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Abstract 

Aluminium alloys have recently drawn significant attention in structural applications due to its 

outstanding mechanical characteristics. Thin-walled members fabricated by aluminium alloys 

can be more competitive in construction industries than the conventional cold-formed steel 

sections, particularly in areas with high humidity and severe environmental conditions. 

Nevertheless, they are more vulnerable to various types of instability due to their relatively low 

elastic modulus compared to steel. Applying high concentrated load transversely on thin-

walled members can cause critical damage to the web of the cross section called web crippling.  

Although a large number of studies has been performed to investigate the web crippling 

mechanisms on different types of sections, the existing studies are primarily of the empirical 

nature and thus merits further investigations. To fill the research gap, this study was thus 

performed based on our previously conducted experimental work to further comprehend the 

web crippling phenomenon of the roll-formed aluminium lipped channel (ALC) sections under 

the loading conditions of end-two-flange (ETF) and interior-two-flange (ITF). This was done 

through numerical investigations followed by a parametric study which are reported herein in 

details. A wide range of roll-formed ALC sections covering web slenderness ratios ranged from 
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28 to 130, inside bent radii ranging between 2 mm and 8 mm, bearing lengths ranged from 50 

mm to150 mm, and three sheeting aluminium alloy grades (5052-H32, 5052-H36 and 5052-

H38) were considered in the parametric study. The acquired web crippling database was then 

used to assess the consistency and accuracy of the current design rules used in practice. It was 

found that the web crippling capacity determined by the current international specifications are 

unsafe and unreliable, whereas the predictions of the recently proposed equations agree very 

well. Furthermore, a Direct Strength Method (DSM)-based capacity prediction approach was 

proposed and then validated against the web crippling database acquired here as well as the 

experimental and numerical data for cold-formed steel lipped channel sections used in the 

literature.  

Keywords 

Roll-formed; Aluminium; Lipped Channel Sections; Web Crippling; Design Rules; Direct 

Strength Method. 

1! Introduction 

Over the last two decades, aluminium alloys have been productively used in construction 

industries as a thin-walled structural member due to its advanced mechanical properties. 

Several attempts have been made to utilise aluminium in construction [1-2], and it has been 

well recognised that aluminium alloys have economic advantages, and are therefore 

competitive, in structural applications where their inherent characteristics including low 

density (third of steel density), corrosion resistance and functionality of structural shape are 

fully utilised. Moreover, the physical properties, technological features and production process 

of aluminium alloys have improved their prospect to compete with steel in a wide range of 

building applications especially those in harsh industrial and marine environments [3, 4].  

In general, thin-walled flexural members are highly prone to various types of buckling 

instabilities including local, distortional and global buckling. Inducing high concentrated loads 

or reactions transversely on the members may potentially lead to a critical failure on the web 

of the cross section called web crippling. Besides the extensive experimental investigations 

conducted to explore the web crippling phenomenon, numerical analyses have also been 

implemented to further comprehend the mechanism of web crippling failure on various section 

types. It has been recognised that such analyses are more flexible in offering much detailed 

quantitative results, hence saving a great deal of time and effort compared with the 

experimental work. In the literature, several attempts have been conducted to investigate the 
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web crippling failure numerically using different analysis methods. Macdonald et al. [5] and 

Ren, et al. [6] carried out a nonlinear finite element (FE) analysis using ANSYS software on 

cold-formed channels under web crippling action. Non-Linear static analysis was performed 

showing detailed model definitions, particularly those related to the boundary conditions and 

symmetry. Yousefi et al. [7] also employed a similar analysis approach, implicit quasi-static 

analyses, using ABAQUS to simulate the web crippling behaviour of cold-formed ferritic 

stainless steel unlipped channels with web holes.	Recently, an explicit quasi-static analysis 

method in ABAQUS was successfully employed to investigate the web crippling strengths of 

cold-formed steel members [8-10]. It was found that this type of analysis is more effective in 

overcoming specific convergence issues often encountered in the nonlinear static analysis 

method.  

Even though aluminium alloys share many similarities with steel, the application of the design 

methods developed for steel, being empirical in nature, may not be possible for aluminium 

elements [11]. Therefore, several studies have been undertaken to investigate the web crippling 

actions on aluminium members.  Zhou and Young [12, 13] carried out experimental web 

crippling tests using extruded aluminium hollow sections with/without a circular hole in the 

webs. The tests were conducted under two flange loading conditions (ETF and ITF) where the 

bearing plates were unfastened to the section flanges. Numerical models were developed and 

non-linear static analyses were performed. The numerical results were then validated against 

the experiments. Similarly, experimental and numerical investigations were reported by Chen, 

et al. [14] to assess the web crippling failure of extruded aluminium hollow sections under one 

and two flange loading conditions. Wang et al. [15] performed both experimental study and 

numerical analysis of web crippling of extruded I-shaped aluminium alloy beams under one 

flange load cases. Non-linear finite element analysis using the Arc-Length Method in ANSYS 

was employed. Recently, Su and Young [16] investigated the web crippling failure for extruded 

aluminium stocky hollow sections under the four loading conditions. Numerical models were 

developed and verified against the experiments and subsequently used to conduct a parametric 

study. 

