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Abstract

We develop a dynamic model of hospital competition where (i) waiting times increase if

demand exceeds supply; (ii) patients choose a hospital based in part on waiting times; and (iii)

hospitals incur waiting time penalties. We show that, whereas policies based on penalties will

lead to lower waiting times, policies that promote patient choice will instead lead to higher

waiting times. These results are robust to different game-theoretic solution concepts, designs

of the hospital penalty structure, and patient utility specifications. Furthermore, waiting time

penalties are likely to be more effective in reducing waiting times if they are designed with a

linear penalty structure, but the counterproductive effect of patient choice policies is smaller

when penalties are convex. These conclusions are partly derived by calibration of our model

based on waiting times and elasticities observed in the English NHS for a common treatment

(cataract surgery).
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1 Introduction

Waiting times for non-emergency (elective) treatments are a key health policy concern across OECD

countries, such as Australia, Canada, Ireland, Finland, Norway, Portugal, and the United Kingdom.

Mean waiting times range between 50 and 150 days across countries for common procedures such

as cataract surgery, hip and knee replacement, hernia, hysterectomy, and prostatectomy (Siciliani

et al., 2014). Although some countries like Finland and the UK have had successes in 2000-2005

in reducing waiting times from high levels (e.g., more than 150 days on average for hip and knee

replacement), waiting times have stalled in most countries since the financial crisis and have slowly

started to rise again in some countries. In countries like Chile, Poland, and Estonia, waiting times

for hip and knee procedures are still above one year (OECD, 2017).

Waiting times are a major source of dissatisfaction for patients since they postpone health ben-

efits, may worsen symptoms, deteriorate patients’ conditions, and lead to worse clinical outcomes.

In response to the dissatisfaction that they generate, governments have taken a variety of measures

to reduce waiting times. Many OECD countries have adopted some form of maximum waiting

time guarantees (Siciliani, Moran, and Borowitz, 2013). However, the design and implementation

of these guarantees can differ significantly across countries.

Two common approaches are to link maximum wait guarantees either to penalties or to compe-

tition (and patient choice) policies. The first approach was followed by Finland and England, which

combined maximum waiting times with sanctions for failure to fulfil the guarantee. Targets with

penalties were introduced in England in 2000-05 with political oversight from the Prime Ministerial

Delivery Unit and the Health Care Commission. Senior health administrators risked losing their

jobs if targets were not met. As a result, the proportion of patients waiting over six months was

reduced by 6-9 percentage points (Propper, Sutton, et al., 2008). In 2010, maximum wait guaran-

tees became a patient entitlement codified into the NHS Constitution, establishing a patient right

to a maximum of 18 weeks from GP referral to treatment. In Finland, waiting time guarantees

were combined with targets as part of the Health Care Guarantee in 2005, subsequently included in

the 2010 Health Care Act. A National Supervisory Agency supervised the implementation of the

guarantee through targets and penalised municipalities failing to comply. The number of patients

waiting over six months was reduced from 12.6 per 1, 000 population in 2002 to 6.6 per 1, 000 in

2005 (Siciliani, Moran, and Borowitz, 2013).

The second approach involves combining maximum waiting time guarantees with patient choice
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and competition policies. For example, in Denmark, if the hospital foresees that the maximum

waiting time guarantee will not be fulfilled, the patient can choose another public or private hospital.

In Portugal, when a patient on the waiting list reaches 75% of the maximum guaranteed time, a

voucher that allows the patient to seek treatment at any other provider, including private sector

providers, is issued. In several countries, like England and Norway, patients are free to choose any

provider within the country (Siciliani et al., 2017).

From an economics perspective, waiting times act as a non-price rationing device to bring into

equilibrium the demand for and the supply of health care in publicly-funded health systems. Many

countries with a National Health Service or public health insurance combine the absence of co-

payments with the presence of capacity constraints. As a result, an excess demand arises, which

translates into a waiting list. One way to bring the demand for and the supply of treatments into

equilibrium is to rely on waiting times. As argued by Lindsay and Feigenbaum (1984), Martin

and Smith (1999), and Iversen (1993, 1997), waiting times tend to discourage demand if patients

give up the treatment or opt for treatment in the private sector. Waiting times may also influence

positively the supply of health services if altruistic providers exert greater effort and treat more

patients when waiting times are higher.

In the present study, we investigate whether competition and patient choice policies play a

useful role in reducing waiting times, and the extent to which such a role is altered in the presence

of penalties for providers with long waits. Our model is dynamic to capture a key feature of the

waiting time phenomenon. Waiting times tend to increase when demand for treatment is higher

than the supply of treatment so that new patients are added to the waiting list. Similarly, waiting

times tend to reduce when more patients are removed from the waiting list than those added. A

second feature of our model is that hospitals compete for patients, with hospitals with lower waiting

times attracting more patients.

The combination of a dynamic approach with strategic interactions across providers calls for

a differential-game approach. Although we solve the model for both open-loop and closed-loop

decision rules (Dockner, 2000), our main analysis is based on the arguably more realistic feedback

(closed-loop) solution, where hospitals can observe (and react to) waiting times at each point

in time, implying that supply decisions can be continuously revised based on the evolution of

waiting times. Under open-loop decision rules, hospitals compute their optimal supply paths at the

beginning of the game and are restricted to follow such plans thereafter. It seems plausible that
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hospitals can adjust supply over time in response to the dynamics of waiting times (own and those

of rival hospitals).

To model the demand for healthcare faced by each provider, we use a Hotelling approach with

two hospitals located at each endpoint of the unit line segment. We adopt a general specification,

which allows for two types of patients who differ in the valuation of their outside option (e.g.,

to seek treatment in the private sector or to forego treatment altogether), which in turn implies

different net benefits, high and low, from hospital treatment. Hospitals compete on the segment

of demand with high benefit, while they are local monopolists on the demand segment with low

benefit.

Our main aim is to investigate the effect of policies that facilitate patient choice, commonly

interpreted as policies that stimulate competition, and how such policies interact with policies based

on waiting time penalties. Within our analytical framework, patient choice policies are modelled as

a reduction in patients’ transportation costs, which makes each hospital’s demand more responsive

to changes in waiting times and is a standard competition measure in spatial competition models.

The effect of such policies is studied in contexts where waiting time penalties are either linear in

waiting times or convex in waiting times, with the marginal penalty increasing with waiting.

We obtain several policy relevant findings. Importantly, we find that policies to increase patient

choice lead to higher steady-state waiting times as long as hospitals suffer a disutility from positive

waiting times. Increased patient choice makes demand more responsive to changes in waiting

times, which implies that a unilateral reduction in waiting time at one hospital will lead to a larger

demand increase for this hospital. This implies, in turn, that it becomes more difficult for each

hospital to reduce waiting times through a unilateral increase in the supply of treatments. In

other words, patient choice policies reduce the effectiveness of treatment supply as an instrument

to reduce waiting times. The policy implication of this result is that patient choice policies are

counterproductive, in terms of reducing waiting times, in the presence of waiting time penalties.

Moreover, higher waiting penalties make patient choice policies even more counterproductive. We

also show that a combined policy of more patient choice and higher waiting time penalties will lead

to higher waiting times if the waiting time penalty is sufficiently high to begin with.

The above described results are derived analytically for the case of constant marginal provider

disutility of waiting time, for example because of linear waiting time penalties. For the case of

convex waiting time penalties, a closed-form solution cannot be obtained, and our results are
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therefore numerically derived. To make the results more salient, we calibrate our model based

on waiting times observed in the English NHS for a common treatment (cataract surgery). The

calibration is also informed by demand elasticities which have been estimated in the empirical

literature (Martin and Smith, 1999; Sivey, 2012).

The calibration output shows that our main result, that patient choice policies lead to higher

waiting times, also carries over to the case of convex waiting time penalties. This comes as no

surprise, the intuition behind this result does not rely on the shape of the provider disutility

function but rather on the responsiveness of demand to waiting times. Not only is this result

robust to the design of the waiting time penalty structure, it holds under a fairly general patient

utility specification and is independent of the choice of game-theoretic solution concept, as it arises

also under open-loop decision rules.

However, under closed-loop rules (where hospitals can observe and react to waiting times at

each point in time), convex waiting time penalties introduce an additional strategic effect by cre-

ating dynamic strategic substitutability in supply. This implies that lower treatment supply by

one hospital will be optimally met by increased supply by the competing hospital, which dampens

the initial increase in waiting time caused by the supply reduction. This strategic substitutability

gives each hospital an incentive to reduce its supply in order to ‘free-ride’ on the subsequent supply

increase by the other hospital. The policy implication of this result is that, all else equal, waiting

time penalties are likely to be more effective in reducing waiting times if they are designed with

a linear penalty structure. On the other hand, we also show that the counterproductive effect of

patient choice policies is smaller when penalties are convex instead of linear, which gives rise to yet

another inherent conflict between these two policies. Waiting time penalties are more effective if

they are linear, but linear penalties make patient choice policies more counterproductive.

The rest of the study is organised as follows. In the next section, we present a brief overview

of the literature and explain how we contribute to it. In Section 3, we present the model, whereas

the main analysis, based on the closed-loop solution, is given in Section 4. Section 5 considers

patient welfare. Section 6 examines the robustness of our main result to non-linear patient utility

in waiting time and distance. Finally, Section 7 provides concluding remarks, including a discussion

of how our main results relate to the empirical literature on patient choice and waiting times.
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2 Related literature

Our study brings together two different strands of the theoretical literature. The first is the

literature that investigates the role of waiting times in the health sector. As mentioned above,

the idea that waiting times may help bringing the supply and the demand for healthcare into

equilibrium goes back to Lindsay and Feigenbaum (1984) and Iversen (1993). Iversen (1997) also

investigates whether allowing patients to be treated in the private sector will reduce waiting times in

the public sector and shows that the answer depends on the demand elasticity for public treatment

with respect to waiting time. Demand and supply responsiveness to waiting times are estimated

by Martin and Smith (1999) using English data, and they find that demand is generally inelastic

(with an elasticity of about −0.1).

There are also normative analyses in this strand of the literature. Hoel and Sæther (2003)

show that concerns for equity can make it optimal to have a mixed system of public and private

provision with a positive waiting time in the public sector, though Marchand and Schroyen (2005)

find, through a calibration exercise, that the welfare gains of a mixed system might be quite

low. Gravelle and Siciliani (2008a, 2008c) investigate the scope for waiting time prioritisation

policies across and within treatments and find that prioritisation is generally welfare improving

even in a setting where the provider can only observe some dimensions of patient benefit. Gravelle

and Siciliani (2008b) also show that rationing by copay tends to be welfare improving relative to

rationing by waiting. All the above studies use a static approach assuming that demand and supply

adjust instantaneously to reach equilibrium. One exception is Siciliani (2006), who investigates the

behaviour of a monopolist in a dynamic set-up. We model waiting time dynamics in a similar

way but critically allow for strategic interactions across providers to investigate the role of patient

choice and competition.

The second strand of the literature relates to hospital competition with fixed prices. Though

most of this literature consists of studies using a static framework, there is a limited but growing

literature that models hospital competition in a dynamic framework. It focuses, however, on

incentives for quality provision rather than on waiting times.1 Brekke et al. (2010, 2012) find that,

if quality is modelled as a stock variable which increases if quality investments are higher than its

depreciation, or if demand is sluggish so that an increase in quality only partially translates into an

increase in demand, then quality is higher under the open-loop solution if hospitals face increasing

1See Brekke et al. (2014) for a review of the theoretical literature on hospital competition under regulated prices.
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marginal treatment costs. Equilibrium quality instead coincide under the two solution concepts if

marginal treatment costs are constant. Siciliani, Straume, and Cellini (2013) suggest that these

results can be overturned in the presence of altruistic preferences, so that quality is higher under

the closed-loop solution.

Our modelling of waiting times differs analytically from these previous contributions because

the state variable (i.e., waiting time) of the rival enters the dynamic constraint of the maximisation

problem of each provider. This is not the case when quality is modelled as a stock (as in Brekke et

al., 2010) because neither the state nor control variable of the rival provider enters the quality stock

function. It is also not the case when demand is modelled as sluggish (as in Brekke et al., 2012)

because demand depends on the control variable of the rival, not the state variable. Thus, because

of these fundamental differences in the dynamic nature of the problems, the results from models

of dynamic quality competition do not automatically carry over to the case of waiting times. In

other words, if we want to study the effects of patient choice and competition on waiting times in

a dynamic context, we cannot simply interpret waiting time as ‘negative quality’ and apply the

results from the above mentioned studies of dynamic quality competition.

As previously mentioned, in the main bulk of the theoretical literature on hospital competition,

the theoretical framework is a static one. To our knowledge, Brekke et al. (2008) were the first

to deal with waiting times. Similarly to the present study, they identify a potentially positive

relationship between patient choice and equilibrium waiting times. However, the underlying mech-

anisms are very different. In the static model (Brekke et al., 2008), hospitals choose waiting times

to influence demand and in turn revenues. Increased competition (patient choice) makes demand

more responsive to changes in waiting time, which then becomes a more effective tool for each

hospital to steer demand in the desired direction. If hospitals are semi-altruistic, the equilibrium

is such that price is below marginal cost (for the marginal treatment). Hospitals might therefore

have an incentive to reduce demand, and waiting times become a more powerful tool to achieve this

when patient choice increases, paving the way for a positive relationship between patient choice

and equilibrium waiting times.

