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ABSTRACT

Quantum cascade lasers (QCLs) are high-power sources of coherent radiation in the midinfrared and terahertz (THz) bands. Laser feedback
interferometry (LFI) is one of the simplest coherent techniques, for which the emission source can also play the role of a highly-sensitive
detector. The combination of QCLs and LFI is particularly attractive for sensing applications, notably in the THz band where it provides a
high-speed high-sensitivity detection mechanism which inherently suppresses unwanted background radiation. LFI with QCLs has been
demonstrated for a wide range of applications, including the measurement of internal laser characteristics, trace gas detection, materials
analysis, biomedical imaging, and near-field imaging. This article provides an overview of QCLs and the LFI technique, and reviews the state
of the art in LFI with sensing using QCLs.
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I. INTRODUCTION

Laser feedback interferometry (LFI), also known as self-mixing
(SM) interferometry, is a compact sensing technique wherein radiation
emitted from the laser interacts with an external target and is subse-
quently reflected back into the laser. The reinjected emission mixes

with the intracavity electric field, causing small variations in the funda-
mental laser parameters, including the threshold gain, lasing spectrum,
emitted power, and laser terminal voltage. This technique has been
used for a range of sensing and imaging applications, and has been
implemented with a variety of lasers. However, its distinct advantage
over other coherent schemes may be realized in the mid-infrared
(MIR) and terahertz (THz) regions of the electromagnetic (EM) spec-
trum, where quantum cascade lasers (QCLs)—unipolar devices
exploiting a cascading series of intersubband transitions to achieve
stimulated emission—are the radiation sources of choice. It is the high
output power, low phase-noise, and stability under feedback of QCLs,
combined with the high sensitivity of LFI coherent detection, that will
unlock the true potential for sensing and imaging in these parts of the
EM spectrum.

It has been over 25 years since the advent of an MIR QCL
device1–3 and over 15 years since the first demonstration of the QCL at
THz frequencies.4 At present, the QCL is mostly applied in the sensing
domain, where the advantage of high emitted power from a QCL
source is prized—in particular, at THz frequencies and in the MIR.5–7

There are inherent advantages in interferometric (coherent) sensing—
not only the intensity/amplitude, but also phase information can be
captured. In imaging, this permits the concurrent registration of both
amplitude and phase information.8–13
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Laser feedback interferometry is the simplest implementation of a
coherent sensing technique. It is particularly attractive when the trans-
mitter and the detector are combined in one device. In this embodiment,
the optical part of the system has a coaxial geometry through which the
incident beam is transmitted and reflected from the target, with the
reflected beam traversing the same optical path in reverse. The combina-
tion of a transmitter and a detector in one device implies no need for tar-
get/sample preparation, and therefore their potential for in situ and
in vivo sensing and imaging with QCLs. A further distinct benefit is real-
ized in frequency ranges where the existing detectors are not sensitive or
fast enough. The interferometric signal can be obtained by monitoring
the feedback-caused voltage variations across the laser terminals caused
by the SM effect in the QCL; thus, the QCL itself acts as a high speed
and highly sensitive detector.14,15

In this review, we outline the physical principles underpinning the
operation of LFI sensors, the SM effect in QCLs, and review the state of
the art in sensing and imaging using LFI with QCLs. We open in Sec. II
by briefly outlining the operating principles of QCLs. In Sec. III, we dis-
cuss the basic theory underpinning LFI and the fundamental model for
feedback in QCLs, namely the excess phase equation [equivalent to the
Lang–Kobayashi (LK) model in the steady-state]. Although not covered
here, the essential dynamic behavior of lasers under feedback, including
QCLs, is captured in the LK model16 and refined in more recent works
(c.f. Refs. 17–20). Crucially, these models permit one to predict the
behavior of the SM signal and ultimately the voltage across the laser ter-
minals.21 We devote a significant portion of our review to applications

of sensors using the SM effect in QCLs. In Sec. IV, we divide applica-
tions into two parts: (i) those related to internal laser characteristics
such as the measurement of linewidth, linewidth enhancement factor
(LEF, Henry’s a), emission spectrum, and phase-noise and (ii) those
related to measurements external to the laser, such as displacement
sensing including ablation and multiple target displacement; materials
analysis including gas detection, organic materials analysis, and mea-
surement of the distribution of free carriers; and imaging including
near-field imaging and coherent imaging for biomedical applications.
We conclude by summing up the current state of the art and discussing
the road ahead for LFI with QCLs in Sec. V, with particular focus on
the most attractive and promising directions, including biomedical and
high-speed sensing and imaging.

II. QUANTUM CASCADE LASERS: PRINCIPLES OF
OPERATION AND MODELING

Quantum cascade lasers are unipolar devices which exploit inter-
subband transitions in the conduction band of a semiconductor multi-
ple-quantum-well heterostructure for radiation amplification.3,22–24 A
photograph of a typical THz QCL, indium mounted on a gold-plated
copper carrier with gold-wire bonding to the QCL electrical contacts,
is shown in Fig. 1(a). In an applied electric field, electrons stream
down a “potential staircase,” sequentially emitting a low-energy pho-
ton at each of its “steps”—a series of multiquantum well structures
comprising a period of the QCL structure, repeated several tens or