 Since most of the available studies on aluminium members are limited to extruded symmetrical 

sections (hollow and I-shaped sections), further research and design guidelines are required to 

estimate the web crippling strengths of roll-formed asymmetrical aluminium alloy sections 

based on a large number of experimental and numerical results. 
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In this study, accurate nonlinear finite element (FE) models were developed first for roll-

formed ALC sections subject web crippling under the ETF and ITF loading conditions. The 

developed FE models were then verified against the experimental data reported in Alsanat et 

al. [17]. The outcomes of this study indicate that the numerical results agreed well with the 

experiments in terms of the ultimate web crippling strengths, load-vertical displacement 

responses, and failure modes. Based on the verified FE models, a comprehensive parametric 

study covering wide-ranged ALC dimensions, aluminium alloy grades, and bearing lengths 

was conducted. The acquired parametric database including all relevant experimental and FE 

results was then used to evaluate the consistency and reliability of the currently used design 

rules [17-20]. Furthermore, a Direct Strength Method (DSM) design approach was proposed 

based on a consistent elastic buckling and plastic analysis to determine the web crippling 

capacities of both roll-formed aluminium and cold-formed steel lipped channel members under 

the two flange loading conditions.   

2! Brief overview of experimental study 

Alsanat et al. [17] undertook a web crippling experimental study comprising forty tests 

(including two repeated tests) on ALC sections under two flange loading conditions (ETF and 

ITF). The specimens were roll-formed using the structural aluminium alloy grade 5052 H36. 

The test set-up and the specimen length were designed according to the AISI Standard test 

method [21] for cold-formed steel structures, as shown in Figure 1. The experiments covered 

five different lipped channel sections with four bearing plate lengths (N ranged from 25 mm to 

150 mm) for both the ETF and ITF loading conditions. The average measured geometric 

dimensions of the tested sections are given in Tables 1 and 2, with the member length equal 

three and five times the section depth (d) for the ETF and ITF loading conditions, respectively.  

During the test, the flanges of the lipped channel specimens were not attached to the supports 

(bearing plates). 

The specimens were labelled in a way that the loading condition, web height and thickness, 

and the bearing plate length could be easily known from the label. For example, the label “ITF-

10030-N50” indicates that the specimen’s load case is ITF, the web height is 100 mm, the web 

thickness is 3 mm, and the bearing length (N) is 50 mm. 
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3! Numerical study 

In order to simulate the ALC sections subjected to web crippling, the finite element and general 

purpose analysis program ABAQUS version 6.14 [22] was employed in this study. As 

mentioned earlier, two analysis methods were employed in the previous FE studies of web 

crippling, namely: non-linear static analysis and explicit quasi-static analysis methods. The 

latter was chosen in this study to investigate the web crippling mechanism of the ALC section 

due to its ability to overcome the difficulties associated with convergence and contact that non-

linear static analyses often encounter [8,10]. 

3.1! FE model development 

The FE models in this study consist of three main components namely: the ALC section, the 

bearing plates and the contact between them. The cross-sectional dimensions and properties of 

material acquired from the coupon tests reported in [17] were implemented to develop the 

numerical models. The influence of initial geometrical imperfections on the ultimate web 

crippling capacities of cold-formed steel lipped channel sections under two-flange load cases 

was thoroughly investigated by Natário, et al. [8] and Sundararajah et al. [10]. Several initial 

geometrical imperfection situations were explored, and it was concluded that their overall 

effect on the web crippling capacity is barely perceptible (less than 1%). Given the fact that the 

web moment caused by the geometrical eccentricity (due to corner radius) is relatively larger 

than that induced by the presence of initial geometrical imperfections, and such imperfections 

of the ALC specimens were thus not considered in this study. 

3.1.1! Finite element type and mesh control 

There are several options of element types that are available in the ABAQUS element library 

[22]. In this study, four shell element types including S4, S4RS, S4R, and S4RSW were 

investigated. Specimen ETF-10030-N50 was chosen as a benchmark to study the influence of 

the element type on the behaviour and capacity of web crippling. Figure 2 shows the 

comparison of the load-displacement curves for these types of shell elements. It is shown that 

the ultimate web crippling capacities predicted using S4, S4R and S4RS elements closely 

match with test results; however, the simulated capacity using S4RSW element is significantly 

lower than the test result.  In this study, therefore, the ALC sections were modelled using the 

S4R shell elements as recommended by [8-10], while the rigid bearing plates were modelled 

using R3D4 element which is a bilinear 4-node 3-D rigid quadrilateral element. 
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Suitable sizes of the finite element mesh for web, flanges and the corners were selected 

depending on the result accuracy and the computational time of the analyses. To determine the 

most appropriate mesh size, ETF-10030-N50 was modelled using element mesh sizes ranged 

from 3 mm×3 mm to 20 mm×20 mm. Figure 3 shows the load versus vertical displacement 

curves for ETF-10030-N50 specimen with various mesh sizes. It is shown that the capacity of 

web crippling is not significantly affected by the mesh size. However, it is clearly seen from 

Figure 4 that 5 mm×5 mm mesh size is the most suitable size with satisfying computational 

time. Hence, the mesh size of 5 mm×5 mm was used for the flanges and the web while finer 

mesh (5 mm×1 mm) was used for the corners of the section to ensure proper transformation of 

the load from the flange to the web of the section. 

3.1.2!   Material properties 

The specimens’ material properties measured from the coupon tests [17] were used in the FE 

analyses. Since high plastic strains are expected to occur in web crippling problems, it is 

recommended to use the true stress-logarithmic strain curve by converting the usual 

(engineering) stress-strain curve using the following equations: 

�∀#∃% = �%∋((1 + �%∋()    (1) 

�∀#∃% = ��(1 + �%∋()      (2) 

where �∀#∃%  is the true stress (MPa), �∀#∃%  is the true strain, �%∋(  is the engineering stress 

(MPa) and �%∋( is the engineering strain.  