In the present dynamic approach, more competition also makes demand more responsive to

waiting times, but then the similarities end. Hospitals choose treatment supply but cannot directly

control waiting times. The supply decision is instead used as an instrument to affect waiting

times, and this instrument becomes less effective with increased patient choice. This is why more
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competition leads to higher waiting times in our dynamic setting, and the underlying mechanism is

not related to price being below marginal cost in equilibrium, although this feature is also present

here. Thus, the present study is not just a dynamic version of Brekke et al. (2008), in the sense

that the results rely on the same mechanisms placed in a dynamic context. Rather, placing the

analysis in a dynamic framework allows us to uncover new mechanisms that are uniquely related

to the dynamic process that generates changes in waiting times. In this sense, the present dynamic

analysis complements and reinforces the previous results based on a static framework.

More recently, Chen et al. (2016) developed a two-period signalling model in which they analyse

the effect of waiting time report cards (i.e., the public reporting of waiting times) on the supply

decisions and waiting times of two hospitals. Waiting times report cards increase competition

in the market by providing patients with information and, hence, making demand responsive to

waiting times. This generally gives hospitals incentives to increase their service rates (supply) up

to the point where the marginal revenue equals the marginal cost, causing waiting times to fall in

equilibrium. However, if the exogenous hospital qualities differ and are unknown to some patients,

an incentive to use long waiting times as a signal for treatment quality arises for the high-quality

hospital. Chen et al. (2016) show that the competitive effect (to attract patients) induced by

waiting time report cards outweighs the signalling effect, so that both hospitals’ waiting times are

shorter than when there are no report cards, thus establishing a negative link between increased

competition and waiting times (regardless of whether hospital qualities differ or are identical, which

is the case that is equivalent to our analysis).

Their model shares with ours the feature that hospitals may only affect waiting times indirectly

through supply but, crucially, assumes that hospitals face no form of disutility of waiting time.

In the present analysis, increased supply is used not only to increase revenues but also to reduce

waiting times and, hence, the disutility thereof. Increased supply reduces waiting times, which,

in turn, attracts patients and thus dampens the initial decrease in waiting times. This demand

response is stronger the greater is the degree of patient choice in the market. Higher demand

responsiveness weakens the incentive hospitals have to increase supply and this is why the negative

relationship between increased competition (patient choice) and waiting times fails to arise in the

presence of hospital disutility of waiting time.
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3 The Model

Consider a duopolistic health care market in which hospitals, indexed by i and j, are located at

each endpoint of the unit line segment [0, 1]. There are N potential patients uniformly distributed

on the line segment. In every period t, each of these patients may benefit from treatment at

either of the two hospitals. In order to consume one unit of treatment, patients bear no out-of-

pocket expenditures at the hospital but face expenses (or disutility) in the form of travelling costs.

Furthermore, patients are required to join a waiting list and therefore suffer a disutility of waiting.

There are two types of patients, differing with respect to the value of their outside option (i.e.,

the utility of not being treated by either of the two hospitals). Whereas a share β of the patients

are assumed to have no valuable outside option, the remaining share (1−β) have a strictly positive

outside option k > 0. For simplicity, we assume that these shares are constant along the line

segment. The difference between these two patient types can be attributed either to a difference

in illness severity, which creates a difference in the utility of being untreated, or to a difference in

the ability to seek treatment elsewhere (e.g., in a private market or abroad), for example, due to

differences in income or wealth.

Both types of patients make utility-maximising treatment consumption decisions, taking into

account travelling costs as well as the length of time between the moment they join the waiting list

and that when treatment is supplied (i.e., the waiting time). The utility in period t of a patient

with no valuable outside option, who is located at x ∈ [0, 1] and chooses Hospital i, located at zi,

is given by

u(x, zi, t) = v − wi(t)− τ |x− zi|, (1)

where v is the gross valuation of treatment, wi(t) is the waiting time at Hospital i in period t, and

τ is the marginal disutility of travelling. The marginal disutility of waiting is normalised to one,

which allows τ to be interpreted as the marginal disutility of travelling relative to waiting. The

equivalent utility in period t of a patient with a strictly positive outside option is

u(x, zi, t) = v − k − wi(t)− τ |x− zi|. (2)

For patients with a positive outside option, we assume that k is sufficiently high such that some

of these patients will strictly prefer the outside option to being treated by any of the two hospitals
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in the market. This implies that the relevant choice for each of these patients is between seeking

treatment at the most preferred hospital or exercising the outside option. We will refer to this as

the monopolistic segment of the market. For all the patients without a valuable outside option,

we assume that utility is maximised by seeking treatment at one of the hospitals. These patients

therefore constitute the competitive segment of the market. By concentrating on cases where the

competitive segment is fully covered, whereas the monopolistic segment is only partially covered,

we ensure that total demand is elastic with respect to waiting times, implying that waiting times

have a rationing effect on demand.

3.1 Demand for hospital treatment

In the competitive segment, the patient who is indifferent between seeking treatment at Hospital i

and Hospital j is located at xC(t), implicitly given by

v − wi(t)− τxC = v − wj(t)− τ(1− xC), (3)

yielding

xC(t) =
1

2
+

wj(t)− wi(t)

2τ
. (4)

In the monopolistic segment, the patient who is indifferent between demanding treatment at Hos-

pital i and consuming his or her outside option is located at xiM (t), implicitly given by

v − wi(t)− τxiM = k, (5)

yielding

xiM (t) =
v − k − wi(t)

τ
. (6)

A similar expression can be obtained for Hospital j: xjM (t) = (v − k − wj(t))/τ .

With a total mass N of patients in the market, demand faced by Hospitals i and j is a weighted

sum of demand from the competitive and the monopolistic segments and is respectively given by

Di(wi(t), wj(t)) = N [βxC(t) + (1− β)xiM (t)] (7)
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and

Dj(wi(t), wj(t)) = N [β(1− xC(t)) + (1− β)xjM (t)]. (8)

3.2 Hospital objectives and treatment supply

In each period t, Hospital i treats Si(t) patients. Hospitals are financed by a third-payer (e.g., a

regulator or insurer) that offers a prospective payment p for each unit of treatment supplied and a

lump-sum transfer T . The instantaneous objective function of Hospital i is assumed to be

Πi(t) = T + pSi(t)− C(Si(t))− Φ(wi(t)). (9)

The cost of supplying hospital treatments is given by an increasing and strictly convex cost function

C(Si(t)) =
γ
2Si(t)

2, with γ > 0. The convexity of the cost function captures an important feature

in the context of waiting times, namely that hospitals face capacity constraints.2 The function

Φ(wi(t)) captures the provider disutility of having positive waiting times. The disutility of waiting

time is monetary if the hospital faces penalties levied by the regulator or reductions in funding.

Alternatively, it is non-monetary if the hospital takes into the account the reputational damage of

reporting long waiting times, or if the hospital is subject to a more stringent monitoring regime by

the regulator. We assume that the disutility of waiting time takes the linear-quadratic form

Φ(wi(t)) = α1wi(t) +
α2

2
wi(t)

2, (10)

with α1 ≥ 0 and α2 ≥ 0. Whether waiting times penalties have a linear or non-linear effect on

hospital utility depends on the institutional context. In settings where hospital managers can

lose their jobs when waiting times become very long, penalties are arguably non-linear, with the

marginal penalty increasing with waiting. This may also be the case in health systems where health

regulators have mechanisms that escalate from warning messages to agreeing and monitoring action

plans with the providers. Other health systems may instead gradually penalise hospitals with longer

wait through a proportionate reduction in revenues.

Hospital targets are set for broad areas of care, typically all elective (non-emergency) care. Only

in recent years some more stringent maximum waiting times have been specified for prioritised areas

2A strictly convex treatment cost function captures the case of smooth capacity constraints, where capacity can
be increased, but only at an increasing marginal cost.
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of care, such as cancer patients or certain cardiac surgeries (Siciliani, Moran, and Borowitz, 2013).

Although our model is specified for a specific treatment which is reimbursed with DRG price p,

any increase in supply for a specific treatment will contribute to reduce waiting times and help

to satisfy the targets across all elective care. In Section 4.3, we calibrate the model for a specific

treatment, cataract surgery. We choose this procedure because it has high volume and is correlated

with waiting times for other high-volume procedures (such as hip and knee replacement; Siciliani

et el., 2014). It has also similar demand elasticity to waiting across all elective care (Martin and

Smith, 1999; Sivey, 2012).

Waiting times evolve dynamically over time according to

dwi(t)

dt
= ẇi(t) = θ[Di(wi(t), wj(t))− Si(t)] (11)

and

dwj(t)

dt
= ẇj(t) = θ[Dj(wi(t), wj(t))− Sj(t)], (12)

where θ > 0 relates changes in waiting times to the difference between the demand faced by each

hospital and its activity (i.e., changes in the waiting list). Under this formulation, waiting times

increase when current demand exceeds current supply and vice versa, and the speed at which

waiting times respond to changes in demand or supply is given by θ.

We are implicitly assuming that the waiting time at each hospital is positive in every period.

The hospital objective function depends on the hospital’s supply decision, which is given by the

number of treatments performed by Hospital i in period t, Si(t). The objective function does not

instead depend directly on demand, which is given by the number of patients added to Hospital

i’s waiting list in period t, Di(wi(t), wj(t)). If Si(t) < Di(wi(t), wj(t)), there is a net increase

in the waiting list and the (expected or average) waiting time increases. On the other hand, if

Si(t) > Di(wi(t), wj(t)), there is a net reduction in the waiting list and the waiting time therefore

falls. In either case, as long as the waiting list is not emptied, the number of treatments performed

in period t is given by the hospital’s supply of treatments. Demand for treatments only affects the

actual number of treatments indirectly through waiting times, which in turn affect each hospital’s

optimal supply decisions, as we will show later.

We assume that the hospitals maximise their payoffs over an infinite time horizon and have a
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common constant discount rate, ρ. Formally, the maximisation problem of Hospital i is given by

max
Si(t)∈R

+

0

∫ ∞

0
e−ρtΠi(t)dt

subject to ẇi(t) = θ[Di(wi(t), wj(t))− Si(t)],

ẇj(t) = θ[Dj(wi(t), wj(t))− Sj(t)],

wi(0) = wi0 > 0,

wj(0) = wj0 > 0.

Although, in reality, hospitals do not plan their activity over an infinite time horizon, we argue

that this is a reasonable approximation if hospitals are regarded as lasting institutions. Managerial

and medical structures are periodically replaced, but the hospital’s mission—to provide care given

its production technology and the regulatory scheme it faces—is likely to remain the same over

long periods of time. This is likely if hierarchies are substituted by others with similar objective

functions.

3.3 Solution concepts

There are two main solution concepts established by the differential-game literature (see Dockner

et al., 2000). Under the open-loop solution, hospitals either compute their optimal supply paths at

the beginning of the game and are restricted to follow such plans thereafter, or they may observe

the state of the world (i.e., waiting times) only at t = 0 and cannot therefore condition their

actions (i.e., supply) on these observations thereafter. In both cases, strategies are time-profiles

that specify the supply to be provided at each point in time.

If, besides current time, hospitals observe waiting times in every period and factor them in their

decision making, a closed-loop solution arises. Under this solution concept, Hospital i’s supply is

a function of the contemporaneous waiting times in each t. While the closed-loop solution is

informationally more demanding, it involves weaker commitment since hospitals are allowed to

adjust supply as waiting times evolve.

The appropriateness of each solution concept depends on the assumptions regarding the players’

information set as well as commitment requirements. The open-loop solution implies that hospitals

have no information concerning waiting times once the game starts or are committed to the supply

plans computed at the beginning of the game, which might be considered an excessively stringent
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assumption. Due to regulatory requirements, hospitals periodically collect and report data on

waiting times, upon which their activity may be conditioned.3 Moreover, a setting in which hospitals

adjust activity according to waiting times is more realistic and relevant for policy-making.4 Thus,

although the closed-loop solution is computationally much more demanding, it is based on a set

of assumptions that are arguably more realistic and we will therefore conduct our main analysis

under the assumption that hospital behaviour is characterised by closed-loop decision rules.

4 Treatment supply and waiting times in the closed-loop solution

Suppose that hospitals are able to observe the evolution of waiting times and make supply decisions

dependent on current waiting times. When solving for the closed-loop solution, we restrict attention

to Markovian stationary strategies, whereby the controls (i.e., supply decisions) at time t depend

only on the current values of the states (i.e, the waiting times), which summarise the history of the

game. We also focus on a symmetric equilibrium with non-negative waiting times and a partially

covered monopolistic segment.