FIG. 1. (a) A photograph of a typical THz QCL. (b) Band structure and electron wavefunction moduli squared of a single-mode bound-to-continuum (BTC) THz QCL emitting at
2.59 THz. The upper lasing level (ULL) and the lower lasing level (LLL) are indicated (solid lines) together with miniband extraction states (dashed lines), under an applied elec-
tric field of 3.75 kV/cm. (c) Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images of a MIR QCL.25 Reproduced with permission from G.
Purvis, III-Vs Rev. 19(8), 20–25 (2006). Copyright 2006 Elsevier.
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hundreds of times, designed to create population inversion between a
pair of excited subbands.1 Figure 1(b) shows the band structure and
electron wavefunction moduli squared of a single-mode bound-to-
continuum (BTC) THz QCL emitting at 2.59THz under an applied
electric field of 3.75 kV/cm. Thus, each electron injected above the
threshold may generate a photon per step—it is this cascading process
which underpins the intrinsic high-power capability of QCLs.3,10,22

The design of the QCL structure is achieved by “band structure engi-
neering”; that is, tailoring the quantum well and barrier thicknesses
and barrier heights within the heterostructure to control the funda-
mental properties (energy levels, band-offset, carrier scattering rates,
optical dipole matrix elements, and tunneling times).3,22

The theoretical basis of the QCL lies in the work of Esaki and
Tsu in 197026 on superlattices and the proposal by Kazarinov and
Suris in 197127 of using intersubband transitions for radiation amplifi-
cation, with the first working QCL demonstrated at Bell Labs in 1994.1

Unlike conventional interband lasers, for which the emission wave-
length depends on the material bandgap, in QCLs the emission wave-
length is primarily determined by the energy spacing of lasing
sub-bands and not the bandgap of the material. Consequently, one
can choose a reliable semiconductor material system,154 tailoring
wavelengths over a wide range of values (�1–100THz or �3–300mm,
excluding Reststrahlen bands which are dependent on the semicon-
ductor material system28) by varying layer thicknesses.1,3,4,22

Furthermore, gain in interband lasers is strongly temperature depen-
dent, whereas in QCLs it depends indirectly on the temperature.3,10

Due to the precision required to manufacture the quantum-
engineered heterostructure, QCL devices are typically grown via molec-
ular beam epitaxy or metalorganic vapor phase epitaxy.1,29 Figure 1(c)
shows scanning electron microscopy (SEM) and transmission electron
microscopy (TEM) images of an MIR QCL, in which the periodic
nature of the growth can be clearly seen. To date, best performance has
been obtained with four semiconductor material systems:156 GaInAs/
AlInAs grown on InP substrates; GaAs/AlGaAs grown on GaAs sub-
strates; AlSb/InAs grown on InAs substrates; and InGaAs/AlInAsSb,
InGaAs/GaAsSb, or InGaAs/AlInGaAs grown on InP substrates. The
choice of the material system affects the intersubband gain, the shortest
possible wavelength of operation dictated by the conduction band, and
the location of the Reststrahlen bands.3,155,156

The intrinsic (quantum noise limited) linewidth of QCLs is
subkilohertz, around 500Hz for MIR QCLs and around 100Hz for THz
QCLs.30–34 Practical instantaneous linewidths are around 10kHz, and on
the order of tens of megahertz over longer time-scales.10 Consequently,
QCLs are high-power sources of high spectral purity (intrinsically,
Q ¼ k=Dk ¼ �=D� is greater than around 1010; practically, Q is greater
than around 105 or 106), and therefore QCLs naturally exhibit a long
coherence length. Moreover, in QCLs, the intersubband transitions
exhibit ultrafast carrier dynamics, and as a consequence of the short car-
rier lifetime relative to the photon lifetime, the devices lack pronounced
relaxation oscillations in sharp contrast to conventional interband laser
diodes.22 The dominant scattering mechanism for nonradiative intrawell
transitions is electron-longitudinal optical (LO) phonon scattering, with
a lifetime typically less than 1 ps. On the other hand, nonradiative inter-
well relaxation is dominated by a combination of electron–electron, elec-
tron impurity, interface roughness, and LO-phonon scattering of the
high-energy tail of the subband electron distribution.3,10 Furthermore,
predominantly due to thermally activated LO phonon scattering between

the upper and lower laser subbands,35 GaAs-based THz QCLs have an
operating temperature ceiling of around 200K.36

The predominant active region designs for QCLs are chirped
superlattice, BTC, resonant phonon, and hybrids of these.3,10,37 Due to
the ultrafast intersubband carrier dynamics, achieving optical gain
requires high electrical power dissipation. Consequently, the incorpora-
tion of optical waveguides into the laser cavity design is essential to min-
imize electrical dissipation.37 For MIR QCLs, the waveguide design is
based on dielectric confinement with the use of cladding layers (on the
order of the wavelength,�3–25mm), sometimes employing single inter-
face (i.e., surface) plasmon enhancement.37 However, for THz QCLs,
the thickness of the required cladding layers (on the order of the wave-
length, �60–300mm) now becomes prohibitively large, and so alterna-
tive waveguiding architectures are sought.37 Prominent architectures at
present are semi-insulating single metal surface-plasmon enhanced and
double metal waveguides.3,5,22,37 Waveguides are typically realized by
processing into a ridge or buried heterostructure geometry.

Finally, prominent optical cavity designs are Fabry–P�erot (FP,
typically formed via cleaving), distributed feedback (DFB, for control
of mode selection, typically realized either via a surface or buried peri-
odic Bragg grating), or external cavity designs (EC, enabling tuning by
reflection from a diffraction grating in a Littrow configuration).37 Each
QCL design has strengths and weaknesses, striving to strike balance
with trade-offs in injection efficiency, extraction efficiency, gain coeffi-
cient, and overlap of the optical mode in the waveguide with the active
region; the design of QCLs remains an active area of research.