The converted true stress and strain values were used herein to define the material properties 

in the numerical models. Figure 5 shows the typical true stress-strain curve for the 5052 H36 

aluminium alloy. It should be noted that the plastic deformation of corners due to the roll-

forming process was not considered in the material model in this study. This is due to the fact 

that the scope of this study is focused on the failure of the web (web crippling) in the lipped 

channel sections. Hence the material properties used throughout the sections were based on the 

tensile coupon tests conducted using the samples from the web element. Similar approach was 

used in the previous numerical studies [8,10] on cold-formed steel lipped channel sections. 

3.1.3! Contact definition 

There are two common algorithms to model contact in ABAQUS, so-called General Contact 

and Contact Pair algorithms. The latter was used in this study to simulate a pure master-to-

slave contact with Kinematic Contact method due to its suitability to simulate the contact 

between rigid elements (bearing plates) and deformable bodies (aluminium sections). The 
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contact formulation was assumed to be “Hard” in the developed numerical models as the 

bearing plates were nondeformable. 

To avoid any fractional slip during the analyses, friction between the contact bodies was 

defined. The influence of various friction coefficients was explored, and it was found that their 

effect on the web crippling capacity and behaviour of the ALC sections was minimal. Hence, 

a friction coefficient of 0.4 was assumed for all the numerical models. 

3.1.4!  Boundary conditions 

The boundary conditions were assigned to the loading plates using Reference Points (RP) as 

shown in Figure 6. The ETF boundary conditions were similar to those applied to the ITF 

models. As illustrated in the figure, all the translational displacements (Ux, Uy and Uz) and 

rotations (Ry and Rz) except for the rotational degree about the X-axis (Rx) were fixed at the 

support plate (bottom plate). The loading plate (top plate) was prevented from translational 

displacement in Ux and Uz directions and rotations Ry and Rz. However, the translational 

displacement Uy was allowed to move vertically with a limited 25 mm displacement towards 

the specimen.  

A Smooth Step Amplitude option was implemented in the boundary condition of the loading 

plate to impose a transverse load on the sample. This option allows the specimen to deform in 

a smooth manner from the original state as the displacement in the initial phase was slower. It 

should be mentioned that the required stable time increment for the quasi-static analyses is 

several orders of magnitude smaller than the experimental time which leads to the generation 

of a very large number of calculations. To reduce the computational time, the mass density of 

the elements was increased using ‘Mass Scaling’ method to raise the stability limit and to 

significantly reduce the number of increments.   

3.2! FE analysis validation 

A total of 38 ALC sections under the web crippling action were numerically analysed and 

compared with the experimental results. Tables 1 and 2 show a strong agreement between the 

experimental web crippling capacities (PExp.) and the FE results (PFEA) for both ETF and ITF 

loading conditions, respectively. The mean value of the PExp./PFEA ratio for both the ETF and 

ITF specimens is 1.00 with the COV value of 0.05 for the ETF loading condition and 0.03 for 

the ITF loading condition.  
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The load-vertical displacement curves derived from the numerical analyses and the failure 

modes were also compared with the experimental measurements and observations (Figures 7 

(a) and (b)). Although the ultimate and post-failure stages agree very well, a noticeable 

difference in the elastic stiffness was found in the pre-failure stage. It is believed that such a 

difference was due to the flexibility of the test rig, which was inevitably included when 

measuring the vertical displacement during the tests. Figures 8 (a) and (b) compare the failure 

modes of the ETF-20025-N50 and ITF-25025-N50 specimens, respectively. Generally, the 

comparisons indicate that the numerical models are able to reproduce the experimental ultimate 

web crippling capacities, load-vertical displacement responses and failure modes of the ALC 

sections under two flange loading conditions.  

It was also observed from the experimental investigations [17] that all the ITF specimens with 

a small loading plate (N= 25 mm) underwent a combined web crippling and flange crushing 

failure. The developed numerical models were also validated against the experiments of such 

kind of failure. Numerical load-vertical displacement plots and failure modes were compared 

in Figures 7 and 8, respectively, with the experimental results of specimens exhibited flange 

crushing failure. Figure 7 (c) shows the applied load-vertical displacement curves obtained 

from the test and the FE analysis for the ITF-10030-N25 section. The two curves agree well 

from the initiation of the test until the occurrence of flange crushing. Figure 8 (c) presents the 

failure modes of ITF-15025-N25 as observed from the experiments and the FE analysis.  

4! Parametric study 

In this research, a detailed paramedic study was performed to thoroughly investigate the web 

crippling phenomenon of the ALC sections under two-flange loading conditions. The validated 

FE models were used as a basis for the paramedic study to create a comprehensive web 

crippling capacity database. This database will then be used to investigate the accuracy of the 

available design guidelines obtained from the international specifications and Alsanat et al.’s 

[17] modified equations. Furthermore, DSM-based capacity prediction equations will be 

proposed and calibrated based on this database. 

4.1! Minimum control specimen length  

It was observed from the experimental results that all the specimens subjected to the ITF 

loading condition and with 100 and 150 mm bearing plates were unable to reach their ultimate 

potential web crippling strengths [17], given the fact that the influence zone length was 
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extended to more than that the specimens length recommended by the AISI Standard [21]. To 

investigate this issue numerically, von Mises stress distributions and the load versus 

displacement curves for the 25025-N100 and 25025-N150 specimens, respectively, with 

different bearing plate lengths were compared. Figures 9 (a-d) display the von Mises stress 

distributions at the maximum loads of the 25025-N100 specimen with two sets of lengths: 3d 

and 4d for the ETF loading condition, as well as 5d and 6d for the ITF loading condition. For 

the ETF loading condition, it is clearly observed that the stresses at the free specimen end 

remain at the negligible values for both lengths. Therefore, it can be confirmed that the 

recommended control length of the ETF specimens (L ≥ 3d) for cold-formed steel sections is 

suitable for aluminium members as well. 

