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ABSTRACT 

The use of modular building systems (MBSs) in the construction sector is increasing. MBSs 

enhance structural performance of buildings, quality control, and construction speed than 

traditional methods at a lower cost. Additional benefits can be associated with resource 

efficiency at both the production and construction phases, which may increase MBSs’ 
attractiveness and popularity in the short- and long-term future. In the UK, the government is 

planning to solve Britain’s housing crisis by constructing more than 100,000 modular homes 
in an effort to meet its target to provide a million new homes by 2020. At the same time, the 

construction sector is facing post-Brexit skills shortages, while it is undergoing a technological 

revolution. One outcome of the latter has been the production of cold-formed steel (CFS) 

hollow flange sections, which can be optimised using genetic algorithm and finite element 

analyses in order to improve the load-carrying capacity of modular buildings. These optimised 

CFS beams, employed in MBSs, can light gauge the frame building constructions. This paper 

presents a review of MBSs and the application of CFS hollow flange steel sections in 

construction. It then summarises some of the key outputs of numerical studies on the structural 

behaviour of hollow flange beams to justify its applicability in MBS. 

 

Keywords: Cold-formed Steel Beams, Modular Building, Britain’s Housing Crisis, Finite 

Element Analysis, Bending, Shear and Web Crippling.  

1 INTRODUCTION 

Britain is to experience a new wave of construction, as the UK government plans to build 

100,000 modular homes in order to solve the housing crisis by 2020. Concurrently, 

advancements in innovative construction technologies have given rise to the rapid increase in 

the automated, off-site modular building system. MBSs, shown in Fig.1, can deliver 40% 

lighter weight, allow for higher quality and precision in the manufacturing stage, allow better 

quality control, speedier construction and installation compared to traditional methods (e.g. 6 

months quicker), enhanced structural performance, a lower cost (e.g. net savings in the order 

of ‘000s to ‘000000s), and improved resource efficiency (1-5). MBSs are widely used in low-

rise residential buildings, as well as in other buildings of different functional purposes, such as 

educational structures, health care facilities and other commercial buildings. Most recently, 

MBS have also been introduced in multi-storey and mixed-use (commercial with housing) 

buildings, and even in high-rise construction (1).  
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Infrastructure and Projects Authority (IPA) (6) acknowledged that “the construction sector 
faces issues such as low-profit margins and lagging productivity compared to other sectors of 

the economy” and committed to tackling this in several ways, including “accelerating the use 
of modern methods of construction like off-site manufacturing”. Hence there is a need to 

develop a cost-effective modular building system with enhanced structural performance to 

solve Britain’s housing crisis. CFS has increasingly been used in low- and medium-rise 

buildings with a rise in the use of standardised MBSs. These CFS elements can be optimised 

to improve the load-carrying capacity of the element.  

This paper presents a review of modular buildings systems and applications of CFS hollow 

flange steel sections in modular building framework and numerical studies on the structural 

behaviour of hollow flange beams.  

 

     

 

 

 

 

 

 

Fig. 1. Modular Building Systems (7) 

2 MODULAR BUILDING SYSTEMS (MBS) 

The construction industry faces significant challenges and MBS have the potential to address 

most of these challenges (6). MBS is a term used to describe the rapid construction of buildings 

by the use of advanced technologies whereby structural components are manufactured off-site 

and the construction site is used only for assembling. Off-site manufacture (OSM) is a modern 

method of construction or smart construction, defined as “the design, planning, manufacture, 
and pre-assembly of construction elements or components in a factory environment prior to 

installation on-site at their intended, final location” (6). It combines various technologies the 

basic principle of which is to allow a rapid construction on-site. 

The concept of OSM, which is often known as ‘light’ and modular systems, has brought 

improvements to the construction sector, with benefits such as adaptability to the variable 

demands of the market and contextual situations, and ease of assembly. Additional benefits of 

off-site construction include: cost reductions in project construction and maintenance over the 

lifetime of the building; on-time and on-budget delivery of the project to the required quality 

standard, reducing contractual risk for the client/public sector and improving satisfaction; 

enhanced project management, with improvements in profitability and productivity of 

contractors, safety of the working environment and resource efficiency (1, 5).  