Presently, a large number of QCLs have been realized, operating
in a continuous wave (cw) mode or pulsed mode (see Fig. 2).
Midinfrared QCLs have been demonstrated with multi-Watt output
power and room temperature cw operation.5,39 Terahertz QCLs have
been demonstrated with >2.4W output power in pulsed mode40 and
>130 mW in cw,41 at temperatures up to 199.5K in pulsed mode and
129K in cw operation.3,5,11

Physical (ab initio) models are typically used to study the quasi-
static characteristics of QCLs, such as the gain profile or light–current
(L–I) characteristics.42 There are four main physical/complete modeling

FIG. 2. Emission wavelength/frequency vs operating temperature of QCLs. The
green arrow refers to creating THz emission by means of difference frequency gen-
eration (DFG) from MIR QCLs. Data from Refs. 3, 5, and 38.
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frameworks employed in theoretical studies of QCLs. (I) Rate equation
(RE) methods, for which the (time-independent, but spatially dependent
along the growth axis) Schr€odinger equation (which takes the total crys-
tal potential as an input and outputs the wavefunctions) is solved self-
consistently with the Poisson equation (which takes the confinement
potential as input, itself being dependent on the charge distribution
which depends on the wavefunctions and outputs electric potential).
Typically, this is an iterative numerical procedure, and the relevant equa-
tions are discretized to obtain tridiagonal systems of linear equations.
Assumptions are made on the shape of the electron distribution function
(e.g., Fermi–Dirac distribution), and that there is incoherent scattering
between modules. However, this latter assumption can lead to unphysi-
cal hybridization of wavefunctions. (II) Density matrix formalism, which
permits transport between modules to be modeled as a coherent tunnel-
ing process, while typically assuming incoherent scattering within quasi-
steady states within a single periodic module.43–46 (III) Nonequilibrium
Green’s function approach, which provides a complete quantum
mechanical description of electron transport.47–49 (IV) Monte Carlo
methods, which essentially rely on a direct physical description of the
device and material’s parameters.50–53 For a detailed survey of modeling
approaches for QCLs, see Jirauschek and Kubis.42

Reduced rate equation (RRE) models are an alternative approach
in which a subset of laser parameters is considered, enjoying an advan-
tage in terms of computational efficiency. These models are frequently
used to study the dynamic characteristics of QCLs, with the simple
two- or three-level RRE model being commonplace.37,54,55 Agnew
et al.17,18,20 extended this concept to a realistic RRE model for a partic-
ular BTC THz QCL by incorporating a thermal model as well as tem-
perature- and bias-dependent coefficients obtained via a full RE
model. This work highlights that the QCL structure (active region
layer structure, waveguide design, and fabrication parameters) is
important for capturing realistic device L–I characteristics, and conse-
quently for predicting the dynamic behavior of the device (see Fig. 3).

III. LASER FEEDBACK INTERFEROMETRY

The mixing of a laser’s intracavity EM wave with a reinjected
emitted wave after its interaction in the external cavity—frequently

referred to as the “SM effect”—is a remarkably universal phenomenon,
having been observed in in-plane semiconductor diode lasers, gas
lasers, vertical-cavity surface-emitting lasers (VCSELs), fiber and fiber
ring lasers, solid-state lasers, microring lasers, quantum dot lasers,
interband cascade lasers, and QCLs.

One of the simplest coherent techniques where the emission
source can also play the role of a highly-sensitive detector is LFI, and
its architecture can be elegantly captured by a three-mirror laser
model56 (see Fig. 4). The reinjected light interferes (“mixes”) with the
intracavity electric field, causing small variations in the fundamental
laser parameters including the threshold gain, emitted power, lasing
spectrum, and laser terminal voltage.57–59 In this model, only one
round trip in the external cavity is considered. The phase shift in the
external cavity is composed of the transmission phase shift arising
from the optical path length as well as the phase change on reflection
from the target. The homodyne (coherent) nature of an LFI scheme
inherently provides very high sensitivity detection, potentially at the
quantum noise limit, and therefore a high signal-to-noise (SNR) ratio
can be expected in the SM signal.

While optical feedback affects almost all laser parameters, the two
that are most conveniently monitored are the emitted optical power
and the voltage across the laser terminals. Of these, monitoring the
laser terminal voltage is preferred at THz frequencies as it removes the
need for an external detector.60 The small voltage variation (referred to
as the “SM signal”) depends on both the amplitude and the phase of
the electric field of the reflected laser beam. This configuration thus cre-
ates a compact, coherent sensor that can probe information about the
laser–target system; see Sec. IV for an overview of applications.

There are five qualitatively different feedback regimes, depending
on the strength with which the reinjected wave couples with the laser’s
internal cavity.61,62

I. Weak optical feedback, for which a broadening or narrowing of
the emission line, depending on the phase of the feedback, is
observed.

II. Moderate optical feedback, for which an apparent splitting of
the emission line due to rapid mode hopping is observed,
remaining dependent on the phase of the feedback.

III. Strong optical feedback, characterized by a return to single fre-
quency emission and a narrowing of the emission line, remain-
ing dependent on the phase of the feedback.

IV. Coherence collapse, characterized by chaotic dynamics with
islands of stability and a broadening of the emission line,
remaining only partially dependent on the phase of the feedback.

FIG. 3. RRE simulated L–I characteristics of a THz QCL at different operation tem-
peratures. Inset: Measured L–I characteristics at the same temperatures.18

Reproduced with permission from Agnew et al., Opt. Express 24, 20554 (2016)
Copyright 2016 licensed under a Creative Commons Attribution (CC BY) license.

FIG. 4. Three-mirror model of LFI. The laser is represented as the “internal” cavity
with length Lin, refractive index nin, and round trip propagation time sin. Light leaves
the internal cavity through the partially transmissive mirror M2 and traverses the
“external” cavity of length Lext, refractive index next, and round trip propagation time
sext. A portion of this light re-enters the laser through M2 and mixes with the field
inside the laser cavity, affecting the operating state of the laser.
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V. External cavity mode, characterized by a return to stability,
under which the laser–target system effectively operates as an
optically pumped (long) EC laser, and is independent of the
phase of the feedback.