For the ITF loading condition, however, the stresses with a 5d length reached rather high values 

at both ends, while they are relatively low for the specimen with a 6d length. Figure 10 presents 

the typical load versus vertical displacement curves for specimen ITF-25025-N150 with 

different lengths. A significant drop in the web crippling capacity can be clearly seen in the 

specimen with the control length (L=5d) in comparison with the longer specimens.  Hence, a 

parametric study was conducted to determine an appropriate minimum length for the ALC 

sections under the ITF loading condition. A total of thirty-six FE models loaded by 100 mm 

and 150 mm bearing plate lengths were established with different specimen lengths (L = 5d, 

6d, 9d and 13d) under the ITF loading condition. The ultimate web crippling strengths of these 

models are given in Table 3. The ultimate strength ratios of the numerical models with the 

control length (L=5d) with respect to those of L=13d were found to reach as low as 88%. 

However, the capacity ratios for the specimens of a 6d length are more conservative with a 

minimum value of 97% and this ratio is 98% for the specimens with control length (L=9d). 

Thus, it is recommended to increase the minimum specimen length to six times the section 

height for any future web crippling studies using aluminium sections. 

4.2! Web crippling parameters 

Table 4 summarises the details of the parametric study conducted for the ALC sections under 

the ETF and ITF loading conditions. Bearing lengths (N) ranging from 50 mm to150 mm, inside 

bent radius (ri) ranging from 2 mm to 8 mm and web slenderness (h/t) ranging from 27.7 to 

130 were considered to investigate their effects on the web crippling failure. Furthermore, up 

to three different aluminium alloy grades: 5052-H32 (yields stress (fy) = 145 MPa, ultimate 

stress (fu)= 214 MPa and Young’s Modulus (E) = 70 GPa), 5052-H36 (fy = 179MPa, fu = 255 

MPa and E = 69.3 GPa) and 5052-H38 (fy = 207 MPa, fu = 268 MPa and E = 70.3 MPa) [18] 
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were also considered in this study to investigate the effects of the material properties of 

different aluminium alloy grades. Note that the specimen’s length was 3d for the ETF loading 

conditions and 6d (the proposed length) for the ITF loading condition. Also, this parametric 

study does not include the small bearing length (N = 25 mm) as the numerical models may gain 

more capacity due to flange crushing (yielding of the web-flange corner region).   

The bi-linear material model implemented by Su et al. [23] for the development of the 

Continuous Strength Method (CSM) to design aluminium alloy structures was used here to 

represent the material properties in the parametric FE analyses.  Typically, this model considers 

the strain hardening of the aluminium material and consists of two stages: the initial elastic 

stage, represented by the Elastic modulus of the material E, and the linear hardening stage with 

a strain hardening slope (Esh), determined by Equation (3). The ultimate strain (�∃)  can be 

calculated using Equation (4).  

�12 =
34536

7894596
      (3) 

�∃ = �; 1 −
36

34
+ �=          (4) 

where �> is the yield strain,  �∃ is the material ultimate strength (MPa), and C2 = 0.5, C3 = 0.13, 

and C4 = 0.059 are set for aluminium alloys.  Figure 5 compares the typical material stress-

strain curve and the CSM material bilinear model. 

Figures 11 to 14 illustrate the influences of the main web crippling parameters on the overall 

capacities of the ALC sections under the ETF and ITF loading conditions. Figure 11 shows an 

inverse relationship between the web slenderness ratio (h/t) and the ultimate web crippling 

capacity of the ALC sections with three different bearing lengths (N). It can be seen that the 

sections with a small slenderness ratio (h/t = 32) are more sensitive to the bearing length 

variations compared to a large slenderness ratio (h/t = 125). Moreover, the sections loaded by 

smaller bearing plates have a smoother reduction in capacity compared to those with large 

bearing plates. Figure 12 demonstrates the effects of the loading plate length ratio (N/t) on the 

ultimate web crippling capacities of the ALC sections with varying internal corner radii (ri) of 

2, 5 and 8 mm. The section capacities are considerably increased when the N/t ratio increases 

from 16 to 50, due to the increased distribution of the stresses generated from the bearing plates. 

It is also observed that such an increase is more sensitive with smaller ri when the specimens 

are loaded under the ITF loading condition in comparison to the ETF loading condition. With 

respect to the varying internal bent radius ratios (ri/t), it can be deduced from Figure 13 that an 

increase in ri/t leads to a substantial reduction in the capacities of the ALC sections under both 
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the ETF and ITF loading conditions. Given the fact that the out-of-plane bending moment 

acting on the flat portion of the web plate due to the eccentric load leads to a substantial 

reduction in the section capacity. Furthermore, the smaller the h/t ratio, the more significant 

the capacity reduction, especially under the ITF loading condition. Finally, it was observed 

from Figure 14 that increasing the yield strength (fy) rises the capacities of the ALC sections in 

a linear manner, as expected, for all the specimens of three different bearing lengths (N) and 

under the loading conditions of both ETF and ITF loading conditions. 

5! Current design rules 

The web crippling strengths database created by the experimental and numerical parametric 

analysis results were compared with the predicted web crippling capacities calculated using the 

current design guidelines recommended in the AS/NZS 1664.1 [18], AS/NZS 4600 [19] and 

Eurocode 3 [20] specifications. It should be noted that the comparison excludes the design rules 

given in Eurocode 9 [24] for aluminium structures since they are limited to aluminium 

structural sheeting (members with two or more webs) and do not have the ability to estimate 

the web crippling capacity of single-web sections including aluminium lipped channel sections.  