We will present our results distinguishing between two different cases, namely constant and

increasing marginal provider disutility of waiting time. As mentioned above, which case is more

plausible depends on the institutional context and this may differ across countries or even within a

country at different points in time. For example, one could argue that in England in 2000-2005 the

marginal disutility was increasing in waiting times when senior health administrators risked losing

their jobs if targets were not met. This would be the case if small deviations from the target would

only lead to additional monitoring from the regulator, but a large deviation from the target would

culminate into the hospital CEO being dismissed. In contrast, the marginal disutility of waiting

time could be constant if deviations from a target led to a proportionate reduction in hospital

income, which was implemented later in England. Therefore, both scenarios are important from a

policy perspective. We discuss them in turn, starting with the case of constant marginal disutility,

which allows us to obtain closed-form solutions for equilibrium supply and waiting times.

3See Siciliani, Moran, and Borowitz (2013) for a description of waiting times regulatory arrangements and policies
across OECD countries.

4This need not be the case of other analyses of hospital behaviour. The case of quality competition as analysed in,
for example, Brekke et al. (2010) provides a setting in which the open-loop solution might be, at least, as appropriate.
If hospitals devise investment plans that ought to be followed for long periods of time, meaning that their discretion
is strongly restricted, their actions (investment decisions) are as if they are not conditional on the state of the world
(the stock of quality).
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4.1 Constant marginal provider disutility of waiting time

Suppose that the disutility of waiting time is given by (10) with α1 > 0 and α2 = 0. In this case,

it can be shown (see Appendix A) that the optimal supply rule for each hospital at time t is equal

to the steady-state supply, SCL, and given by

Si (t) = Sj (t) = SCL =
p

γ
+

2θτα1

γφ
, (13)

where

φ = θ(2− β)N + 2τρ−
(θβN)2

θ(2− β)N + 2τρ
∈ (0, 1). (14)

In other words, the optimal supply rule is independent of waiting times. We thus obtain the

following result:

Proposition 1 If the marginal provider disutility of waiting time is constant, the equilibrium is

characterised by constant supply of treatments over time.

This result is explained by the lack of strategic interaction between the hospitals when waiting

time disutility is linear in waiting times. A unilateral increase in supply by Hospital i leads to an

initial reduction in waiting times at this hospital. This will shift demand from the rival hospital

and therefore will also reduce the waiting time at Hospital j. However, if α2 = 0, the reduction in

waiting time at Hospital j does not affect the hospital’s marginal disutility of waiting time, so that

the hospital will not respond by changing its supply.5

The intuition behind each hospital’s optimal supply rule is perhaps easier gained by re-writing

(13) as

p+
2θτα1

φ
= γSi. (15)

On the one hand, a marginal increase in supply (i) generates more revenues and (ii) reduces the

waiting time and its associated disutility. These two elements of the marginal benefit of supply are

given by the two terms on the left-hand side of (15). On the other hand, increasing supply is costly,

with the marginal cost of supply given by the right-hand side of (15). Each hospital offers a supply

of treatments such that the marginal benefit is exactly offset by the marginal cost. This trade-off

is key to understanding the main intuition behind most of our subsequently derived results.

5When α2 = 0, our differential game belongs to the class of the so-called linear-state games, which is characterised
by the coincidence between the time path of controls and states under the open- and closed-loop solution concepts.
The calibration in Section 4.3 illustrates this general result.
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It also follows directly from (15) that, in an interior-solution equilibrium, each hospital operates

at a level where the price-cost margin is negative, implying that the marginal patient is unprofitable

to treat.6 This is a result of the disutility of waiting time, which gives each hospital an incentive

to expand supply beyond the level where the price is equal to marginal treatment costs.

The corresponding steady-state waiting time is given by7

wCL =
τ

(1− β)N

{

N

[

β

2
+ (1− β)

(

v − k

τ

)]

−
p

γ
−

2θτα1

γφ

}

. (16)

We can see directly from (16) that the steady-state waiting time is decreasing in p and α1, which is

very intuitive. A higher price (p) makes the marginal patient more profitable (or less unprofitable)

to treat, whereas a higher waiting time penalty (α1) increases the disutility of waiting time. In

both cases, the hospitals have stronger incentives to increase supply and equilibrium waiting times

will therefore go down.

4.1.1 Patient choice and waiting times

How does the degree of patient choice affect steady-state supply and waiting times? In our frame-

work, the degree of patient choice can be inversely measured by the parameter τ , which is a standard

(inverse) measure of competition intensity in the hospital competition literature that is based on

models of spatial competition. A reduction in τ makes demand more responsive to changes in

waiting times, thus reflecting a higher degree of patient choice.

The effect of a marginal change in τ on the steady-state waiting time and supply can be

expressed as

∂wCL

∂τ
= −

(1− β)xCL
M + τ

N
∂SCL

∂τ

1− β
< 0, (17)

where xCL
M =

(

v − k − wCL
)

/τ is the location of the indifferent patient in the monopolistic segment,

and

∂SCL

∂τ
= Nθ2α1

(1− β)[Nθ(2− β) + 4τρ]θN + (2− β)(τρ)2

2γ(Nθ + τρ)2[N(1− β)θ + τρ]2
> 0, (18)

allowing us to establish the following result:

Proposition 2 If the marginal provider disutility of waiting time is constant, a higher degree of

6Notice that, when treatment costs are strictly convex, a negative price-cost margin for the marginal patient does
not imply that the price-cost margin is negative for the average patient.

7In Appendix A, we show that a sufficiently large γ ensures that the steady-state is characterised by non-negative
waiting times and a partially covered monopolistic segment.
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patient choice leads to lower treatment supply and higher waiting times in the steady-state.

The negative relationship between τ and wCL is a consequence of two effects that work in the

same direction. First, there is a direct demand effect. A reduction in τ increases total demand

(and therefore demand for each hospital) since a larger number of patients in the monopolistic

segment chooses to opt for treatment (at the nearest hospital). A higher demand directly increases

the waiting time at each hospital. This effect is given by the first term in the numerator of (17),

and the size of this effect is smaller the larger the relative size of the competitive segment, β.

The second effect is related to how τ affects the demand responsiveness to waiting times in the

competitive segment of demand, and is thus more directly related to the patient choice interpre-

tation of the parameter τ . This is an indirect effect that works through changes in each hospital’s

incentive to affect waiting times through its treatment supply decision. Each hospital can lower

its waiting time by increasing the supply of treatments, and the effect of a unilateral increase in

treatment supply on the waiting time is given by a direct and an indirect (feedback) effect. For

a given demand, an increase in treatment supply will reduce the waiting time. However, a lower

waiting time will increase demand and therefore dampen the initial reduction in the waiting time.

Crucially, the strength of this feedback effect depends on how strongly demand responds to wait-

ing time changes. A lower τ makes demand more responsive to changes in waiting times, which

increases the feedback effect and therefore makes treatment supply a less effective instrument to

reduce waiting times. Consequently, this reduces the marginal benefit of treatment supply and

gives each hospital an incentive to reduce the supply of treatments. This effect is captured by the

second term in the numerator of (17).

Notice that the effect of a reduction in τ on steady-state supply does not depend on the direct

demand effect, only on the indirect effect through demand responsiveness. Consider the special case

of no waiting time disutility, α1 = 0. In this case, the second effect vanishes, since the hospitals

have no incentives to adjust supply in order to affect waiting times. A reduction in τ will not

affect the hospitals’ supply decisions and waiting times increase only because of higher demand

(i.e., waiting times increase only through the first of the two above mentioned effects). Thus, it is

the presence of waiting time disutility (α1 > 0) that causes a negative relationship between patient

choice and treatment supply. This has potentially interesting policy implications which we will

explore in the following.
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4.1.2 Combining patient choice policies with waiting time penalties

Suppose that policymakers aim at reducing hospital waiting times. Two commonly suggested policy

options is to either directly target the perceived problem by introducing (or increasing) waiting time

penalties, or to stimulate patient choice (e.g., by public reporting of waiting times) with the aim

of achieving lower waiting times through increased intensity of competition between the hospitals.

In our model, as Proposition 1 shows, only the former policy works, whereas the latter policy is

counterproductive. Moreover, the former policy makes the latter policy more counterproductive.

All else equal, the larger the waiting time penalties, the larger is the increase in steady-state waiting

times as a result of more patient choice.

Many countries have introduced both choice policies and waiting time penalties. While our

analysis shows that these two policies have counteracting effects on treatment supply and waiting

times, it remains to show what determines the direction of the overall effect in a context where the

two policies are combined. Consider therefore a policy package consisting of a marginal increase in

the degree of patient choice combined with a marginal increase in the waiting time penalty. The

resulting effect on steady-state waiting times is given by

∂wCL

∂α1
−

∂wCL

∂τ
=

1

N (1− β)

[

(1− β)NxCL
M + τ

(

∂SCL

∂τ
−

2θτ

γφ

)]

. (19)

If we exclude the demand effect of lower travelling costs, thus focusing exclusively on the patient

choice interpretation of τ , the overall effect of this dual policy on waiting times is given by the sign

of the second term in the square brackets of on the right-hand side of (19). It can easily be shown

that the sign of this effect is positive, implying higher waiting times, if

α1 >
(Nθ + τρ) ((1− β)Nθ + τρ) ((2− β)Nθ + 2τρ) τ

Nθ (Nθ (1− β) ((2− β)Nθ + 4τρ) + (2− β) τ2ρ2)
. (20)

Thus, a combined policy of increased patient choice and higher waiting time penalties is more

likely to yield higher waiting times (and lower treatment supply) if the disutility of waiting time

is sufficiently high to begin with. The reason is that the marginal effect of a higher waiting time

penalty on waiting times is constant (as we can see from (16)), whereas the marginal effect of in-

creased patient choice on waiting times is increasing in the disutility of waiting times. Consequently,

the counterproductive effect of increased patient choice dominates for sufficiently high values of α1.
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It can also be shown that, unless β is very close to 1, the right-hand side of (20) is decreasing in θ

and approaches τ as θ → ∞. This implies that the scope for a waiting time increase as a result of

the combined policy is larger the faster waiting times adjust to changes in supply.

If we interpret the waiting time disutility as reflecting only waiting time penalties, we can

summarise the above policy analysis as follows:

Proposition 3 Suppose that waiting time penalties are linear in waiting times. In this case, (i) the

counterproductive effect of patient choice policies on treatment supply and waiting times is larger

the higher the waiting time penalty. Furthermore, (ii) a combined policy of increased patient choice

and higher waiting time penalties has an ambiguous effect on treatment supply and waiting times,

but is more likely to be counterproductive the higher the initial waiting time penalty.

4.2 Increasing marginal provider disutility of waiting time

Suppose that the disutility of waiting time is given by (10) with α1 > 0 and α2 > 0. In this scenario,

a closed-form solution of supply and waiting times cannot be obtained. Our game belongs to the

class of linear-quadratic differential games wherein the state variables enter the objective function

quadratically, while they enter the dynamic constraints linearly. Although the closed-loop solution

of linear-quadratic games may generally be computed analytically, this is not always assured. This is

the case of our model whose particular structure features both state variables entering the dynamic

constraints and has algebraic properties that limit the tractability of its closed-loop solution.

We are, however, able to solve for the solution numerically. To make the analysis more salient

and policy relevant, we take this constraint as an opportunity to calibrate the model based on

real data and available empirical evidence. The rest of this subsection characterises some general

features of the solution, and the next one provides the calibration of the closed-loop solution.

Proposition 4 If the marginal provider disutility of waiting time is increasing, the optimal closed-

loop supply rule for Hospital i is given by:

Si(wi, wj , t) =
p− θ(ω1 + ω3wi(t) + ω5wj(t))

γ
, (21)

where ω3 < 0 is required by the concavity of the value function and ω5 ∈ Ω.

See Appendix A for the definition Ω and proof of Proposition 4.
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In contrast to the case of constant marginal disutility of waiting time, a dynamic strategic

interaction is present when the marginal disutility is increasing. This implies that the equilibrium

supply of Hospital i at time t depends both on own waiting time, wi (t), and the waiting time

at Hospital j, wj (t). Considering first the relationship between optimal treatment supply and

own waiting time, ω3 < 0 implies that an increase in the waiting time of Hospital i increases

the hospital’s optimal treatment supply. The reason is that a longer waiting time increases the

hospital’s marginal disutility of waiting time and therefore increases the marginal benefit of supply.

The relationship between the treatment supply at Hospital i and the waiting time at Hospital

j is determined be the sign of ω5. Although it is not possible to unambiguously determine the

sign of ω5 analytically (see Appendix A), our calibration results provided in the next subsection

show that ω5 is negative for all the parameter configurations considered. If ω5 is negative, then

hospitals’ supply decisions are characterised by strategic substitutability, ∂Si(wi, wj)/∂wj > 0, for

which we provide the following intuition. Consider a unilateral increase in supply by Hospital i.

This leads to lower waiting times at Hospital i, which in turn shifts demand from Hospital j to

Hospital i, causing a reduction in waiting times also at Hospital j. A lower waiting time at Hospital

j reduces its marginal disutility of waiting time, and thus its marginal benefit of supply. Hospital

j will therefore optimally respond by reducing its supply of treatments. In other words, a supply

increase by Hospital i triggers a supply decrease by Hospital j.

