from 56%
to 44% of total vehicles and is expected to continue to decrease
(Figure S8).67 The demand for and sales of passenger vehicles
has not declined during the same period, so this shortfall is
being met by increases in sales of gasoline-powered vehicles
but also a growing portion of hybrid or electric vehicles.67,68 In
many European countries, the incentivisation of diesel vehicles,
which was introduced in the mid-2000s, has been removed and
extra taxes have been applied to diesel fuel and diesel vehicles.
At the same time, hybrid or electric vehicles have experienced a
range of governmental subsidies increasing their attraction to
consumers and boosting their new car sales.69 All these factors
contribute to a positive outlook for NOx emissions because the
vehicles that demonstrate the most severe NOx penalty are
being removed from service as the passenger vehicle market
changes. There is also evidence that the amount of NO2

produced by light-duty diesel vehicles decreases with
increasing vehicle mileage.70 This observation offers yet
another aspect which reinforces an optimistic outlook for
European roadside NOx and NO2 concentration reduction.
This work exclusively frames vehicular NOx emissions in a

roadside air quality context. However, NOx is a very important
species to consider for ozone (O3) and particulate matter
(PM) formation, which are of importance from a human health
perspective. The influence of the diesel low temperature NOx

emission penalty requires consideration by the O3 and PM
modeling communities because it represents precursor
emission rates which are dependent on ambient temperature;
this is not currently implemented and would likely alter
predicted concentrations of these (and other species),
especially when considering seasonal effects. For example, it
may be that existing modeling underestimates wintertime NOx

Figure 6. Predicted NOx emissions for four passenger fleet
composition scenarios during the wintertime for three European
urban areas which experience different climates and at a fixed 20 °C.
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emissions but overestimates summertime NOx emissions,
which would have implications for the generation of secondary
pollutants. Similarly, this work only explores the European
environment, but it is relevant to other markets such as the
United States, even with their far lower penetration of diesel
passenger vehicles because the low temperature NOx penalty
will still be active in other markets.
This work discusses on-road emission measurements within

an ambient temperature range of 0.5−25 °C. Follow-up work
should aim to extend this temperature range. To extend these
temperatures, cooler and warmer locations outside the United
Kingdom need to be targeted with the same on-road remote
sensing technique so the lower and higher temperatures
relevant to the European and other climates can be added to a
future analysis and characterized.
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