•! AS/NZS 1664.1 [18] for aluminium structures 

�ΑΒΧDD=	 =
Χ.Γ∀8 1Η∋ Ι(ϑ.=D36Κϑ.ϑΓ Λ36	)(ΜΚ7Ν8)

7ΝΟΚ#Π(Χ5ΘΡ1 Ι)
		    (ETF)                   (5) 

 

�ΑΒΧDD=	 =
∀8 1Η∋ Ι(ϑ.=D36Κϑ.ϑΓ Λ36	)(ΜΚ7ΝΣ)

7ΝΟΚ#Π(Χ5ΘΡ1 Ι)
          (ITF)                           (6) 

where �ΤΧ = 140��;  		�ΤΓ = 33	��;	�Τ; = 10	��; N is the bearing length (mm),  �> is 

the 0.2% static yield stress (MPa), E is the elastic modulus (MPa), t is the thickness of the web 

(mm), ri is the internal corner radius (mm) and  � is the angle that is calculated from the bearing 

surface plane to the plane of the web surface. Note that �	is taken as 90
o
 for the lipped channel 

sections used in this experimental study.  

•! AS/NZS 4600 [19] for cold-formed steel structures 

�ΑΒ=Dϑϑ = ��Γ�> ��� � 1 − �⊥
#Π

∀
1 + �Μ

Μ

∀
1 − �2

2

∀
																							(7)	

where h is the flat portion of the web (mm); � is the general coefficient, �⊥ is the coefficient 

for the internal corner radius, �Μ  is the coefficient for the bearing length and �2  is the 

coefficient for the slenderness of the web. The values of these coefficients are shown in Table 
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5. Note that in Equation (7) , the following conditions 	ℎ � ≤ 200, � � ≤ 210 , 
�Η
� ≤ 3 , 

�
ℎ ≤ 2, and � = 90γ must be satisfied. 

•! Eurocodes 3 [20] for cold-formed steel structures 

�Λ7; =
ηΣη8ηΟ36∀

8

ιϕΣ
6.66 −

λΝ

D=∀
1 + 0.01

Μ

∀
	 	 	 	(8)	

�Λ7; =
ηΟηνηο36∀

8

ιϕΣ
21 −

λΝ

ΧD.;∀
1 + 0.0013

Μ

∀
	 	 	(9)	

where: 

 �Χ = 1.33 −
36

Dθϑ.θ
; 

 �Γ = 1.15 − 0.15
#Π

∀
  (0.5 ≤ �σ ≤ 1.0); 

 �; = 0.7 + 0.3
Ι

θϑ

Γ

;                

	�= = 1.22 −
36

Χϑ;D.=
; 

 �σ = 1.06 − 0.06
#Π

∀
  (�σ ≤ 1.0);   

�Τ is the web height between flange mid-lines in mm; �ϖΧ  is the partial safety factor (�ϖΧ =

1) and �	is equal to 90
o
. 

Table 6 summarises the mean and COV values of capacity ratios PExp.-FEA/Ppredicted, where PExp-

FEA is the ultimate capacities acquired from the experiments (PExp.) and numerical analyses 

(PFEA) and Ppredicted is the predicted web crippling capacities yielded by the current international 

specifications. Generally, the design rules due to the aforementioned three specifications 

overestimate the web crippling strengths of the ALC sections, with the mean values ranging 

from 0.44 to 0.89, and large COV values from 0.13 to 0.47 for both the ETF and ITF loading 

conditions. The reasons behind such a gross overestimation of the web crippling capacity of 

channel sections based on the aforementioned specifications are: (i) both AS/NZS 4600 [19] 

and Eurocodes 3 [20] spesifications were developed for cold-formed steel sections and the 

influence of the elastic modulus (E) was not considered, thus highly overestimating the 

capacity of aluminium sections, and (ii) the empirical design guideline given in the AS/NZS 

1664.1[18] specification was developed based on the available experiments in the literature 

which were conducted using extruded and symmetrical sections (hollow and I shaped sections). 

Such sections can sustain more capacity compared to asymmetrical sections (channel sections) 

which experience high out-of-plane moment acting on the web due to eccentric loading. 
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Figures 15 (a) and (b) display the comparison between the web crippling capacities PExp.-FEA 

and Ppredicted of the current international specifications under the ETF and ITF loading 

conditions, respectively. 

Alsanat et al. [17] considerably improved the accuracy of the design guidelines specified in the 

AS/NZS 1664.1 [18] and Eurocode 3 [20] specifications. This improvement was done by 

modifying the design equations according to their experimental results, where the slenderness 

ratio h/t of the test specimens ranged from 31 to 101, an inside bent radius limited to ri = 5 mm 

and an aluminium alloy grade limited to 5052 H36. In the present study, a comparison between 

the predictions of the modified equations and those of the wide-ranged parametric analysis data 

obtained in Section 4 (including three aluminium alloy grades, h/t ranging from 28 to 130 and 

ri = 2, 5 and 8 mm) and the experimental data were carried out. The comparison shows that the 

modified equations developed by Alsanat et al. [17] have the ability to precisely predict the 

web crippling strengths with reasonably acceptable mean and COV values of PExp.-FEA/Ppredicted, 

ranging between 1.00 to 1.10 and 0.07 to 0.12, respectively, for both loading conditions as 

shown in Table 6. 

The unified Equation (10) associated with the geometrical coefficients given in Table 5 was 

also proposed by Alsanat et al. [17] and validated herein against the ultimate web crippling 

capacities acquired from the experimental tests and parametric analyses. This equation has the 

ability to predict the web crippling strengths of both roll-formed aluminium and cold-formed 

steel lipped channel sections [17]. 