The above described strategic interaction has important implications for the supply incentives

of each hospital. Consider once more a unilateral increase in supply by Hospital i, which leads to

an initial reduction in waiting time at this hospital. However, because of strategic substitutability,

Hospital j will respond by reducing its supply, as explained above. The subsequent increase in

waiting time at Hospital j shifts some demand towards Hospital i, thereby dampening the initial

reduction in the waiting time caused by the supply increase of Hospital i. Thus, dynamic strategic

substitutability lowers the marginal benefit of treatment supply, giving each hospital an incentive to

reduce its own supply in order to ‘free-ride’ on the subsequent supply increase of the rival hospital.

In Appendix A, we also show that, if the initial waiting times are the same in both hospitals or

if the average initial waiting time equals the steady-state waiting time, then waiting times, supply

and demand in both segments of the market converge monotonically to the steady-state. In this

case, if the condition |ω3| > |ω5| holds, the equilibrium path to the steady-state is characterised by

periods of increasing (decreasing) hospital activity and increasing (decreasing) waiting time, which
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is in line with Siciliani (2006) in a monopoly setting. Notice that |ω3| > |ω5| implies that the own

waiting time effect on hospital activity is larger than the effect of the waiting time of the competing

hospital, which is both intuitive and confirmed by our calibration exercise below.8

However, non-monotonic convergence may also arise. In Appendix A we show that, if the

average initial waiting time is above (below) the steady-state waiting time, the hospital with the

shortest (longest) initial waiting time might experience a non-monotonic convergence along the

equilibrium path, with the waiting time first increasing (decreasing) before decreasing (increasing)

towards the steady-state. One policy implication is that short-run provider performance on waiting

times may not be representative of its long-run one.

4.3 Calibration

We calibrate the model using data from the English NHS on cataract surgery, which is a common

non-emergency procedure across OECD countries (Siciliani et al., 2014). Our two key variables in

the model are the steady-state waiting time and supply.

Waiting time data for cataract surgery is obtained from the Hospital Episode Statistics published

by NHS Digital. Table 1 reports the mean and median waiting times (in days) for a cataract

procedure provided either by NHS hospitals or the independent sector (private hospitals treating

publicly-funded patients).9

Table 1. Evolution of waiting times for cataract procedures in the English NHS

Financial year 2011-12 2012-13 2013-14 2014-15 2015-16 2016-17

Mean waiting time 66 67 71 70 70 70

Median waiting time 59 60 63 62 59 58

Waiting times have remained relatively stable in recent years. They coincide with a period in

which NHS England (the main regulator) did not specify performance standards for non-emergency

care (The King’s Fund, 2017). We interpret this as a regime where no significant penalties have been

imposed on providers with longer waits. Within our model this corresponds to the special case when

there is no hospital disutility of waiting time (α1 = α2 = 0). We therefore use the data in Table 1

8Additionally, it follows from equations (A.21) and (A.22) in Appendix A that |ω3| > |ω5| is a sufficient (but not
necessary) condition for convergence to be verified.

9Healthcare Resource Group (HRG) code BZ02Z, Phacoemulsification Cataract Extraction and Lens Implant,
in the HRG4 classification system. In 2011-12, episodes were grouped according to the HRG3.5 version, and the
corresponding HRG code is B13.
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as a measure of waiting times in a steady-state with no penalties, which we denote by superscript

s. To make the analysis consistent with the study of Propper et al. (2010), we employ the mean

waiting time, measured in months, and focus on the financial year 2016-17, giving ws = 2.3.

According to the National Schedule of Reference Costs from NHS Improvement, 234 NHS

providers performed 286, 596 cataract procedures in the same year.10 This gives a monthly average

of approximately 100 procedures per provider, so that Ss = Ds = 100.

On the supply side, two key parameters are the tariff for a cataract surgery (the DRG-type

price) and the marginal cost of treatment. From the National Schedule of Reference Costs, the

national tariff in 2016-17 for a cataract procedure was 731£. We set p = 731. Given that the

first-order condition Ss = p/γ has to hold (when α1 = α2 = 0), we recover the parameter related

to the marginal cost of treatment, γ = 7.31.

On the demand side, the key parameters are the potential demand, the size of the competitive

segment, the demand responsiveness, the gross valuation of treatment, and the value of the outside

option. These parameters are less easy to obtain but we infer them in the following way. According

to OECD (2018), 10.5% of the UK population was covered by private health insurance in 2015.

We assume that patients with private insurance opt for private treatment and that publicly-funded

cataract procedures account for about 90% of the market.11 Given that the steady-state supply in

each hospital is Ss = 100, potential demand across the two hospitals is then given by N = 222.

Sivey (2012) estimates a demand elasticity for cataract surgery across NHS providers that is

approximately −0.1. The waiting time elasticity of demand evaluated at the steady-state values

and N = 222 gives

∂Di(wi(t), wj(t))

∂wi(t)

ws

Ds
= −

N(2− β)

2τ

ws

Ds
= −

222(2− β)

2τ

2.3

100
= −0.1. (22)

We do not know how large is the competitive segment. In order to account for patient heterogeneity,

we conduct the analysis for three different values, β = {0.2, 0.5, 0.8}. We start by assuming β = 0.2,

so that the competitive segment accounts for 20% of potential demand and is therefore relatively

small, and then check how the results differ when it is 50% and 80% (relatively large). If β = 0.2,

then, from (22), the demand elasticity implies that τ = 45.954. Moreover, from the demand

10The National Schedule of Reference Costs is detailed according to the HRG4+ classification system, which
presents a more thorough description of cataract episodes than the HRG4. Focusing on Phacoemulsification Cataract

Extraction and Lens Implant, the HRGs considered are BZ34A, BZ34B, and BZ34C in HRG4+.
11This is an approximation since some patients without private insurance may also obtain private care if they pay

out of pocket and some with private insurance may not seek private care if they face co-payments.
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equation evaluated at the steady-state,

Ds = N

[

β

2
+ (1− β)

(

v − k − ws

τ

)]

, (23)

we can recover the difference between the gross valuation of treatment and the value of the outside

option: v − k = 22.4308. If β = 0.5, then, from (22), we obtain τ = 38.295 and, from (23), we

obtain v− k = 17.653. If β = 0.8, then, from (22), we obtain τ = 30.636 and, from (23), we obtain

v − k = 10.028. We have thus recovered the demand-side parameters for β = {0.2, 0.5, 0.8}.

We adopt a discount factor of 0.95 per year and take each period t as one month. The monthly

discount rate is therefore ρ = 0.004 (computed from e−12ρ = 0.95).

In the steady-state, it takes one month for Hospital i to treat 100 patients. This implies

that, if 10 additional patients are added to the list, the waiting time will increase by 0.1 months

(about 3 days). More formally, from the dynamic constraint, ∆ws ≈ θ∆(Ds − Ss), which gives

θ = ∆ws

∆(Ds−Ss) =
0.1
10 = 0.01 in the neighbourhood of the steady-state.

We are interested in understanding provider behaviour in the presence of penalties. We therefore

need to identify plausible values for α1 and α2 under a penalty regime. In order to do this, we make

use of the open-loop solution, for which we can derive a closed-form solution for the steady-state

waiting time when α2 > 0 (see Appendix B). We denote variables in the open-loop steady-state by

the superscript OL. Propper et al. (2010) find that the introduction of waiting time penalties in the

English NHS in 2000-05 reduced the mean waiting time by 13 days (i.e., 0.43 months). Although

this estimate refers to an earlier period, it provides us with a plausible order of magnitude if such

penalties were re-introduced in 2016-17. We then use this figure to compute the difference between

the steady-state waiting time in the model with no disutility of waiting time and the open-loop

steady-state waiting time, which is given by

ws−wOL = 2.3−
γφτ

(1− β)γφN + 2θτ2α2

{

N

[

β

2
+ (1− β)

(

v − k

τ

)]

−
p

γ
−

2θτα1

γφ

}

= 0.43. (24)

Inserting the above described parameter values when β = 0.2, the solution to (24) has one degree

of freedom and is given by

α2 = 30.5274− 0.53486α1. (25)

All α1 and α2 that satisfy (25) yield a reduction of 0.43 months in the open-loop steady-state

23



waiting time compared to the case with no disutility of waiting time. We consider three disutility

structures: (i) linear disutility (α2 = 0), yielding α1 = 57.0826; (ii) quadratic disutility (α1 = 0),

yielding α2 = 30.5274; and (iii) an intermediate case in which α1 =
57.0826

2 and α2 =
30.5274

2 .

We insert all parameter values and solve the system (A.6)-(A.8) in Appendix A to yield ω1, ω3,

and ω5, which are plugged into (A.27) to obtain the closed-loop steady-state waiting time. With

ω1, ω3, ω5, and wCL, we use (21) to retrieve the closed-loop steady-state supply. For the open-loop

steady-state waiting time and supply, we insert the parameter values into equations (B.6) and (B.8)

in Appendix B.

The same steps were then repeated for β = 0.5 and β = 0.8.

4.3.1 Linear versus convex waiting time disutility

The results generated by the above described calibration procedure are summarised in Table 2.

Table 2. Calibration results for a waiting time elasticity of demand of −0.1

β α1 α2 wOL wCL SOL SCL ω3 ω5

0.2 57.0862 0 1.8700 1.8700 101.6620 101.6620 0 0

0.2 28.5431 15.2637 1.8700 1.8703 101.6620 101.6609 −164.6061 −8.3753

0.2 0 30.5274 1.8700 1.8705 101.6620 101.6600 −321.6537 −15.3715

0.5 39.2269 0 1.8700 1.8700 101.2464 101.2464 0 0

0.5 19.6143 10.4885 1.8700 1.8720 101.2464 101.2402 −119.1899 −19.2189

0.5 0 20.9769 1.8700 1.8734 101.2464 101.2353 −233.5920 −36.3039

0.8 13.5675 0 1.8700 1.8700 100.6232 100.6232 0 0

0.8 6.7837 3.6277 1.8700 1.8755 100.6232 100.6147 −52.3298 −20.3702

0.8 0 7.2553 1.8700 1.8795 100.6232 100.6077 −102.5480 −38.9404

Our calibration results confirm that, as explained in Section 4.2, the dynamic interaction intro-

duced by increasing marginal disutility of waiting time leads to longer steady-state waiting times.

As the waiting time disutility becomes more convex (i.e., more weight is placed on the quadratic

term), the longer is the waiting time and the lower is supply in the closed-loop steady-state. The

reason is simply that a more convex disutility function increases the magnitude of each hospital’s

supply response to changes in the waiting time, which reinforces each hospital’s incentive to reduce

supply in order to provoke a supply increase by the rival hospital, which in turn benefits the former
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hospital in the form of a lower waiting time. This result has potentially interesting policy impli-

cations, as it suggests that linear penalties are more effective in reducing waiting times, all else

equal. Notice also that the importance of the design of the penalty structure is larger for higher

values of the competitive segment, β. This is intuitive, since the strategic substitutability relies on

the existence of a competitive segment, wherein changes in the waiting time at one hospital affect

demand faced by the rival hospital. Thus, a larger relative size of the competitive segment will

magnify the effects of strategic substitutability.

Besides confirming that they coincide when α2 = 0, another key insight from Table 2 is that

the difference in waiting times under the open- and closed-loop solutions is very small (less than

1%) when α2 > 0. This suggests that, even with non-linear penalties, the less computationally

demanding open-loop solution offers a close approximation of the closed-loop one.

4.3.2 Higher waiting time elasticity of demand

One may worry that the results from Table 2 are due to the low demand elasticity. We therefore

extend the analysis under the assumption that the waiting time elasticity is higher. We consider

two additional cases. First, we assume that the elasticity is −0.2, twice as large, which is the highest

that has been reported in studies for England (see Iversen and Siciliani (2011) for an overview).

Second, we assume that the elasticity is −1. This is an upper bound. There is only one study

from Australia which provides such a large estimate (Stavrunova and Yerokhin, 2011), and this is

consistent with the features of the Australian health system where more than half of the population

is treated privately. Tables 3 and 4 provide the results for waiting time elasticities of demand of

−0.2 and −1, respectively, and they are derived following the steps detailed above. We see that an

increase in the waiting time elasticity of demand reinforces the relative effectiveness of linear (as

opposed to convex) waiting time penalties. Still, the quantitative difference between steady-state
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waiting times in the open- and closed-loop solutions remains small.