Resource efficiency is particularly important form the sustainability point of view. In 

construction, resource efficiency and waste can be attributed to, and therefore managed 

appropriately at, each stage of the construction process i.e. design, manufacture, on-site, 

operation, refurbishment and demolition (8). MBSs allow construction sector to gain control 

of the resources used in the production phase, and reduce waste at all stages of the construction 

process, from production through to use and end-of-life management. Modular buildings can 

be repaired during their use, retaining as such their functional purpose for longer, while they 

can dismantled and re-used if they are no longer needed, thereby effectively maintaining their 

asset value over their lifetime (9). These practices not only can improve profitability and 

productivity in the construction sector, but can also have a reduced impact on the environment, 

economy and society improving as such sustainability in the construction sector.  
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MBSs offer a new, modern approach to construction that can attract, retain and inspire a new 

generation of workers. It can be a solution to the current hosing crisis problem in UK. It is 

envisioned that more customers will be turning to MBSs once they become more reputable in 

terms of their time saving advantages, resource efficiency and inherently greener credentials 

involved. Therefore, there is a need to develop cost-effective MBS with enhanced structural 

performance to solve Britain’s housing crisis. The aforementioned two characteristics can be 

achieved by incorporating optimised CFS elements in MBS. 

3 NUMERICAL ANALYSIS 

Modelling the CFS sections is a heavily non-linear problem with both material and geometrical 

non-linearities, and it was performed using ABAQUS version 2017 in order to evaluate the 

flexural, shear and web crippling behaviours. S4R elements having a mesh size of 5 mm × 5 

mm and centreline dimensions were used to construct the model. A perfect plasticity model 

was adopted in all developed FE model due to the negligible strain hardening in CFS (10). The 

geometrical imperfections were treated with eigen value buckling analysis and the magnitude 

was a function of clear web height, 0.006d1 (11). The imperfection shape was introduced using 

*IMPERFECTION option in ABAQUS. Hollow flange beams were optimised using a genetic 

algorithm (GA). The optimisation was executed maintaining the amount of material constant 

(coil length=415 mm, thickness=1.5 mm, Grade 450 MPa). Each optimised sections capacities 

were compared with benchmark lipped channel beam (LCB) section (see Fig. 2). 

 

Fig. 2. Optimised Hollow Flange Beams 

3.1 Bending 

The modelled beam was tested under four-point loading so that the failure will occur within 

the constant moment region in the middle span. Shear centre loading was applied through a 

deflection acting through the two central web plate and simply supported boundary conditions 

were implemented (see Table 1). These web plates were attached to the prototype using tie 

constrains option in ABAQUS. Past experimental studies showed that strap failures did not 

arise, hence, straps were simulated using suitable boundary conditions in the top and bottom 

flanges. Fig. 3 illustrates the failure modes of developed FE models. 

a)                                                                                              b) 

Fig. 3. Bending FE failure mode: Benchmark LCB a) Mesh; b) Post bending failure 
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Table 1. Boundary conditions for Bending FE model 

Boundary condition  UTx UTy UTz URx URy URz  

Pin   R R R F F R  

Roller   R R F F F R  

Straps   R F F F F R  

Note: Here R denotes the ‘restrain’ and F denotes the ‘free’ boundary conditions 

3.2 Shear 

The prototypes were tested under three-pint loading; the length was determined by the clear 

web height, with aspect ratio 1.0 in order to ensure pure shear failure. Simply supported 

boundary conditions were applied to the edge of the web plates to avoid torsional effects (see 

Table 1). The load was applied as providing displacement to the middle web plate. Geometrical 

imperfections were incorporated to the non-linear analysis via eigen vector field approach as 

stated previously. The dynamic explicit option was used for the analysis. Details of developing 

FE models for shear failure can be found elsewhere (12, 13). Fig 4a shows the failure mode of 

prototype 3. 

3.3 Web crippling 

Web crippling was modelled under interior two flange loading conditions (ITF). The sections’ 
overall depth were defined by a function of depth, 5d and the loading was applied through 100 

mm bearing plates which were assigned as R3D4 rigid elements. Since the folding radius 

hugely controls the web crippling behaviour, 1 mm × 5 mm mesh size was incorporated for 

corner regions only. A quasi-static analysis was used to overcome the contact difficulties faced 

in the non-linear static analysis. Moreover, the bearing plates were connected to the beam using 

surface-to-surface, ‘hard’ contact model option available in ABAQUS with a coefficient of 
friction of 0.4. The loading plate at the top was assigned as displacement control to ensure 

smooth loading. The range of detail on (14) was followed to generate FE models for web 

crippling behaviour. Fig 4b shows the FE model prototype for web crippling. 