�∃∋Η3Η%λ = ��Γ ��> sin � 1 − �⊥
#Π

∀
1 + �Μ

Μ

∀
1 − �2

2

∀
  (10) 

The mean and the corresponding COV values of the ultimate-to-unified web strengths are 1.04 

and 0.10, respectively, for the ETF loading condition, whereas these values are 1.08 and 0.07 

for the ITF loading condition as shown in Table 6.  Therefore, Equation (10) is further proven 

to have the ability to estimate the web crippling strengths of wide-ranged ALC sections with 

satisfactory COV values. Figures 16 (a) and (b) show the comparison between the crippling 

capacities values (Ppredicted) yielded by the aforementioned modified design rules and the 

ultimate capacities (PExp.-FEA) acquired from the experiments and numerical analysis under the 

ETF and ITF loading conditions, respectively. 
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6! The proposed Direct Strength Method (DSM)-based capacity prediction approach 

The Direct Strength Method (DSM) is a useful and reliable design approach developed by 

Schafer [25] to predict the ultimate strengths based on the elastic and plastic capacities of thin-

walled sections. Recently, the DSM has been accepted by the AS/NZS 4600 Standards [19] for 

cold-formed steel structures under compression, bending and shear actions. However, no DSM-

based approach is available for the design of thin-walled sections subject to web crippling 

failure. Several attempts have been made to extend this method for cold-formed steel sections 

subjected to the web crippling action [26-32]. In this section, relevant equations reported in the 

literature to estimate the key parameters (elastic buckling and plastic loads) for thin-walled 

members were assessed. Subsequently, suitable improvements were made to develop a DSM 

design approach for ALC sections. 

6.1! Critical buckling load 

Generally, the elastic buckling load (Pcr) can be determined by a popularly used theoretical 

elastic buckling approach (Equation (11)) for conventional plates. However, due to the 

complex interface between the web, corner and the flange elements of the thin-walled 

members, such a simplified approach is rather inaccurate, therefore finite element or finite strip 

analyses are usually performed instead. For simplification, Sundararajah et al. [32] proposed 

an approach (Equation (12)) to determine the buckling coefficient (kcr) for cold-formed steel 

lipped channel sections under the two flange loading conditions. Note that the coefficient (kcr) 

has an empirical nature as it is related to geometrical dimensions of the section and the bearing 

length.  

�Θ# =
ζ8Λη{|∀

Ο

ΧΓ Χ5}8 λ
                                                              (11) 

�Θ# = �∼ 1 − �∼,#
#Π

∀
1 − �∼,Τ

2

∀
1 + �∼,�

Μ

∀
1 + �∼,∼

∼�

∀
             (12) 

where, Cb, Cb,r, Cb,w, Cb,ℓ  and Cb,b  are the geometrical buckling coefficients for lipped channel 

sections (Table 7), and � is the Poisson ratio (0.33 for aluminium). 

To verify the suitability of Equation (12) for ALC sections under the ETF and ITF loading 

conditions, idealised numerical models were analysed using elastic buckling analyses for the 

38 ALC test specimens. The elastic buckling coefficient (kcr(FEA)) obtained by Equation (11) 

using the elastic buckling loads (Pcr(FEA))  acquired from the FE analyses were then compared 

with the estimation of Equation (12). A good agreement between the FE analyses results and 
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the predictions using Sundararajah et al.’s [32] bucking coefficient kcr were found.  The mean 

and COV values of kcr(FEA) to kcr are 1.00 and 0.09 for the ETF loading condition, respectively, 

while these values are 0.95 and 0.07 for the ITF load case, as shown in Table 8. Hence the 

critical elastic buckling coefficient (kcr) calculated using Equation (12) was considered suitable 

to predict the elastic buckling load of the ALC sections. 

6.2! Plastic load 

Determining the plastic/yield load (Py) is rather complex since the web crippling mechanism is 

associated with localised deformations and non-uniform distribution of the stresses. Yield-line 

Theory (YLT) was employed by Zhou and Young [33] and Natário et al. [28, 29] to estimate 

the plastic load of thin-walled members (Equation (13)). Zhou and Young [33] developed 

analytical models to predict the yield load of hollow members subject web crippling. In this 

model, the plastic mechanism length (Nm) is determined according to the assumption of the 

load dispersion rate of 1:2.5 through the section corner, and 1:1 through the web for both the 

ETF and ITF loading conditions. Natário et al. [28, 29] further amended this assumption by 

increasing the load dispersion rate through the web from 1:1 to 1:1.5 for the ITF loading 

condition and maintained the same assumption for the ETF loading condition (Equations (14) 

and (15)). However, this assumption was deemed by Natário et al. [29] to be limited, as the 

plastic load in certain cases may not fit well with the actual failure mechanism. This was 

observed by Sundararajah et al. [10] as the ultimate loads obtained from the FE analyses for 

cold-formed lipped channel sections with high bent radius (ri = 7 mm) exceeded the plastic 

load. Figures 17 (a) and (b) show the ultimate-to-plastic load ratio (Pn/Py) data distributions of 

cold-formed steel (reported by Sundararajah et al. [10]) and ALC sections under the DSM-

format. The plastic load was calculated according to the assumptions made by Natário et al. 

[28,29] (Equations (14) and (15)). A large number of data points (models with ri = 7 and 8 mm) 

are found above the plastic plateau (Pn/Py=1) for the ITF loading condition which is 

theoretically not acceptable regardless of the potential strain hardening effects [29]. Even for 

the ETF loading condition, the data points in the vicinity of the plastic plateau indicate that the 

governing failure was mainly plastic (yielding) failure; however, it was observed from the FE 

analysis that the prominent failure was buckling for these points.   