Table 3. Calibration results for a waiting time elasticity of demand of −0.2

β α1 α2 wOL wCL SOL SCL ω3 ω5

0.2 218.4948 0 1.8700 1.8700 103.3237 103.3237 0 0

0.2 109.2474 58.4211 1.8700 1.8703 103.3237 103.3212 −322.1649 −16.7563

0.2 0 116.8421 1.8700 1.8705 103.3237 103.3193 −629.5163 −31.3129

0.5 148.9097 0 1.8700 1.8700 102.4928 102.4928 0 0

0.5 74.4548 39.8154 1.8700 1.8722 102.4928 102.4791 −231.9189 −38.3288

0.5 0 79.6308 1.8700 1.8738 102.4928 102.4683 −454.4837 −72.3946

0.8 49.2070 0 1.8700 1.8700 101.2464 101.2464 0 0

0.8 24.6037 13.1571 1.8700 1.8762 101.2464 101.2272 −98.9201 −39.8422

0.8 0 26.3142 1.8700 1.8807 101.2464 101.2115 −193.7462 −76.1410

Table 4. Calibration results for a waiting time elasticity of demand of −1

β α1 α2 wOL wCL SOL SCL ω3 ω5

0.2 5265.7273 0 1.8700 1.8700 116.6184 116.6184 0 0

0.2 2632.8636 1407.9485 1.8700 1.8703 116.6184 116.6049 −1581.6013 −83.7851

0.2 0 2815.8969 1.8700 1.8706 116.6184 116.5947 −3090.4383 −156.5665

0.5 3561.6215 0 1.8700 1.8700 112.4638 112.4638 0 0

0.5 1788.8108 952.3052 1.8700 1.8724 112.4638 112.3893 −1132.2781 −190.9560

0.5 0 1904.6104 1.8700 1.8741 112.4638 112.3307 −2218.7774 −360.6664

0.8 1126.6109 0 1.8700 1.8700 106.2319 106.2319 0 0

0.8 563.3055 301.2329 1.8700 1.8769 106.2319 106.1257 −469.2457 −194.4604

0.8 0 602.4657 1.8700 1.8818 106.2319 106.0397 −918.7196 −371.5998

4.3.3 Higher waiting times and hospital heterogeneity

In this section, we investigate whether our calibration results are robust to providers with longer

waiting times. We simulate scenarios in which the baseline waiting time is 50% higher (i.e., ws =

3.45). This is in line with Sivey (2012), who finds that the standard deviation of waiting times for

cataract patients is about half of the mean wait.

Since long waiting times may be observed both at hospitals with high and low volumes, we

26



recalibrate the model with the higher baseline waiting time (ws = 3.45) and set steady-state

supply respectively at Ss = 300 (high volume) and Ss = 50 (low volume) in Tables 5 and 6. This

is in line with HES data that reveal significant dispersion in hospital volumes even at the upper

tail of the waiting times distribution across all procedures.12

By repeating the steps outlined at the beginning of Section 4.3, we obtain the results in Tables

5 and 6, which show that the effect of linear versus convex penalties is qualitatively similar to

our previously derived results (in Tables 2-4). And again, the waiting times under the open-loop

solution are very similar to those under closed-loop solution.

Table 5. Calibration results for larger hospitals and a higher baseline waiting time

β α1 α2 wOL wCL SOL SCL ω3 ω5

0.2 79.3777 0 3.0200 3.0200 303.3237 303.3237 0 0

0.2 39.6889 13.1420 3.0200 3.0202 303.3237 303.3224 −209.9135 −10.6351

0.2 0 26.2840 3.0200 3.0203 303.3237 303.3214 −413.6013 −20.3550

0.5 54.9493 0 3.0200 3.0200 302.4928 302.4928 0 0

0.5 27.4747 9.0976 3.0200 3.0212 302.4928 302.4860 −152.6061 −24.3845

0.5 0 18.1951 3.0200 3.0222 302.4928 302.4803 −301.2599 −47.0010

0.8 19.7392 0 3.0200 3.0200 301.2464 301.2464 0 0

0.8 9.8696 3.2681 3.0200 3.0232 301.2464 301.2374 −68.5619 −26.0926

0.8 0 6.5362 3.0200 3.0258 301.2464 301.2294 −135.3564 −50.6886

12In 2016-17, the standard deviation of finished consultant episodes for hospitals above the 90th percentile of the
waiting times distribution was over three times larger than the mean.
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Table 6. Calibration results for smaller hospitals and a higher baseline waiting time

β α1 α2 wOL wCL SOL SCL ω3 ω5

0.2 13.2296 0 3.0200 3.0200 50.5539 50.5539 0 0

0.2 6.6148 2.1903 3.0200 3.0202 50.5539 50.5537 −34.9856 −1.7725

0.2 0 4.3807 3.0200 3.0203 50.5539 50.5536 −68.9335 −3.3925

0.5 9.1582 0 3.0200 3.0200 50.4155 50.4155 0 0

0.5 4.5791 1.5163 3.0200 3.0212 50.4155 50.4143 −25.4343 −4.0641

0.5 0 3.0325 3.0200 3.0222 50.4155 50.4134 −50.2100 −7.8335

0.8 3.2899 0 3.0200 3.0200 50.2077 50.2077 0 0

0.8 1.6449 0.5447 3.0200 3.0232 50.2077 50.2062 −11.4270 −4.3488

0.8 0 1.0894 3.0200 3.0258 50.2077 50.2049 −22.5594 −8.4481

4.3.4 Patient choice and waiting times

One of our main aims is to analyse the relationship between patient choice and waiting times. In

line with the analysis in Section 4.1.1, we therefore conduct comparative statics with respect to the

patient choice parameter τ . The fourth and fifth columns of Table 7 show the effects (on steady-

state waiting times and supply) of a 10% reduction in τ , with all other parameters kept unchanged

from our main calibration analysis, which implies that the results displayed in Table 2 serve as a

reference point of comparison. In the last two columns of Table 7, we report the equivalent effects

of a combined policy package, where a 10% reduction in τ is accompanied by a 10% increase in

waiting time penalties (equivalent to the analysis in Section 4.1.2).

In qualitative terms, the effects of increased patient choice on steady-state waiting times and

supply, as shown in the fourth and fifth columns of Table 7, confirm that the result stated in

Proposition 2 generalises beyond the case of constant marginal disutility of waiting time. Regardless

of the shape of the hospitals’ waiting time disutility function, a reduction in τ leads to higher
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steady-state waiting times.13

Table 7. Steady-state effects of policy reforms

Patient choice1 Joint policy2

β α1 α2 ∆%wCL ∆%SCL ∆%wCL ∆%SCL

0.2 57.0862 0 111.86 −0.15 109.98 0

0.2 28.5431 15.2637 102.24 0.61 99.67 0.82

0.2 0 30.5274 94.15 1.25 91.14 1.49

0.5 39.2269 0 86.27 −0.11 84.39 0

0.5 19.6143 10.4885 78.76 0.33 76.41 0.47

0.5 0 20.9769 72.52 0.70 69.87 0.85

0.8 13.5675 0 45.34 −0.05 43.45 0.01

0.8 6.7837 3.6277 41.25 0.07 39.23 0.12

0.8 0 7.2553 37.93 0.17 35.85 0.23

110% reduction in τ

210% reduction in τ and 10% increase in α1 and/or α2

However, even if more patient choice increases steady-state waiting times for all parameter

configurations considered in Table 7, there is a clear pattern showing that this effect is quantitatively

smaller if the waiting time disutility is more convex. The reason is that a reduction in τ has two

counteracting effects on steady-state supply when α2 > 0. On the one hand, a lower τ makes

treatment supply a less effective instrument to reduce waiting times, as previously explained, which

gives each hospital an incentive to reduce their supply. On the other hand, a lower τ also increases

demand (from the monopolistic segment), which—all else equal—leads to higher waiting times.

If the disutility of waiting time is strictly convex (i.e., if α2 > 0), such increase in waiting time

increases the marginal disutility of waiting time and therefore increases the marginal benefit of

supply. In other words, with a strictly convex waiting time disutility function, the waiting time

increase due to increased patient choice is partly dampened by the hospitals’ incentives to increase

supply in response to higher waiting times. Indeed, the fifth column in Table 7 shows that steady-

state supply increases for the parameter configurations with α2 > 0.

13In the open-loop solution, for which a closed-form solution can be derived also in the case of increasing marginal
waiting time disutility (see Appendix B), it is also easily shown that a reduction in τ leads to higher steady-state
waiting times for all parameter values that are compatible with equilibrium existence.
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This illustrates another aspect of the inherent conflict between waiting time penalties and

patient choice policies, as previously discussed in Section 4.1.2. On the one hand, waiting time

penalties are more effective in reducing waiting times when they are designed as linear penalties

(as shown by Tables 2-6). On the other hand, the counterproductive effect of patient choice policies

on waiting times is larger when penalties are linear (as shown by Table 7).

The last two columns of Table 7 show the effects of a policy package where the increased in

patient choice is combined with a (10%) increases in waiting time penalties. Not surprisingly, this

dampens the increase in waiting times induced by more patient choice. However, we see that the

patient choice effect clearly dominates, implying that such a policy package leads to an overall

increase in steady-state waiting times.

5 Patient Welfare

In this section, we briefly investigate the effect of choice policies on overall patient welfare. In the

symmetric steady-state equilibrium, overall patient welfare, denoted by U , is given by the sum of

patients’ utility

U = 2Nβ

∫ 1

2

0
(v − wCL − τx)dx+ 2N(1− β)

∫ xCL
M

0
(v − k − wCL − τx)dx, (26)

and the effect of lower travelling costs is

∂U

∂τ
= −2DCL∂w

CL

∂τ
−N

[

β

4
+ (1− β)(xCL

M )2
]

. (27)

The first term is negative and captures the utility loss due to longer waiting times endured by

all patients. The second term is positive and captures the utility increase from lower travelling

costs, which we interpret more broadly as simpler access to health care. Note that there is a third

term since an increase in waiting times reduces demand at the margin, but given that the marginal

patient is indifferent between treatment and no treatment, this has no effect on welfare. Therefore,

the effect of choice policies on overall welfare is indeterminate and is positive only if the direct

effect of easier access overcomes the utility loss from longer waiting times.

The above approach takes a utilitarian perspective. Suppose that a health authority or regulator

(a Ministry of Health) is only interested in the health component of patient welfare (Gravelle and
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Siciliani, 2008c). This approach has been sometimes referred as the extra-welfarist approach since

it ignores non-health components which affect patient utility. Aggregate health patient benefit,

denoted B, at the symmetric steady-state, is

B = 2Nβ

∫ 1

2

0
(v − wCL)dx+ 2N(1− β)

∫ xCL
M

0
(v − k − wCL)dx, (28)

and the effect of lower travelling costs is

∂BW

∂τ
= −2DCL∂w

CL

∂τ
+ 2(v − k − wCL)

∂SCL

∂τ
. (29)

If providers’ penalties are linear in waiting times, patient choice policies increase waiting times

for each patient and reduce supply with fewer patients gaining a health benefit from treatment,

thus unambiguously reducing aggregate health benefits.

If providers’ penalties are non-linear in waiting times, choice policies simultaneously increase

waiting times and supply. Therefore, the effect on aggregate health benefit is in principle ambiguous.

However, our calibration exercise shows that the supply effect is a second-order effect and that

patient choice reduces aggregate health benefit also when α2 > 0. In more detail, Table 8 reports

the percent change in B and U induced by a 10% reduction in τ , which is computed using the

welfare values associated with Tables 2 and 7.

Table 8. Steady-state effects of a 10% reduction in τ on patient welfare

β α1 α2 ∆%wCL ∆%SCL ∆%U ∆%B

0.2 57.0862 0 111.86 −0.15 −9.81 −10.04

0.2 28.5431 15.2637 102.24 0.61 −8.10 −8.52

0.2 0 30.5274 94.15 1.25 −6.66 −7.23

0.5 39.2269 0 86.27 −0.11 −8.26 −9.22

0.5 19.6143 10.4885 78.76 0.33 −6.70 −8.08

0.5 0 20.9769 72.52 0.70 −5.38 −7.12

0.8 13.5675 0 45.34 −0.05 −1.71 −5.88

0.8 6.7837 3.6277 41.25 0.07 −0.69 −5.31

0.8 0 7.2553 37.93 0.17 0.15 −4.84
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6 Robustness

In order to facilitate analytical tractability, our model has a linear-quadratic structure. One impli-

cation is that patient (dis)utility is assumed to be linear in waiting times, and travelling costs are

linear in distance. Here we will briefly evaluate whether our main result—that more patient choice

leads to increased waiting times—is robust to a relaxation of these assumptions. Unfortunately, it

is only possible to perform these robustness checks in the context of the open-loop solution. How-

ever, our previous analysis has shown that the open-loop solution is a very close approximation

of the closed-loop solution in our setting. The two solutions coincide if α2 = 0, and our calibra-

tion results show that the two solutions concepts produce quantitatively almost identical results if

α2 > 0. More importantly, the positive relationship between patient choice and waiting times does

not depend on the choice of the solution concept.

6.1 Non-linear patient disutility of waiting

Suppose that, in the patient utility functions (1) and (2), we replace wi with a strictly increasing

function f (wi). Total demand for Hospital i is then given by

Di(wi, wj) = N

{

β

[

1

2
+

f(wj)− f(wi)

2τ

]

+ (1− β)

[

v − k − f(wi)

τ

]}

. (30)

Let wOL be the steady-state waiting time in the open-loop solution. In Appendix B, we show that

this solution exists if f (·) is either concave or convex with a sufficiently low degree of convexity.