Regimes I–III, where the operation of the laser under feedback
remains dependent on the phase of feedback, by their very nature are
those which LFI is concerned with.

The first chart of these five feedback regimes was created by Tkach
and Chraplyvy in Ref. 61 for a 1.55-mm DFB interband laser, and
reported that the same effects, essentially at the same levels, were observed
for FP and cleaved-coupled-cavity (C3) lasers. This diagram has since
been further studied by Donati and Horng, but taken as a representative
of the behavior of semiconductor lasers in general.62 However, Jumpertz
et al. in Ref. 63 created the chart for a 5.6mm DFB MIR QCL, demon-
strating that the picture for QCLs is qualitatively different.

In particular, it appears as though QCLs are less susceptible to feed-
back than interband lasers, resulting in an increased range of stability in
the presence of optical feedback,63 an observation reported by others in
the literature.64,65 Moreover, while there was a distinct regime IV
observed in Ref. 63, the authors were unable to observe clear line broad-
ening, and noted with caution that the general absence of relaxation
oscillations in QCLs means that, if indeed this regime is coherence col-
lapse, it is not caused by the same route to chaos as for diode lasers (i.e.,
undamped relaxation oscillations). In any case, the regime IV observed
in Ref. 63 appears to be narrower than typically observed in interband
lasers, which is in line with Ref. 64 who observed no coherence collapse
in both MIR and THz QCLs as well as Ref. 65 who did not observe line
broadening. Indeed, Ref. 64 demonstrated that both MIR and THz
QCLs can tolerate feedback levels almost two orders of magnitude larger
than the equivalent level which would cause instability in a diode laser.

Within feedback regimes suited to LFI, the effects of feedback in
any laser which are exploited for sensing are the directly observable
fluctuations in the device’s optical output power and its terminal
voltage. These are equivalent, though theoretically out of phase (for a
collimated beam, if the beam is focused, one can observe any phase
relation).66 For conventional laser diodes in the visible and NIR, one
usually measures the changes induced by optical feedback in the devi-
ce’s optical output power by means of a photodiode, as it affords supe-
rior SNR over monitoring its terminal voltage.66,67

However, for LFI with QCLs, there continues to be a preference
for voltage sensing. There are two main reasons for this. Firstly, the
magnitude of feedback-induced fluctuations is larger than in diode
lasers, meaning that adequate signal levels can be obtained by voltage
sensing. Secondly, external detectors (particularly at THz frequencies)
are typically bulky and require cooling (in the case of sensitive bolo-
metric detectors), or tend to have slow response times (in the case of
room-temperature pyroelectric detectors and Golay cells). This slow
response severely limits the bandwidth of the sensor when compared
to using the laser itself as a receiver.15,60

Other effects of feedback can be measured using LFI, from intrinsic
device characteristics such as the LEF, phase-noise, or emission spectra,
to target characteristics such as changes in the distance or refractive
index for the purposes of imaging. The study of EC and coupled cavity
(CC) QCLs, though not LFI in the conventional sense, employs much
of the same simple resonator analysis.

One can incorporate the dynamic effects of optical feedback by
augmenting RRE models for a single longitudinal mode with a photon

and a phase equation18–20 along the lines of the LK formalism.16 This
is particularly well illustrated in Fig. 5, which shows the creation of SM
signals via frequency sweeping on short time scales, incorporating
both adiabatic and thermal effects. It is, however, relatively straightfor-
ward to show that the simple two-level RRE model under optical feed-
back in the steady state (i.e., in quasi-static operation) further reduces
to the excess phase equation, discussed further in Sec. IIIA below,
which is the operational model for LFI. It is rather remarkable that the
same model arises seemingly regardless of the laser structure.

A. Model: Excess phase equation

The fundamental equation in LFI is the “excess phase equation”
for solution in uFB

uFB � us þ C sin uFB þ arctan að Þ ¼ 0: (1)

Here, C is Acket’s characteristic parameter68,69

C ¼def j sext
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

; (2)

where a is Henry’s LEF,70 sin and sext denote the round trip time in the
laser cavity and the external cavity, respectively, and the coupling strength
j is related to the reflectivities of the emitting facet R2, the external mirror
R, and the reinjection loss factor e via

j ¼def e ð1� R2Þffiffiffiffiffi
R2
p

ffiffiffi
R
p

: (3)

The phase terms appearing in (1) are related to the angular frequency
of the solitary laser (i.e., without feedback) xs and under feedback x,
as well as the external cavity round trip time sext via us ¼def xssext;
uFB ¼def xsext.

It is useful to think of the term us as a “phase stimulus”—symbol-
ically corresponding to the phase accumulated on transmission through
the external cavity if the laser was not experiencing optical feedback—
and uFB as a “phase response,” corresponding to the actual phase accu-
mulated on transmission through the external cavity. The feedback
parameter C dictates the degree of nonlinear coupling between phase
stimulus and response, while the LEF a governs the asymmetry of the
phase transfer function induced by (1).