�> =	�>��( 4��
Γ + �Γ − 2��)                                         (13) 

�� = � + 2.5�%�∀ + ℎ/2  (ETF)   (14) 
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�� = � + 2 2.5�%�∀ + 3ℎ/4     (ITF)   (15) 

where rext is the external bent radius (ri+t), Nm is the yield mechanism length and rm is the bent 

radius measured along the middle of the section (ri+t/2). 

To further comprehend the plastic mechanism for lipped channel sections with different corner 

radii, a rigid plastic numerical analysis was undertaken to estimate the plastic mechanism 

length. To observe a pure (rigid) plastic mechanism in the numerical analysis, the elastic 

buckling capacity of the sections was strengthened by assuming a large value for the elastic 

modulus	 � → ∞  and therefore the FE models were governed by plastic (yielding) failure. 

Figures 18 (a) and (b) show the von Mises stress distributions of the rigid 15030-N100 

specimen with three different external corner radii (rext =5, 8, and 11 mm) under both the ETF 

and ITF loading conditions, respectively, at the ultimate load. It is clear that the non-uniform 

stresses largely distribute through the section corners which implies that the section external 

bent radius has a considerable influence on the plastic mechanism length of the section. The 

increase of the plastic mechanism length was found to be around 11 times the increase in the 

external corner radius (∆�), as shown in Figures 18 (a) and (b). Based on this observation, 

Equations (16) and (17) were proposed in this study to estimate the plastic mechanism length 

for both the ETF and ITF loading conditions, respectively. Note that Equation (13) proposed 

by Natário et al. [29] was used in this study to calculate the plastic load of unfastened lipped 

channel sections under the ETF and ITF loading conditions. 

�� = � + 11�� + ℎ/2  (ETF)    (16) 

�� = � + 2 11�� + 3ℎ/4   (ITF)    (17) 

6.3! The proposed DSM-based design rules 

In this research, a DSM-based approach was developed based on (i) the experimental and FE 

parametric analysis data obtained herein for aluminium sections (Table 4), (ii) the experimental 

and FE parametric analysis data reported by Sundararajah et al. [10] for cold-formed steel 

lipped channel sections (252 ETF and 252 ITF models), (iii) the critical buckling load 

calculated using Equations (11) and (12), and (iv) the yield load calculated using Equations 

(13), (16) and (17). Using a non-linear regression analysis, the DSM design formulae 

(Equations (18) and (19)) were calibrated based on (i) and (ii) data to estimate the ultimate web 

crippling strengths (Pn) of the lipped channel sections, and the coefficients of determination 

are R
2
=0.94 and R

2
=0.90 for the ETF and ITF loading conditions, respectively.  
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For the ETF loading condition: 

�∋ =

�>						for	�	 ≤ 	0.43																																																																																		

0.57�> 1 − 0.14 1 −
�{|

�6

ϑ.D�
�{|

�6

ϑ.D�

	for	� > 0.43																			
    (18) 

For the ITF loading condition: 

�∋ =

�>						for	�	 ≤ 	057																																																																											

0.89�> 1 − 0.222 1 −
�{|

�6

ϑ.�σ
�{|

�6

ϑ.�σ

	for	� > 0.57																	
           (19) 

where � is the web crippling slenderness (� = �>/�Θ# ). 

Figures 19 (a) and (b) present the ultimate-to-plastic load ratio Pn/Py (representing the strength 

reduction factor) versus the web crippling slenderness (λ). According to these results, a well-

defined trend signifying the relationship between the Pn/Py and the web crippling slenderness 

(λ) is clearly visible for both the ETF and ITF loading conditions. It is also observed that the 

data points are situated under the plastic plateau (i.e., Pn/Py=1) for both loading conditions. 

This generally indicates the adoption of reliable proposed Yield-line Theory (YLT) models, 

associated with the calculation of the plastic load (Py) as discussed in Section 6.2. As expected, 

it was found that the stocky sections (i.e., low h/t) with large inside bent radii (ri) are mostly 

governed by yielding (closer to the plastic plateau) owing to their high elastic buckling 

capacity, whereas slender sections (i.e., high h/t) with small ri often fail in elastic buckling. 

Moreover, the high accuracy and reliability of the proposed DSM design equations for both the 

aluminium and steel lipped channel sections as evident in Figure 19, verifying the strong 

capability of the proposed DSM-based approach to be applied to different material types.  The 

mean and COV values of PExp.-FEA/Ppredicted (predictions by the proposed DSM-based approach) 

capacity ratios are 1.04 and 0.14 for the ETF loading conditions, while these values are 1.03 

and 0.16 for the ITF loading condition, as given in Table 6. 

7! Reliability analysis 

The resistance factor(ϕ�) can be determined using a statistical model provided in the North 

American Specification [34]. This model considers the variation in loading, fabrication and 

material effects. The capacity resistance factor is given by Equation (20a). 

�Τ = 1.5�������
5�� �ϕ

8Κ��
8Κ7���

8Κ��
8

                       (20a) 
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where �Τ is the resistance factor;	��, �� = 1.1, 0.06 are, respectively, the mean value and 

coefficient of variation of the material factor; �� and VF = 1.0, 0.05 are, respectively, the mean 

value and COV of the fabrication factor; �� and �� are, respectively, the mean value and the 

coefficient of variation of the test-to-predicted load ratio;	�ϑ = 2.5 is the target reliability index 

for beams; �∋ = �Γ − 1 �Γ − 3� is the correction factor depending on the number of tests n; 

VQ = 	0.21 is the coefficient of variation of the load effect. 

 

All the above values can be substituted into Equation (20a) to yield the following equation. 