 

 

 

 

 

 

 

 
 

 

a)                                                                                       b) 

 

Fig. 4. Failure modes a) Shear (prototype 3); b) Web crippling (prototype 6) 

 

3.4 Results and discussion 

The results obtained from the FE analyses using ABAQUS software are summarised in Table 

2, which covers all prototypes and its capacities when subject to flexure, shear and web 

crippling actions along with percentage comparisons to the industry standard LCB. 

The obtained results are favourable, showing massive improvement in capacities over standard 

LCB section. Finite element results showed (see Table 2) that for the same amount of material, 

hollow flange beams (Prototypes 1 to 6) leads to a higher flexural capacity, which is around 

65% to 90% higher than a standard commercially available channel section. Hollow flange 

beams are also easy to connect to typical floor systems and modular building systems, thus, are 

ITF load case 
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suitable for practical CFS beam sections. It was found that the shear and web crippling 

capacities of hollow flange beams were not reduced when compared with standard 

commercially available channel section. 
 

Table 2. Finite element analysis results of hollow flange sections 

Section shape 
Flexure Capacity  

Ms/(kNm) 
Ms (%) 

Shear Capacity 

Vv/(kN) 
Vv (%) 

Web Crippling 

Capacity 

Rb/(kN) 

Rb (%) 

LCB (standard) 11.23 100% 53.70 100% 11.12 100% 

1 18.73 167% 53.74 108% 33.09 298% 

2 18.89 168% 59.56 111% 33.16 298% 

3 20.10 179% 55.46 103% 21.59 194% 

4 20.30 181% 56.31 105% 21.64 195% 

5 18.55 165% 60.67 113% 28.97 261% 

6 21.66 193% 61.21 114% 28.98 261% 

 

 

4 CONCEPTUAL MODULAR BUILDING DESIGN 

Proposed modular building systems will be designed to provide fully open sides by transferring  

loads through the longitudinal edge beams (Hollow flange beams) to the corner posts (SHS) 

(see Fig. 6). The proposed framework of the module is employing cold-formed steel members, 

such as Square Hollow Section (SHS) columns and hollow flange edge beams that are bolted 

together. The stability of the building generally depends on a separate bracing system in the 

form of X-bracing in the separating walls. For this reason, proposed fully open-ended modules 

be not used for buildings more than three storeys high. Where used, infill walls and partitions 

within the modules are non-load bearings, except where walls connected to the columns 

provide in-plane bracing. The corner posts provide the compression resistance and are typically 

100 x 100 SHS members. The edge beams will be connected to SHS posts by fin plates, which 

provide nominal bending resistance. End plates and bolts to the SHS members will also be 

used. Fig 6a shows the corner-supported modular building system while Fig 6b presents the 

modular building connections.  Further research on modular building connections, structural 

tests and advanced finite element models of modular building systems are in progress.        
 

                           

 

 

 

 

 

 

 

 

 

 

 

 

                        

                                    a)                                                                                       b) 

 

Fig. 6. Modular building design a) Corner post module; b) Connections (Corner post-MBS) (7) 

Hollow Flange Beam 
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5 CONCLUSIONS 

The construction sector is facing significant challenges associated with low productivity, poor 

performance and skills shortage, lack of information/data management relating to structures 

life cycle maintenance and costing, and resource efficiency, which may be even more 

significant after Brexit. Therefore, there is a strong need to develop cost-effective modular 

building systems with enhanced structural performance to solve Britain’s housing crisis, 

improve construction sector’s productivity and sustainability overall. This paper provides a 

review of modular buildings systems and applications of cold-formed hollow flange steel 

sections in modular building systems and numerical studies on the structural behaviour of 

hollow flange beams. It was found that the same amount of material, hollow flange beams 

(Prototypes 1 to 6) can lead to a higher flexural capacity, around 65 to 90% higher, than the 

standard commercially available channel section. Such hollow flange beams are therefore, 

proposed to be used in light gauge steel frameworks and modular building systems in order to 

enhance the structural performance.  
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