Equation (1) can be obtained by considering only the geometry
of the optical system of the laser feedback interferometer (i.e., three-
mirror model, see Fig. 4). Alternatively, it also arises from the LK
model, as well as the two-level RRE model under optical feedback, as
its steady state solution.71

Note that (1) is a transcendental equation with a unique solution
when C � 1 (weak feedback) and with multiple solutions when C> 1
(moderate or strong feedback). Due to the alternating stability of solu-
tions when C> 1, physical solutions uFB to (1) exhibit path depen-
dence (hysteresis) as us, C, or a varies. This characteristic necessitates
that some care be taken in solving (1).72

The variables C and us as in (1) may be modulated to produce a
time-varying SM signal. Changes in the effective optical length of the
external cavity result in changes in the phase stimulusus. These can occur
due to changes in the laser frequency,65,73 external cavity’s length,14 or
refractive index,73–75 or in the phase-shift on reflection at the target.76

Changes in reflection from the target as well as in the external cavity
round trip time result in changes in the feedback parameter C. Thus,
an SM signal can be created through (i) changing C and fixed us
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(for example, through only change in reflectivity at the external target);
(ii) changing us and fixed C (for example, through a change in the laser’s
emission frequency over a narrow range); or (iii) changing both us and C
(for example, by changing the dielectric properties of the target).

The SM signal embedded in the modulated voltage signal (result-
ing from change in gain due to feedback) is related to the phase change
through

DV / cos uFBð Þ; (4)

where DV is the change in the voltage waveform due to optical feed-
back, and is a function of time through its dependence on the interfer-
ometric phase uFB and the feedback parameter C. The relationship
between the phase stimulus, the feedback parameter, and the resulting
SM signal (DV) is illustrated in Fig. 6.

IV. APPLICATIONS

We will consider two very different uses of the LFI technique: (i)
characterization of the very laser experiencing the feedback and (ii)
conventional sensing applications. We will address the laser character-
ization techniques first.

A. Measurement of laser properties under feedback

1. Linewidth and linewidth enhancement factor (a)
measurement

The effects of optical feedback on the laser linewidth have long
been studied,70,77,78 with the particular linewidth and value for
Henry’s LEF a under feedback often depending not only on the level
of optical feedback but also on the laser’s biasing condition.79 For a
particular optical system, LFI can be used to determine a and line-
width in a number of ways.80 For QCLs, there are two classes of tech-
niques that have been used to date to experimentally determine a: The
simple morphological methods of Yu et al.81 (used for QCLs in Refs.
82–85) and the parameter fitting methods used in Refs. 86 and 87. We
briefly describe the first class of methods.

It is straightforward to determine using the excess phase
equation (1) that the SM signal cos ðuFBÞ has minima and max-
ima at

us ¼ mpþ ð�1Þm C affiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p ; m 2 Z;

FIG. 5. Creation of SM signals on short time scales via frequency sweeping due to adiabatic and thermal effects.20 Reproduced with permission from Agnew et al., IEEE J.
Quantum Electron. 54, 2300108 (2018). Copyright 2018 IEEE. Top row: Positive current sweep; Middle row: Constant current; Bottom row: Negative current sweep.
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with minima corresponding to odd m and maxima corresponding to
evenm, and has zero-crossings at

us ¼ ð1þ 2mÞ p
2
þ ð�1Þm Cffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p ; m 2 Z:

From these, one readily computes the phase-distance from a maxi-
mizer to the successive minimizer as

A ¼ p� 2
C affiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p ;

and the phase-distance from a zero-crossing between a maximizer and
a minimizer to the successive zero-crossing as

B ¼ pþ 2
Cffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p :

Relative to the natural period 2p, one obtains the dimensionless
quantities

eA ¼ A
2p
; eB ¼ B

2p
;

yielding a ready estimate for the linewidth enhancement factor as

0:5� eAeB � 0:5
:

The quantities eA and eB can be experimentally determined from an
SM signal simply by examining an oscilloscope trace to record (i) the
natural period T between successive peaks in the observed signal; (ii)
the distance a between a peak and the subsequent trough; and (iii) the
distance b between a zero-crossing between a peak and the subsequent
trough and the next zero-crossing. Then, a may be estimated as

FIG. 6. LFI phase-stimulus–signal response transfer function for a ¼ 0.1. (a) A sinusoidal phase stimulus for C¼ 0.5. (b) A sinusoidal phase stimulus for C¼ 1.5. (c) A sinusoi-
dal phase stimulus and a sinusoidal feedback parameter stimulus varying periodically between 0.5�C� 1.5. In this case, the transfer function itself varies periodically with C.
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ba ¼ 0:5� a=T
b=T � 0:5

:

This is the approach reported in Ref. 81 and typically used when C< 1
(weak feedback). Indeed, the same approach is used in Ref. 82, but
with the “first” zero-crossing chosen between a minimizer and a maxi-
mizer rather than between a maximizer and a minimizer—leading to
the estimate given above being multiplied by a factor of �1. The same
experimentally-measured quantities a, b, and T can be used to simulta-
neously obtain an estimate for C via

bC ¼ p
b
T
� 0:5

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:5� ða=TÞ

ðb=TÞ � 0:5

� �2
s

:

A similar analysis may be carried out in the case of “moderate
feedback” (that is, 1<C< 4.6) by considering values of the phase
stimulus which correspond to abscissae in the SM signal (rather than
maxima and minima, which will not always be achieved due to the
path-dependent nature of the solution). In this scenario, due to the
path-dependent nature of the solution, care must be taken to distin-
guish between two situations of increasing and decreasing phase-
stimulus. See Ref. 81 for further details.

To experimentally determine the linewidth, Cardilli et al.88 used
the method of Giuliani and Norgia,89 which employs the linear rela-
tionship between phase noise and linewidth to estimate the laser line-
width under optical feedback.

2. Spectrum measurement

Most conventional LFI applications are designed to interrogate
an external target or, more generally, the environment external to the
laser. In these situations, the SM signal primarily contains information
related to such external phenomena. The usual assumption is that the
laser is operating in a single mode.