Furthermore, we also show that, under the conditions of equilibrium existence, ∂wOL/∂τ < 0.

Thus:

Proposition 5 Regardless of whether patient utility is concave or convex in waiting time, the

steady-state waiting time in the open-loop solution, if it exists, is increasing in the degree of patient

choice.

This result is not surprising, given the intuition behind the previously derived positive relation-

ship between patient choice and steady-state waiting times, which is related to the responsiveness

of demand to changes in waiting times. As long as increased patient choice makes demand more

responsive to changes in waiting times, it becomes more difficult for each hospital to curb waiting

times by unilaterally increasing supply, which in turn leads to longer steady-state waiting times
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at both hospitals. This mechanism only requires that patient utility decreases with longer waiting

times; it does not depend on whether patient utility decreases at a faster or slower rate when

waiting times increase. Thus, we conjecture that the result stated in Proposition 5 also hold in a

closed-loop setting.

6.2 Non-linear patient disutility of travelling

Consider next the case where, in the patient utility functions (1) and (2), we replace |x− zi| with

a strictly increasing function g (|x− zi|). This generalisation prevents a closed-form derivation of

demand. However, by the Implicit Function Theorem, we can derive the demand responsiveness to

waiting time as

∂Di(wi(t), wj(t))

∂wi(t)
= −

N

τ

(

β

τ [g′(xC(t)) + g′(1− xC(t))]
+

(1− β)

g′(xiM (t)))

)

< 0 (31)

and

∂Di(wi(t), wj(t))

∂wj(t)
=

Nβ

τ [g′(xC(t)) + g′(1− xC(t))]
> 0. (32)

Still using τ as an inverse measure of the degree of patient choice, we derive (see Appendix B) the

following result:

Proposition 6 (i) The steady-state waiting time in the open-loop solution is increasing in the

degree of patient choice if the patient disutility of travelling is either concave or not strongly convex

in travelling distance. (ii) In the case of constant marginal provider disutility of waiting time, the

open-loop steady-state waiting time is increasing in the degree of patient choice if it exists.

Thus, unless patient utility is strongly convex in travelling distance, our main result holds also

in the case of non-linear patient disutility of travelling. And it always holds in the case of linear

waiting time penalties, given that the open-loop solution exists. The general condition stated in

Proposition 6 covers, for example, the empirical specification of Sivey (2012), who assumes that

the utility of English cataract patients is a function of the natural log of travel time.

7 Concluding remarks

We have investigated whether increased competition through patient choice policies play a useful

role in reducing waiting times and the extent to which such a role is altered in the presence
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of penalties for providers with long waits. Our main results suggest, perhaps surprisingly, that

increased patient choice leads to higher waiting times and that patient choice policies are therefore

counterproductive in this respect. Furthermore, in the presence of waiting time penalties, we have

shown that larger penalties make patient choice policies even more counterproductive.

The counterproductive effect of patient choice policies follows from the fact that increased pa-

tient choice makes each hospital’s demand more responsive to changes in waiting times, which in

turn makes it harder for each hospital to reduce waiting times by unilaterally increasing supply.

In other words, increased patient choice makes each hospital’s supply decision a less effective in-

strument to reduce waiting times, thereby leading to higher waiting times in equilibrium. This is

a highly robust result which, in qualitative terms, does not depend on the choice of game-theoretic

solution concept (closed-loop versus open-loop), nor on the design of the waiting time penalty

structure (linear versus convex penalties). We have also shown that this result is robust to a fairly

general patient utility specification. The result holds when patients’ disutility of waiting is non-

linear, and it also holds when patients’ disutility of travelling is non-linear (though not too strongly

convex).

While our main result might perhaps appear counterintuitive, it is consistent with a recent

empirical study which shows that the introduction of patient choice policies in England since 2006

led to an increase in waiting times for hip and knee replacement (with one additional rival increasing

waiting times by about 3-4%) and had no effect on waiting times for coronary bypass (Moscelli

et al., 2019) or the proportion of patients waiting more than three months (Gaynor et al., 2013,

footnote 16). Our results are also in line with an earlier study which showed that, for hip and knee

replacement, hospitals facing more competition had higher readmissions (Moscelli et al., 2018a).

Therefore, it appears that waiting times and quality worsened for some elective treatments, despite

the improvements found for heart attack mortality and overall mortality (Cooper et al., 2011;

Gaynor et al., 2013), and for hip fracture mortality (Moscelli et al., 2018b).

Our findings are instead in contrast with the older study by Propper, Burgess, and Gossage

(2008), which found that competition in the late nineties reduced waiting times in England. How-

ever, this result was obtained in a different institutional setting than the one covered in our study.

Patients had no or very limited choice. Hospitals prices were not fixed, but negotiated between

health authorities and providers. Clinical quality measures were not available to the funders so

that providers competed for funding from health authorities based on prices and waiting times.
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As mentioned in the Introduction, countries like Denmark and Portugal have introduced patient

choice policies. Although there is no evaluation study, in Denmark, waiting times reduced to some

extent following the introduction of patient choice (and other) policies. These however can be

explained by an expansion in capacity since the use of private providers to treat publicly-funded

patients increased from 2 to 4% (Siciliani et al., 2013). Moreover, in Denmark, hospitals did not

face any direct penalties for longer waiting times. In Portugal, preliminary evidence from 2016-2017

suggests that following the introduction of choice policies, median waiting time for first outpatient

consultation increased in five specialties and reduced in two specialties (Simões et al., 2017). This

suggests that choice policies did not have the intended effect of stimulating higher supply.

In summary, our model and analysis suggest that although policies based on provider penalties

will have the intended effect in reducing waiting times, policies which stimulate patient choice and

competition will not.
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Appendix A: Closed-loop solution

Given the linear-quadratic structure of our model, we conjecture that the value function for Hospital

i takes the form:

V i(wi, wj) = ω0 + ω1wi + ω2wj +
ω3

2
w2
i +

ω4

2
w2
j + ω5wiwj . (A.1)

This value function must satisfy the Hamilton-Jacobi-Bellman (HJB) equation for Hospital i, which

is given by14

ρV i(wi, wj) = max

{

T + pSi −
γ

2
S2
i − α1wi −

α2

2
w2
i + θ

∂V i

∂wi
(Di − Si) + θ

∂V i

∂wj
(Dj − Sj)

}

. (A.2)

Maximisation of the right-hand side of the HJB equations yields:

Si(wi, wj) =
p− θ(ω1 + ω3wi + ω5wj)

γ
. (A.3)

Substituting Hospital i’s supply rule and the analogous supply rule for Hospital j into the HJB

14To save notation, we omit the time index t in all subsequent expressions.
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equation, together with (7)-(8), we obtain:

ρV i(wi, wj) = T + p

[

p− θ(ω1 + ω3wi + ω5wj)

γ

]

−
γ

2

[

p− θ(ω1 + ω3wi + ω5wj)

γ

]2

− α1wi −
α

2
w2
i

+θ(ω1+ω3wi+ω5wj)

[

β

(

1

2
+

wj − wi

2τ

)

N + (1− β)

(

v − k − wi

τ

)

N −
p− θ(ω1 + ω3wi + ω5wj)

γ

]

+θ(ω2+ω4wj+ω5wi)

[

β

(

1

2
+

wi − wj

2τ

)

N + (1− β)

(

v − k − wj

τ

)

N −
p− θ(ω1 + ω3wj + ω5wi)

γ

]

,

(A.4)

which can be rewritten as

{

T +
p2

2γ
+ σ(ω1 + ω2) +

θ2

2γ
ω2
1 +

θ2

γ
ω1ω2 − ρω0

}

+ wi

{

−

[

ρ+
θ(2− β)N

2τ

]

ω1 +
θβN

2τ
ω2 + σ(ω3 + ω5) +

θ2

γ
ω1ω3 +

θ2

γ
ω1ω5 +

θ2

γ
ω2ω5 − α1

}

+ wj

{

θβN

2τ
ω1 −

[

ρ+
θ(2− β)N

2τ

]

ω2 + σ(ω4 + ω5) +
θ2

γ
ω1ω4 +

θ2

γ
ω1ω5 +

θ2

γ
ω2ω3

}

+ w2
i

{

−

[

ρ

2
+

θ(2− β)N

2τ

]

ω3 +
θ2

2γ
ω2
3 +

θβN

2τ
ω5 +

θ2

γ
ω2
5 −

α2

2

}

+ w2
j

{

−

[

ρ

2
+

θ(2− β)N

2τ

]

ω4 +
θ2

γ
ω3ω4 +

θβN

2τ
ω5 +

θ2

2γ
ω2
5

}

+ wiwj

{

θβN

2τ
(ω3 + ω4)−

[

ρ+
θ(2− β)N

τ

]

ω5 +
2θ2

γ
ω3ω5 +

θ2

γ
ω4ω5

}

= 0, (A.5)

where σ = θβN
2 + θ(1− β)

(

v−k
τ

)

N − θ
γ
p.

For the equality to hold, the terms in curly brackets in the above equation have to be equal to

zero. Since the last three terms depend only on ω3, ω4, and ω5, we focus on the system of three

equations and three unknowns given by:

−

[

ρ

2
+

θ(2− β)N

2τ

]

ω3 +
θ2

2γ
ω2
3 +

θβN

2τ
ω5 +

θ2

γ
ω2
5 −

α2

2
= 0, (A.6)

−

[

ρ

2
+

θ(2− β)N

2τ

]

ω4 +
θ2

γ
ω3ω4 +

θβN

2τ
ω5 +

θ2

2γ
ω2
5 = 0, (A.7)

θβN

2τ
(ω3 + ω4)−

[

ρ+
θ(2− β)N

τ

]

ω5 +
2θ2

γ
ω3ω5 +

θ2

γ
ω4ω5 = 0. (A.8)
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A.1 Constant marginal waiting time disutility

Consider first the closed-loop solution under constant marginal waiting time disutility. When

α2 = 0, the system of equations (A.6)-(A.8) has a single candidate solution for which the value

function is not convex with respect to wi. The remaining five candidates have ω3 > 0 and cannot

therefore constitute a solution the hospital’s maximisation problem. The solution that yields a

linear—hence, concave—value function with respect to wi is ω3 = ω4 = ω5 = 0. This linearity of

the value function with respect to waiting times is not surprising given the linear structure of the

game when α2 = 0. Setting ω3 = ω5 = 0 in (A.3), Hospital i’s optimal supply rule becomes

Si(wi, wj) =
p− θω1

γ
, (A.9)

implying that supply is constant, and thus independent of waiting times, in each t.

With ω3 = ω4 = ω5 = 0, (A.5) simplifies to:

{

T +
p2

2γ
+ σ(ω1 + ω2) +

θ2

2γ
ω2
1 +

θ2

γ
ω1ω2 − ρω0

}

+ wi

{

−

[

ρ+
θ(2− β)N

2τ

]

ω1 +
θβN

2τ
ω2 − α1

}

+ wj

{

θβN

2τ
ω1 −

[

ρ+
θ(2− β)N

2τ

]

ω2

}

= 0. (A.10)

Since the last two terms depend only on ω1 and ω2, we focus on the 2× 2 system and solve for ω1.

The solution is given by

ω1 = −
τα1 [2ρτ + θ(2− β)N ]

2 [ρτ + θ(1− β)N ] [ρτ + θN ]
= −

2τα1

φ
. (A.11)

Inserting the expression for ω1 into the optimal supply rule for hospitals i and j yields Si = Sj =

SCL as given by (13) in Section 4. Using this result, the closed-loop steady-state waiting time is

derived from the equations of motion (11)-(12), with ẇi(t) = ẇj(t) = 0. Simple algebra shows that

wi = wj = wCL as given by (16) in Section 4.

From (16), the steady-state waiting time is positive if and only if p ≤ p, given by

p = γN

[

β

2
+ (1− β)

(

v − k

τ

)]

−
2θτα1

φ
. (A.12)
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Furthermore, in order to have a partially covered monopolistic segment in the steady-state, the

following condition must be satisfied:

0 <
v − k − wCL

τ
<

1

2
. (A.13)

The lower bound is satisfied if p > p, given by

p =
βγN

2
−

2θτα1

φ
, (A.14)

whereas the upper bound is satisfied if p < γN
2 − 2θτα1

φ
, which always holds if p < p. Thus,

an interior-solution equilibrium (i.e., positive waiting times with a partially covered monopolistic

segment) requires p ∈ P = (max{0, p}, p). Since p > p for β ∈ (0, 1), P is non-empty if p > 0,

which requires that γ is sufficiently large.

A.2 Increasing marginal disutility of waiting time

When α2 > 0, the solution to (A.6)-(A.8) depends on the root of a sixth degree polynomial,

precluding the computation of an analytical solution. Assume, for now, that a solution exists and

that it is such that (21) in Proposition 4 constitutes a Markov Perfect Nash Equilibrium.