�Τ = 1.65���
5Γ.σ ϑ.ϑσϑΓΚ7���

8

                                           (20b) 

Equation (20b) was used to calculate the resistance factors for the strength values predicted 

from the international design codes, the modified design rules [17] as well as the proposed 

DSM-based design approach. As shown in Table 6, the resistance factors (�Τ) obtained from 

the modified equations range between 0.90 and 0.97. Therefore, it is recommended to use a �Τ 

factor of 0.90 for all the modified equations. In addition, a �Τ factor of 0.85 is suggested when 

the proposed DSM-based approach is used to predict the web crippling strengths of cold-

formed steel and ALC sections under the ETF and ITF loading conditions.  

8! Conclusions 

A numerical study conducted on roll-formed ALC sections subject to web crippling failure 

under the ETF and ITF loading conditions was presented in detail. Thirty-eight numerical 

models were developed and compared with the experimental results. A wide-ranging 

parametric study was then performed based on the validated numerical models to further 

investigate a wide range of geometrical parameters and different aluminium alloy grades. 

Firstly, it was found that the AISI standard test method limitations in terms of the specimen 

length � ≥ 5�   for ITF loading condition may not be applicable for aluminium members, 

therefore the specimen length control � ≥ 6� is recommended. Subsequently, the acquired 

large database containing FE analysis and experiment results was used to evaluate the 

consistency and reliability of the current design rules recommended by the international 

specifications, and the accuracy of the modified equations. It is shown that the design 

guidelines given in the international specifications highly overestimate the actual web crippling 

capacities with a large coefficient of variation (COV). On the other hand, the modified 

equations are capable to reasonably predict the web crippling strengths of the ALC sections 

under two-flange loading conditions. This study also presents a first attempt to apply a DSM-
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design approach to determine the web crippling capacities for roll-formed aluminium sections. 

Elastic buckling analysis was carried out to validate the approach proposed in the literature to 

predict the buckling load for the aluminium members. FE rigid plastic analysis was also 

performed to develop a reliable approach to estimate the plastic mechanism length associated 

with the determination of the plastic load. The proposed DSM-based approach was then 

validated against the FE and experimental data of both roll-formed aluminium and cold-formed 

steel lipped channel sections with good agreements.  
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Figures 

	

     

(a) ETF test (b) ITF test    (c) cross section  

Figure 1: Web crippling test setup and ALC section profile [17] 

 

 

 

Figure 2: Load versus vertical displacement curves for different types of shell elements (ETF-10030-N50) 

 

 

Figure 3: Load versus vertical displacement curves for different mesh sizes (ETF-10030-N50) 

0

1

2

3

4

5

6

7

0 4 8 12 16

L
o

ad
 (

k
N

)

Vertical displacement (mm) 

Test
S4
S4R
S4RS
S4RSW



	

24	

	

 
Figure 4: Ultimate load versus mesh size for ETF-10030-N50 specimen 

 

 

 

 

Figure 5: Typically measured stress-strain curve and the bi-linear CSM model for 5052-H36 aluminium alloy 
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            (a) Front view of ITF           (b) Front view of ETF (c) Side view 

 

Figure 6: Overview of the assigned boundary conditions in the web crippling models 

 

 

 
    (a) ETF-15030-N100                                          (b) ITF-20030-N150 

 
(c) ITF-15030-N25 

Figure 7: Comparison of experimental and numerical load versus vertical displacement curves 
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(a) Test specimen and FE model – ETF load case (ETF20025-N50) 

 

     
 (b) Test specimen and FE model – ITF load case (ITF25025-N50) 

 
 

 (c) Test specimen and FE model – ITF load case with flange crushing (ITF15030-N25) 

 

Figure 8: Comparison of experimental and numerical failure modes 

	

	

                            	

                   (a) ETF (L=3d)                                                      (b) ITF (L=5d)    

 
                  (c) ETF (L=4d)                                                    (d) ITF (L=6d)  

   

Figure 9: von Mises stress distributions for 25025-N100 at the ultimate load 
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Figure 10: Load versus vertical displacement curves for specimen ITF-25025-N150 with different lengths 

 
Figure 11: Web crippling capacity (PFEA) versus web stiffness ratio (h/t) with different bearing lengths (models 

with ri= 5 mm and fy = 179 MPa) 

  

 

 
Figure 12: Web crippling capacity (PFEA) versus bearing length ratio (N/t) with different inside bent radii 

(models with h/t = 32 and fy =179 MPa) 
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Figure 13: Web crippling capacity (PFEA) versus inside bent radius ratio (ri /t) with different web stiffness ratios 

(models with N = 100 mm and fy =179 MPa) 

 

 
Figure 14:  Web crippling capacity (PFEA) versus yield stress (fy) with different bearing lengths (models with h/t 

= 32 mm and ri =5 mm) 
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(a) ETF 

 
(b) ITF 

Figure 15. Comparison between experimental and numerical capacities and predictions of international 

specifications  
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(a) ETF 

 

 

 
(b) ITF 

 

Figure 16. Comparison between experimental and numerical capacities and predictions of recently modified 

equations [17]. 
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     (a) ETF 

 

    (b) ITF  

Figure 17: Pn/Py data distributions of cold-formed steel and ALC sections with DSM-based formulas under ETF 

and ITF load cases using the assumptions made by Natario et al. [28,29] 
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        (a)  ETF             (b) ITF 

Figures 18: von Mises stress distributions of 15030-N100 specimen with different external corner radii 

 

 
   (a) ETF 

                                   
(b) ITF 

Figure 19: Comparison between the proposed DSM curve and FE/experimental data from aluminium and steel 

section database 



	

33	

	

 