However, provided the characteristics of the external target and
the temporal stimulus (for example, motion of a mirror used as an
external target) are known, the spectrum of the laser can be inferred
from the SM signal. This process is conceptually similar to conven-
tional Fourier transform infrared (FTIR) spectroscopy. As we have
demonstrated in Ref. 90, this architecture offers a detector- and
alignment-free spectrum analyzer with spectral resolution which com-
pares favorably with the conventional design.

The LFI spectrum analyzer configuration consists of a collimated
beam reflected from an external mirror. The external mirror is then
longitudinally displaced, and the resulting SM voltage signal is Fourier
transformed. The total displacement of the external mirror dictates the
resolution of the spectrum analyzer.

In Ref. 90, a cavity extension of 200mm was used, resulting in a
spectral resolution of 750MHz. However, as noted therein, LFI with
THz QCLs has been demonstrated over external path-lengths of
greater than 10 m, suggesting that the spectral resolution could in
principle be improved to less than 15MHz. We note here that the
spectral resolution demonstrated by this system is insufficient to
resolve the laser’s intrinsic linewidth.

One key consideration is to ensure that the interferometer oper-
ates in the weak feedback regime—that is, with C< 1. In practice, this
may be achieved by using an attenuator in the external cavity. In this
regime, the SM signal (ac component of the linearized terminal voltage

signal) can be approximated as a linear combination of SM signals,
with each arising from individual longitudinal modes of the solitary
laser.90 The perturbation to the solitary laser frequency due to the SM
effect for weak feedback and long external cavity lengths is small—in
Ref. 90, being less than the spectral resolution of 750MHz for the cav-
ity extension of 200mm. This frequency perturbation for the domi-
nant mode for different levels of feedback was determined by fitting to
the excess phase equation, and ranged from just above 125MHz down
to just below 20MHz.

With C> 1, the nonlinear nature of SM gives rise to harmonics
in the spectrum of the SM signal, which are an artefact of the LFI
detection process and may be misinterpreted as spectral features.

Figure 7 is reproduced from Ref. 90 and shows the emission spec-
tra obtained using the LFI spectrum analyzer as well as conventional
FTIR spectroscopy for a range of dc driving currents covering single-
and multimode operations of a THz QCL.

3. Phase-noise measurements

In Sec. IVA2, a scheme to measure the spectra as well as the
change in the emission frequency of a single longitudinal mode for
QCLs under feedback was discussed. A study of Cardilli and cow-
orkers88 demonstrated a technique for estimating the RMS phase noise
in QCLs from the associated LFI spectrum.

In that study, an MIR QCL emitting on a single longitudinal
mode at 6.2mm just above the threshold current was collimated to an
external target. The external target was sinusoidally displaced at a series
of target distances [see Fig. 8(a)]. The beam was attenuated to ensure
the interferometer was operating with moderate feedback—ensuring
the presence of interferometric fringes in the SM signal [see Fig. 8(b)].

At each of these distances, fluctuations of the fast switching
time—corresponding to interferometric phase noise, and caused pri-
marily by fluctuations in the laser’s frequency—were determined by
repeatedly measuring the time of a particular fringe within a single

FIG. 7. Emission spectra of a THz QCL in a range of dc driving currents, measured
using LFI (blue traces) as well as FTIR spectroscopy (red traces).90 Reproduced
with permission from Keeley et al., Sci. Rep. 7, 7236 (2017). Copyright 2017
licensed under a Creative Commons Attribution (CC BY) license.
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repetition of the periodic SM signal, and subsequently fitting a
Gaussian to this set of measurements [see Fig. 8(c)].

By assuming that the laser frequency and the target distance are
uncorrelated variables, the root mean square (RMS) phase noiseffiffiffiffiffiffiffiffiffiffiffiffi
hDu2i

p
can be decomposed asffiffiffiffiffiffiffiffiffiffiffiffi

hDu2i
p

¼ 4p
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�20hDL2i þ L20hD�2i

q
;

where c is the speed of light in a vacuum, � is the laser frequency, �0
indicates the mean laser frequency, L0 indicates the external cavity
length, hDL2i represents the mechanical noise in the system, and
hD�2i is the linewidth.

By using this equation and the RMS phase noise measurements
for a series of external cavity lengths, the linewidth with driving cur-
rent I¼ 1.02Ith ¼ 500mA was estimated at 0.286 0.06MHz and the
one with driving current I¼ 1.1Ith ¼ 540mA was estimated at
0.286 0.08MHz. We remark here that these measurements are repre-
sentative of the practical—and not the intrinsic—linewidth of the
QCL.

Sections IVA1–IVA3 demonstrated that many important spec-
tral characteristics of a semiconductor laser can be obtained from a set
of simple LFI experiments. While the methods are general, the applica-
tion in the THz spectral range is particularly attractive.

B. Sensing applications

1. Imaging

Imaging applications are one of the most exploited applications
of LFI with QCLs, holding huge potential in terms of developing
stand-off imaging systems, confocal microscopy applications, and bio-
medical imaging systems. An SM signal can be created by a change in
the amplitude of the retroinjected field, or a change in its phase.
However, a combination of concurrent changes in both will also lead
to the formation of the SM signal. We report here on a number of
imaging techniques relying on coherent or incoherent feedback effects.
Change in the strength of reflectivity and change in the phase are two
techniques that have been exploited for image formation.

The first THz images created using LFI was reported in 2011 by
Dean et al.,60 whereby the temporal change in the SM signal was cre-
ated through the use of an optical chopper [see Fig. 9(a)].