From (A.6), two candidate solutions for ω3 (as functions of ω5) ensue:

ω3 =
γ

θ2







[

ρ

2
+

θ(2− β)N

2τ

]

±

√

[

ρ

2
+

θ(2− β)N

2τ

]2

−
2θ2

γ

[

θ2

γ
ω2
5 +

θβN

2τ
ω5 −

α2

2

]







. (A.15)

A solution to Hospital i’s maximisation problem is attained if the value function is concave with

respect to wi, which requires ω3 < 0. The greater root (unambiguously positive) is therefore ruled

out. For the smaller root to be negative, the second term under the square-root must be positive,

which is true for ω5 ∈ (ω5, ω5), with

ω5 = −
γ

2θ2





θβN

2τ
+

√

(

θβN

2τ

)2

+
2θ2α2

γ



 < 0, (A.16)

ω5 = −
γ

2θ2





θβN

2τ
−

√

(

θβN

2τ

)2

+
2θ2α2

γ



 > 0. (A.17)
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Additionally, in order for (21) to be a Markov Perfect Nash Equilibrium, the value function

must be bounded from above. A necessary and sufficient condition for this requirement to hold is

that waiting times converge in equilibrium. Inserting (7), (8), (21), and the analogous supply rule

for Hospital j into (11)-(12) yields the following system of differential equations:

ẇi

θ
=

[

−
(2− β)N

2τ
+

θ

γ
ω3

]

wi +

[

βN

2τ
+

θ

γ
ω5

]

wj +N

[

β

2
+ (1− β)

(

v − k

τ

)]

−

(

p− θω1

γ

)

,

(A.18)

ẇj

θ
=

[

βN

2τ
+

θ

γ
ω5

]

wi +

[

−
(2− β)N

2τ
+

θ

γ
ω3

]

wj +N

[

β

2
+ (1− β)

(

v − k

τ

)]

−

(

p− θω1

γ

)

.

(A.19)

The Jacobian of (A.18)-(A.19) is

JCL = θ







− (2−β)N
2τ + θ

γ
ω3

βN
2τ + θ

γ
ω5

βN
2τ + θ

γ
ω5 − (2−β)N

2τ + θ
γ
ω3






(A.20)

and its eigenvalues are

s1 = θ

[

−
N

τ
+

θ

γ
(ω3 − ω5)

]

, (A.21)

s2 = θ

[

−
(1− β)N

τ
+

θ

γ
(ω3 + ω5)

]

. (A.22)

A sufficient condition for waiting times to converge is that both eigenvalues are negative. Then,

s1 < 0 if ω5 > −γN
θτ

+ ω3 and s2 < 0 if ω5 <
γ(1−β)N

θτ
− ω3.

Using the expression for ω3 as a function of ω5, (A.15), the necessary condition s1 < 0 ∧ s2 <

0 ∧ ω3 < 0 is satisfied if ω5 ∈ Ω =
(

max{ω5, ω5
′},min{ω5, ω5

′}
)

, where

ω5
′ =

γ

6θ2



ρ−
2θβN

τ
−

√

(

ρ−
2θβN

τ

)2

+
12θ2

γ

[

γN

θτ

(

ρ+
θ(1− β)N

τ

)

+ α2

]



 < 0, (A.23)

ω5
′ =

γ

6θ2



−

(

ρ+
2θβN

τ

)

+

√

(

ρ+
2θβN

τ

)2

+
12θ2

γ

[

γ(1− β)N

θτ

(

ρ+
θN

τ

)

+ α2

]



 > 0.

(A.24)

Thus, provided that a solution to (A.6)-(A.8) exists, it constitutes a Markov Perfect Nash Equi-

librium (or closed-loop equilibrium) if ω5 ∈ Ω. Finally, an equilibrium with ω5 = 0 is ruled out by

inspection of (A.6)-(A.8).

The eigenvalues given by (A.21)-(A.22) also provide confirmation that the supply rules derived
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in the previous subsection, under constant marginal disutility of waiting time, constitute a Markov

Perfect Nash Equilibrium. It is straightforward to see from (A.21) and (A.22) that s1 < 0 and

s2 < 0 when ω3 = ω5 = 0.

A.2.1 Transitional dynamics

In order to analyse the convergence to the steady-state in the closed-loop solution, we turn to its

open-loop representation. That is, we derive time-profiles of the waiting time, supply, and demand

from the optimal closed-loop supply rule. Let the superscript CL denote the closed-loop steady-

state. The eigenvalues governing the system of differential equations (A.18)-(A.19), s1 and s2, are

respectively associated with the eigenvectors ν1 = c1 [ 1 −1 ]T and ν2 = c2 [ 1 1 ]T , with c1, c2 ∈ R.

Setting c1 = c2 = 1, the solution of the system of differential equations (A.18)-(A.19) takes the

form:

wi(t) = C1e
s1t + C2e

s2t + wCL, (A.25)

wj(t) = −C1e
s1t + C2e

s2t + wCL, (A.26)

where C1 and C2 are arbitrary constants. The closed-loop steady-state waiting time wCL is retrieved

by setting ẇi = ẇj = 0 in (A.18)-(A.19) and solving for wi and wj . This yields

wCL =
N

[

β
2 + (1− β)

(

v−k
τ

)

]

−
(

p−θω1

γ

)

(1−β)N
τ

− θ
γ
(ω3 + ω5)

. (A.27)

Inserting the initial conditions wi(0) = w0i and wj(0) = w0j into (A.25)-(A.26) and solving for C1

and C2 gives C1 =
w0i−w0j

2 and C2 =
w0i+w0j

2 − wCL. Then, waiting times at Hospital i converge

to the steady-state according to:

wi(t) =

(

w0i − w0j

2

)

es1t +

(

w0i + w0j

2
− wCL

)

es2t + wCL. (A.28)

Consider, now, the dynamics of supply and demand. Inserting (A.28) and the analogous equation

for wj(t) into (21) yields:

Si(t) =
θ

γ

[

(ω5 − ω3)

(

w0i − w0j

2

)

es1t − (ω3 + ω5)

(

w0i + w0j

2
− wCL

)

es2t
]

+
p− θ[ω1 + (ω3 + ω5)w

CL]

γ
. (A.29)
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Using (7), (A.28), and the analogous equation for wj(t), the dynamics of demand faced by Hospital

i in the competitive and monopolistic segments are respectively given by

Di
C(t) = βN

[

1

2
+

(

w0j − w0i

2τ

)

es1t
]

(A.30)

and

Di
M (t) =

(1− β)N

τ

[

v − k − wCL +

(

w0j − w0i

2

)

es1t +

(

wCL −
w0i + w0j

2

)

es2t
]

. (A.31)

If w0i = w0j , it follows from equations (A.28)-(A.31) that the dynamics of waiting times, supply,

and demand are uniquely governed by s2, and convergence is thus monotonic. By the same token, if

the initial waiting times differ but their average equals the steady-state waiting time wCL, dynamics

are uniquely governed by s1, and convergence is monotonic as well in this case. Note, additionally,

that demand in the competitive segment always converges monotonically to βN/2.

For the transitional dynamics in the closed-loop solution under constant marginal disutility of

waiting time, simply set ω3 = ω5 = 0 in equations (A.28)-(A.31). Constant hospital activity over

time for α2 = 0 is then confirmed by (A.29).

A.2.2 Non-monotonic convergence

Equations (A.28)-(A.31) show that convergence to the steady-state depends on two, possible oppos-

ing, forces. It depends on whether a hospital’s initial waiting time is longer than that of the rival,

and whether the average initial waiting time in the market differs from the steady-state waiting

time. When these two conditions hold, the possibility of non-monotonic convergence arises. To see

why non-monotonic convergence might occur, consider the equilibrium dynamics of waiting times

described in (A.28). If the average initial waiting time is above (below) the steady-state, the first

two terms have opposite signs for the hospital with the shorter (longer) waiting time. In both

cases, whether or not non-monotonic convergence emerges depends on the relative size and speed

of convergence (to zero) of each of those terms.

Differentiating (A.28) with respect to time and equating to zero yields a single critical point

given by

t∗ =

(

1

s1 − s2

)

ln

[

−
s2
s1

(

w0i + w0j − 2wCL

w0i − w0j

)]

, (A.32)
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where s1 and s2 are given by (A.21) and (A.22), respectively. Convergence is non-monotonic for

Hospital i if and only if t∗ ∈ R
+. With s1, s2 < 0, the first factor in (A.32) is negative if |s1| > |s2|.

Thus, t∗ ∈ R
+ if and only if the second factor in (A.32) is defined and is negative, which requires

that the expression in the square brackets lies between 0 and 1. It is possible to derive some

easily interpretable conditions for this expression to be positive. Since − s2
s1

< 0, we must have

w0i+w0j−2wCL

w0i−w0j
< 0. Two cases then arise:

1. If the average initial waiting time is above the steady-state waiting time, the numerator is

positive, and
w0i+w0j−2wCL

w0i−w0j
is negative only if Hospital i has an initial waiting time below

that of Hospital j.

2. If the average initial waiting time is below the steady-state waiting time, the numerator is

negative, and
w0i+w0j−2wCL

w0i−w0j
is negative only if Hospital i has an initial waiting time above

that of Hospital j.

Therefore, when the average initial waiting time is above (below) the steady-state waiting time,

it is the hospital with the shortest (longest) waiting time that exhibits non-monotonic convergence,

provided that |s1| > |s2| and − s2
s1

(

w0i+w0j−2wCL

w0i−w0j

)

∈ (0, 1).

To conclude the proof, we consider the shape of (A.28). Evaluating its second-order derivative

with respect to t at t∗ yields the following results:

1. If (w0i + w0j > 2wCL) ∧ (w0i < w0j), then w
′′

i (t
∗) < 0 simplifies to:

(

s1
s2

)2

e(s1−s2)t∗(w0i − w0j) < −(w0i + w0j − 2wCL). (A.33)

Diving both sides by (w0i−w0j) reverses the inequality sign. Then, using (A.32), the inequality

becomes s1
s2

> 1, which is true.

2. If (w0i + w0j < 2wCL) ∧ (w0i > w0j), then w
′′

i (t
∗) > 0 simplifies to:

(

s1
s2

)2

e(s1−s2)t∗(w0i − w0j) > −(w0i + w0j − 2wCL). (A.34)

Diving both sides by (w0i − w0j) does not reverse the inequality sign. Then, using (A.32),

the inequality becomes s1
s2

> 1, which is true.
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Hence, if |s1| > |s2|, −
s2
s1

(

w0i+w0j−2wCL

w0i−w0j

)

∈ (0, 1), and the average initial waiting time is above

(below) the steady-state waiting time, the dynamics of the waiting time at the hospital with the

shortest (longest) initial wait has a unique maximum (minimum). This implies that the waiting time

at the hospital with the shortest (longest) initial wait first increases (decreases) before decreasing

(increasing) towards the steady-state.

Appendix B: The open-loop solution

Let µi(t) and λi(t) denote, respectively, the costate variables associated with the dynamic equations

of wi(t) and wj(t), given by (11) and (12), respectively, for Hospital i. That is, µi(t) is associated

with Hospital i’s waiting time and λi(t) with that of the rival. The current-value Hamiltonian is

Hi = T + pSi(t)−
γ

2
Si(t)

2 − α1wi(t)−
α2

2
wi(t)

2

+ µi(t)θ[Di(wi(t), wj(t))− Si(t)] + λi(t)θ[Dj(wi(t), wj(t))− Sj(t)]. (B.1)

Candidates for optimal supply path Si(t) and costate trajectories µi(t) and λi(t) must satisfy

∂Hi/∂Si(t) = 0, µ̇i(t) = ρµi(t)− ∂Hi/∂wi(t), and λ̇i(t) = ρλi(t)− ∂Hi/∂wj(t). More extensively:

p− γSi(t) = θµi(t), (B.2)

µ̇i(t) =

[

ρ+
θ(2− β)N

2τ

]

µi(t)−
θβN

2τ
λi(t) + α1 + α2wi(t), (B.3)

and

λ̇i(t) =

[

ρ+
θ(2− β)N

2τ

]

λi(t)−
θβN

2τ
µi(t). (B.4)

The solution must also satisfy the transversality conditions

lim
t→∞

e−ρtµi(t)wi(t) = 0 and lim
t→∞

e−ρtλi(t)wj(t) = 0. (B.5)

Optimality is established by concavity of the current-value Hamiltonian with respect to Si(t) and

wi(t). Inserting the definition of demand (7) and the optimality condition for supply (B.2) into the
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dynamic constraint (11) yields

ẇi(t) = θN

[

β

(

1

2
+

wj(t)− wi(t)

2τ

)

+ (1− β)

(

v − k − wi(t)

τ

)]

− θ

(

p− θµi(t)

γ

)

. (B.5)

Let the superscript OL denote the symmetric open-loop steady-state in which wi(t) = wj(t) =

wOL, µi(t) = µj(t) = µOL, and Si(t) = Sj(t) = SOL. Setting ẇ(t) = µ̇(t) = λ̇(t) = 0 in equations

(B.3), (B.4), and (B.5) and solving for the steady-state waiting time and costate variable gives

wOL =
γφτ

(1− β)γφN + 2θτ2α2

{

N

[

β

2
+ (1− β)

(

v − k

τ

)]

−
p

γ
−

2θτα1

γφ

}

(B.6)

and

µOL = −
2τ

φ
(α1 + α2w

OL), (B.7)

where φ is defined by (14) in Section 4. The corresponding steady-state supply is

SOL =
p

γ
+

2θτ
(

α1 + α2w
OL

)

γφ
. (B.8)

It can be shown (calculations available upon request) that this equilibrium is stable in the saddle

sense, and that the steady-state is characterised by non-negative waiting times and a partially

covered monopolistic segment if the cost parameter γ is sufficiently large.