The modulation employed there changes only the amplitude of
the retroinjected field. However, examination of the figures reported
therein reveals well-defined interference fringes, resulting from the
varying distance between the laser and the target across the image.
Indeed, a nontrivial extension of the technique which affords separa-
tion of phase and amplitude information was reported in 2013 by
Ravaro et al.93 The early result of Dean et al. (viz., Ref. 60) suggested
that the coherent nature of the scheme could be exploited to create
three-dimensional images. This study also reported that the strength
of the SM signal was two orders of magnitude larger than that usually
observed in diode lasers (millivolts as opposed to microvolts). Finally,
the region just beyond the lasing threshold was identified as the one
with the highest sensitivity to optical feedback in these lasers. We note
that the same effect can be achieved by pulsing the laser using a simple
square-wave electrical modulation scheme for imaging with LFI.
Distinct advantages of such a scheme include: (i) the straightforward
creation of the modulating signal, even for high-current lasers and (ii)
its natural suitability for lock-in detection.94

The study of Mezzapesa et al.74 makes explicit use of both the
amplitude and phase modulation of the SM signal in a very similar
configuration to that reported in Ref. 60. Indeed, the potential for sep-
arating phase and amplitude information was suggested in those stud-
ies.74 Moreover, concurrent information about amplitude and phase
enables the formation of three-dimensional images, and an algorithm
for three-dimensional image reconstruction and experimentation has
been reported in Ref. 95. The three-dimensional reconstruction was
enabled by combining lateral scanning with longitudinal displacement.
Therein, an increase in the length of the external cavity changes the
phase accumulated in the external cavity, which in turn modulates the
SM signal, leading to ability to determine distance change.
Alternatively, the effect of longitudinal displacement can be conve-
niently replaced by sweeping the frequency of the laser.96

When forming an image, it is important to keep in mind that the
change in phase brought about by longitudinal displacement of a tar-
get with a constant complex reflection coefficient (for example, prob-
ing two points of a homogeneous material with varying surface

FIG. 8. (a) Schematic of the experimental setup for phase-noise measurements
using LFI. (b) Typical SM signal measurements resulting from harmonic displace-
ment of the translation stage in (a). (c) Histogram of the fringe temporal position
over a series of repeated displacements, together with a Gaussian fit.88 Adapted
with permission from Appl. Phys. Lett. 108(3), 031105 (2016). Copyright 2016 AIP
Publishing.
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profile) could equally come about as a change in the complex reflec-
tion coefficient without any longitudinal displacement (for example,
probing two points of a flat target consisting of varying materials). The
majority of published works do not explicitly comment on this point.
In order to separate the two effects, that is, to enable three-
dimensional surface profiling and simultaneous mapping of lateral
changes in the refractive index, one must be able to apportion the
observed change in phase (modulation of the SM signal) to one or the
other cause. Naturally, if one knows that the target is of a homoge-
neous material, or if the target has a known surface profile (for exam-
ple, is optically flat), then doing so is straightforward. However, if one
cannot make such assumptions, then the two causes can in principle
be separated by registering an array of SM signals for a series of longi-
tudinal displacements, and for each a swept-frequency response.

Instead of using a change in voltage across the laser terminals,
one can monitor the voltage signal across a quantum cascade (QC)
amplifier, integrated with the QCL.91 In this case, change in the optical
feedback can be used to initiate lasing action in the amplifier section,
which in turn reduces the voltage across the device terminals. Unlike
previous studies, where the QCL was operating in the cw regime, the
QC amplifier was pulsed (pulse duration, 3–6 ms) enabling a fast
acquisition rate [see Fig. 9(b) for a high-resolution image obtained
using this approach].

The swept-frequency LFI technique introduced in Rakić et al.73

and used for materials analysis can also be used simply to create ampli-
tude and phase images [see Fig. 9(c) for an exemplar amplitude image
obtained this way]. A study from Wienold et al.92 achieves real-time
THz imaging with an impressive framerate of 2Hz for images of 4.4K
pixels by combining an innovative mechanical scanning scheme with
the same swept-frequency technique [see Fig. 9(d) for an image
obtained using this approach acquired at 0.25Hz].

The relatively long wavelength of THz and MIR QCLs imposes a
diffraction limit on spatial imaging resolution.97 A significant increase
in spatial resolution can be achieved by using synthetic aperture radar
(SAR) techniques, well known in the microwave field,98,99 or, alterna-
tively, by the use of scanning near-field microscopy techniques.100–102

The use of SAR and inverse SAR (ISAR) imaging allows the crea-
tion of images with improved spatial resolution by considering the
measured signals to be the coherent sum of scattered signals reflected
from the target. Multiple measured signals across a synthetic aperture
permits one to reconstruct scatterers at the target by synthetic back-
propagation to the target surface. This approach was demonstrated in
2014 by Lui et al.103 using LFI with a THz QCL on a standard resolu-
tion test target and demonstrated spatial resolutions down to 150mm,
with a theoretical resolution limit of 70mm—below the diffraction-
limited spatial resolution of around 200mm.

The frequency- and angle-dependent characterization of target
reflection—radar cross section (RCS) characterization—has long been
regarded as a core application of radar measurement, particularly for
military and defense-related purposes. However, objects to be charac-
terized are often very large relative to the microwave frequencies typi-
cally employed. In 2015, Lui et al.104 demonstrated RCS
characterization using LFI at THz frequencies, at which a target of a
smaller physical scale can be used instead—rather than characterizing
a target of 5 m at 2.6GHz, one can characterize a target of 5mm at
2.6THz.