From (B.6) we derive

∂wOL

∂τ
= −

(1− β)xOL
M + τ

N
∂SOL

∂τ

1− β + 2θτ2α2

γφN

< 0, (B.9)

where

∂SOL

∂τ
= Nθ2(α1 + α2w

OL)
(1− β)[Nθ(2− β) + 4τρ]θN + (2− β)(τρ)2

2γ(Nθ + τρ)2[N(1− β)θ + τρ]2
> 0 (B.10)

is the marginal effect of τ on steady-state supply for a given waiting time. Thus, regardless of

whether the marginal provider disutility of waiting time is constant or increasing, more patient

choice leads to higher steady-state waiting times.
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B.1 Non-linear patient disutility of waiting

Suppose that hospital demand is given by (30) in Section 6.1. Defining the Hamiltonian as before,

the optimality conditions in the symmetric steady-state are now given by

p− γSOL = θµOL, (B.11)

[

ρ− θ
∂Di(w

OL)

∂wi

]

µOL − θ
∂Dj(w

OL)

∂wi
λOL + α1 + α2w

OL = 0, (B.12)

and
[

ρ− θ
∂Dj(w

OL)

∂wj

]

λOL − θ
∂Di(w

OL)

∂wj
µOL = 0. (B.13)

Using (30) and (B.12)-(B.13) to solve for µOL and λOL, we obtain

µOL = −
τ

2

2ρτ + θ(2− β)N ∂f(wOL)
∂w

[

ρτ + θ(1− β)N ∂f(wOL)
∂w

] [

ρτ + θN ∂f(wOL)
∂w

](α1 + α2w
OL) < 0 (B.14)

and

λOL =

[

θβN ∂f(wOL)
∂w

2ρτ + θ(2− β)N ∂f(wOL)
∂w

]

µOL < 0. (B.15)

Using the dynamic constraint, (30), and (B.11), the steady-state waiting time is then implicitly

defined by

N

[

β

2
+ (1− β)

(

v − k − f(wOL)

τ

)]

−
p− θµOL

γ
= 0. (B.16)

Existence requires that the second-order conditions of the hospitals’ maximisation problem

are satisfied. These are given by ∂2Hi/∂S
2
i ≤ 0, ∂2Hi/∂w

2
i ≤ 0, and (∂2Hi/∂S

2
i )(∂

2Hi/∂w
2
i ) −

∂2Hi/∂Si∂wi ≥ 0. Since ∂2Hi/∂S
2
i = −γ and ∂2Hi/∂Si∂wi = 0, concavity of the Hamiltonian

requires that

∂2Hi

∂w2
i

= −α2 −

[

θ(2− β)N

2τ
µi −

θβN

2τ
λi

]

∂2f

∂w2
i

≤ 0. (B.17)

Evaluated at the steady-state, this expression becomes

−α2 +

[

ρτ(2− β) + 2θ(1− β)N ∂f(wOL)
∂w

]

θN(α1 + α2w
OL)

2
[

ρτ + θ(1− β)N ∂f(wOL)
∂w

] [

ρτ + θN ∂f(wOL)
∂w

]

∂2f(wOL)

∂w2
≤ 0. (B.18)

If ∂2f
(

wOL
)

/∂w2 ≤ 0, the second-order conditions are always satisfied, whereas, if ∂2f
(

wOL
)

/∂w2 >

0, the second-order conditions are satisfied if α2 > 0 and the degree of convexity of f is sufficiently
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small. More specifically, the second-order conditions are satisfied if

∂2f(wOL)

∂w2
≤

2
[

ρτ + θ(1− β)N ∂f(wOL)
∂w

] [

ρτ + θN ∂f(wOL)
∂w

]

ρτ(2− β) + 2θ(1− β)N ∂f(wOL)
∂w

α2

θN(α1 + α2wOL)
. (B.19)

Implicitly differentiating (B.16) with respect to wOL and τ yields

∂wOL

∂τ
= −

(1− β)xOL
M − τθ

Nγ
∂µOL

∂τ

(1− β)∂f(w
OL)

∂w
− τθ

Nγ
∂µOL

∂wOL

< 0, (B.20)

where xOL
M = (v − k − f(wOL))/τ > 0 is the location on the indifferent patient in the monopolistic

segment, and where

∂µOL

∂τ
= −

∂f(wOL)

∂w

θNΓ(wOL)(α1 + α2w
OL)

2
[

ρτ + θ(1− β)N ∂f(wOL)
∂w

]2 [

ρτ + θN ∂f(wOL)
∂w

]2 < 0, (B.21)

∂µOL

∂wOL
= −

τ

2

[

2ρτ + θ(2− β)N ∂f(wOL)
∂w

]

α2
[

ρτ + θ(1− β)N ∂f(wOL)
∂w

] [

ρτ + θN ∂f(wOL)
∂w

]

+
∂2f(wOL)

∂w2

τθNΓ(wOL)(α1 + α2w
OL)

2
[

ρτ + θ(1− β)N ∂f(wOL)
∂w

]2 [

ρτ + θN ∂f(wOL)
∂w

]2 ≤ 0, (B.22)

and

Γ(wOL) = (ρτ)2(2− β) + 4ρτθ(1− β)N
∂f(wOL)

∂w
+ θ2(1− β)(2− β)N2

(

∂f(wOL)

∂w

)2

> 0. (B.23)

To show that (B.22) is always non-positive in the steady-state equilibrium, notice that the right-

hand side of (B.22) is increasing in ∂2f
(

wOL
)

/∂w2, while the second-order conditions dictate that

∂2f
(

wOL
)

/∂w2 must be sufficiently low (cf. (B.19)). Replacing ∂2f
(

wOL
)

/∂w2 in equation (B.22)

with the right-hand side of (B.19), which is the maximum value of ∂2f
(

wOL
)

/∂w2 that still ensures

equilibrium existence, yields

∂µOL

∂wOL
= −

ρθ(τβ)2N ∂f(wOL)
∂w

α2

2
[

ρτ + θ(1− β)N ∂f(wOL)
∂w

] [

ρτ + θN ∂f(wOL)
∂w

] [

ρτ(2− β) + 2θ(1− β)N ∂f(wOL)
∂w

] ≤ 0.

(B.24)

This implies that ∂µOL/∂wOL ≤ 0, and thus ∂wOL/∂τ < 0, for every specification of f (w) that is
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compatible with equilibrium existence under open-loop rules.

B.2 Non-linear patient disutility of travelling

Suppose the patient utility function is redefined as indicated in Section 6.2. The optimality condi-

tions, evaluated at the symmetric steady-state, are the given by (B.11) and

[

ρ+
θβN

2τg′
(

1
2

) +
θ(1− β)N

τg′
(

xOL
M

)

]

µOL −
θβN

2τg′
(

1
2

)λOL + α1 + α2w
OL = 0, (B.25)

and


ρ+
θβN

2τg′
(

1
2

)

+ θ(1−β)N

τg′(xOL
M )



λOL −
θβN

2τg′
(

1
2

)µOL. (B.26)

Using (B.25) and (B.26) to solve for µOL and λOL, we obtain:

µOL = −
τ

2

2g′
(

1
2

)

ρτ + θβN +
2g′( 1

2)θ(1−β)N

g′(xOL
M )

[

ρτ + θ(1−β)N

g′(xOL
M )

] [

g′
(

1
2

)

ρτ + θβN +
g′( 1

2)θ(1−β)N

g′(xOL
M )

](α1 + α2w
OL) < 0. (B.27)

and

λOL =







θβN

2g′
(

1
2

)

ρτ + θβN +
2g′( 1

2)θ(1−β)N

g′(xOL
M )






µOL < 0. (B.28)

Using the dynamic constraint and (B.11), the steady-state waiting time is implicitly defined by

N

[

β

2
+ (1− β)xOL

M

]

−
p− θµOL

γ
= 0. (B.29)

Existence requires that the second-order conditions of the hospitals’ maximisation problem

are satisfied. These are given by ∂2Hi/∂S
2
i ≤ 0, ∂2Hi/∂w

2
i ≤ 0, and (∂2Hi/∂S

2
i )(∂

2Hi/∂w
2
i ) −

∂2Hi/∂Si∂wi ≥ 0. Since ∂2Hi/∂S
2
i = −γ and ∂2Hi/∂Si∂wi = 0, concavity of the Hamiltonian

requires that

∂2Hi

∂w2
i

= −α2 +

[

θ(1− β)N

τ

g′′(xiM )

[g′′(xiM )]2
∂xiM
∂wi

]

µi ≤ 0. (B.30)

Evaluated at the steady-state, this expression becomes

−α2 −

[

θ(1− β)N

τ2
g′′

(

xOL
M

)

[g′
(

xOL
M

)

]3

]

µOL ≤ 0. (B.31)

50



If g′′
(

xOL
M

)

≤ 0, the second-order conditions are always satisfied, whereas, if g′′
(

xOL
M

)

> 0, the

second-order conditions are satisfied if α2 > 0 and the degree of convexity of g is sufficiently small.

Implicitly differentiating (B.29) with respect to wOL and τ yields

∂wOL

∂τ
= −

N(1− β)
∂xOL

M

∂τ
+ θ

γ
∂µOL

∂τ

N(1− β)
∂xOL

M

∂wOL + θ
γ
∂µOL

∂wOL

(B.32)

where

∂xOL
M

∂τ
= −

g(xOL
M )

τg′
(

xOL
M

) < 0, (B.33)

∂xOL
M

∂wOL
= −

1

τg′
(

xOL
M

) < 0, (B.34)

∂µOL

∂τ
= −

[

∆1 −∆2
g′(xOL

M )g′′(xOL
M )

[g′(xOL
M )]2

]

(α1 + α2w
OL)

[

ρτ + θ(1−β)N

g′(xOL
M )

]2 [

g′
(

1
2

)

ρτ + θβN +
g′( 1

2)θ(1−β)N

g′(xOL
M )

]2 , (B.35)

∆1 =

[

4g′
(

1

2

)

ρτ + θβN +
2g′

(

1
2

)

θ(1− β)N

g′
(

xOL
M

)

]



g′
(

1

2

)

[

θ(1− β)N

g′
(

xOL
M

)

]2

+
(θN)2β(1− β)

g′
(

xOL
M

)





+
2
[

g′
(

1
2

)

ρτ
]2

θ(1− β)N

g′
(

xOL
M

) + g′
(

1

2

)

(ρτ)2θNβ > 0, (B.36)

∆2 = g′
(

1

2

)

[

4g′
(

1

2

)

ρτ + 2θβN +
2g′

(

1
2

)

θ(1− β)N

g′
(

xOL
M

)

] [

θ(1− β)N

g′
(

xOL
M

)

]2

+
2
[

g′
(

1
2

)

ρτ
]2

θ(1− β)N

g′
(

xOL
M

) +

[

2g′
(

1

2

)

ρτ + θβN

]

(θN)2β(1− β)

g′
(

xOL
M

) > 0, (B.37)

∂µOL

∂wOL
= −

α2τ

2

2g′
(

1
2

)

ρτ + θβN +
2g′( 1

2)θ(1−β)N

g′(xOL
M )

[

ρτ + θ(1−β)N

g′(xOL
M )

] [

g′
(

1
2

)

ρτ + θβN +
g′( 1

2)θ(1−β)N

g′(xOL
M )

]

+∆3

[

θ(1− β)N(α1 + α2w
OL)

2[g′
(

xOL
M

)

]3

]

g′′
(

xOL
M

)

, (B.38)
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and

∆3 =









[

2g′
(

1
2

)

ρτ + θβN +
2g′( 1

2)θ(1−β)N

g′(xOL
M )

]2

−

[

2g′
(

1
2

)

ρτ +
2g′( 1

2)θ(1−β)N

g′(xOL
M )

] [

g′
(

1
2

)

ρτ + θβN +
g′( 1

2)θ(1−β)N

g′(xOL
M )

]









[

ρτ + θ(1−β)N

g′(xOL
M )

]2 [

g′
(

1
2

)

ρτ + θβN +
g′( 1

2)θ(1−β)N

g′(xOL
M )

]2 > 0 (B.39)

If g′′
(

xOL
M

)

≤ 0, the expressions on the right-hand side of (B.35) and (B.38) are unambiguously

negative, which implies that ∂wOL/∂τ < 0 for every concave function g. If instead g′′
(

xOL
M

)

> 0,

a negative sign of ∂µOL/∂τ and ∂µOL/∂wOL, which implies ∂wOL/∂τ < 0, requires that g′′
(

xOL
M

)

is sufficiently low.

52