In most of these examples, the change in the phase and amplitude
jointly works to form an image. The relative strength of each effect can
vary from target to target, and from sensing scheme to sensing scheme.
The techniques of target pullback (that is, longitudinal displacement)
together with frequency sweeping can in principle enable the separa-
tion of the two.

a. Displacement and velocity sensing. Displacement and velocity
measurement applications are mainstays for sensing techniques,
including for LFI where there have been numerous demonstrations at
different wavelengths, using different lasers, for different applica-
tions.58,105 When considering the fact that QCLs operate in the MIR
or at THz frequencies, one might question the wisdom of employing
longer-wavelength lasers when one could employ a shorter wavelength
infrared or visible laser. However, several applications that benefit
from these wavelengths have been explored.

FIG. 9. (a) Image of the obverse of a British two-pence coin, obtained via voltage sensing with LFI using a 2.6 THz QCL, where the beam was modulated by an optical chop-
per.60 Reproduced with permission from Dean et al., Opt. Lett. 36(13), 2587–2589 (2011). Copyright 2011 OSA Publishing. (b) Image of the reverse of a Lunar Year of the
Horse 2014 Gold Coin, obtained via voltage sensing with LFI using a 2.9 THz QCL operating in the pulsed mode.91 Adapted with permission from Appl. Phys. Lett. 107(1),
011107 (2015). Copyright 2015 AIP Publishing. (c) Amplitude image of the obverse of an Australian five cent coin obtained via swept-frequency LFI using a 2.59 THz QCL. (d)
Amplitude contrast image of the reverse of a German 50 cent coin, imaged over 4 s using a scanning mirror, obtained via voltage sensing with LFI using a 3.3 THz QCL, with
triangular current modulation.92 Adapted with permission from Appl. Phys. Lett. 109(1), 011102 (2016). Copyright 2016 AIP Publishing.
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Detecting movement behind an optically opaque screen (trans-
parent in THz or MIR) comes immediately to mind. Lim et al. demon-
strated displacement measurement with LFI in a THz QCL,14 further
showing the potential of the technique for detecting movement behind
visibly opaque screens which are transparent at THz frequencies.

The technique also allows for concurrent displacement measure-
ment of two targets, located in sequence in the optical path, the first of
which is semitransparent.106 This concurrent monitoring of two SM
signals permits for a range of additional applications, stemming from
the long wavelength and phase stability of QCLs.107 If one of the two
surfaces is used as a reference, the resolution of the displacement
detected at the target interface can be on the order of k/100.108

An embodiment of this technique for real-time detection of laser
ablation was proposed, whereby the depth of the laser-drilled bore is
measured using the front surface of the material being machined as a
reference.109 This approach can be augmented by simultaneous
measurement of the ablation rate.110

When a target is displaced periodically, Valavanis15 proposes two
simple but effective ways of determining the maximum velocity and
the amplitude of the displacement. The frequency of the SM signal
is related to the maximum velocity of the target and the amplitude of
displacement to the change of maximum velocity with respect to
frequency.

Displacement measurement when combined with raster-
scanning can be used to create three-dimensional profiles of surfaces.
Two techniques have been proposed to achieve this—one involving
mechanical movement of the target along the laser beam axis95 or an
equivalent frequency modulation of the laser.96 In the latter case, a
depth resolution of better than 100nm was demonstrated using a
QCL emitting at 2.6THz.

b. Biomedical imaging. Imaging tissues using THz waves has
been a mainstay of the scientific literature due to the well-known sensi-
tivity of THz interactions with materials to the water content and
changes in the molecular structure. Typically, such biological imaging
is carried out using time-domain spectroscopy (TDS).111–114 It was
demonstrated that the swept-frequency LFI can be used as an alterna-
tive for imaging tissue samples, permitting the registration of both
amplitude- and phase-like images.115 This scheme operates naturally
in the reflection mode, which opens a natural pathway to in vivomea-
surement. However, operation in the transmission mode is possible—
for instance, for use on microtomed samples.115

The results on the Cdk4 R24C/R24C:Tyr-NRAS Q 61K murine
model in Ref. 116—seeking to image malignant melanoma precursor
lesions—suggest that LFI can be used to detect early stages of mela-
noma. Figure 10(a) shows a photograph of a 6mm murine biopsy in
which no lesion is apparent, while Fig. 10(b) shows a SOX10 stained
cross section of the same sample, clearly showing a region of healthy

tissues as well as a region containing a lesion. Fig. 10(c) shows an LFI
image of the same sample, in which the lesion is clearly visible.

c. Near field imaging. As noted in Sec. IVB1, there has long been
particular interest in biomedical imaging applications in the MIR and
THz regions. However, at these frequencies, diffraction effects place a
limit on the spatial resolution achievable with far-field techniques. As
wavelengths range from �3 to 10mm for MIR and�50 to 300mm for
THz, this precludes the direct imaging of features on the cellular scale
(below 10mm)—for applications such as intercellular imaging and
intracellular chemical mapping.117 The probing of solid-state materials
on these scales in the MIR and THz range is another key driver for
imaging below the diffraction limits,118 with potential applications
including the mapping of charge carriers in semiconductors and nano-
structures,119 the microscopic investigation of quantum dots and
nanowires,120,121 and investigation of metamaterials.122

Consequently, recent years have seen increased interest in near-
field imaging with THz and MIR waves due to the capacity of near-
field techniques to resolve spatial features well beyond the diffraction
limit, and at the same time probe the response of materials at THz fre-
quencies and in the MIR.100,101,119–122

One predominant approach to near-field imaging in the MIR
and THz regions is to use scattering-type near-field optical microscopy
(s-SNOM). In s-SNOM, an atomic force microscope (AFM) drives a
sharp metallic tip in the tapping mode or intermittent contact mode to
scan the sample. An external light source is coupled to the apex of the
tip and scattered light is collected. Crucially, due to the near-field inter-
action between the excited tip and the sample surface, the enhanced
scattered signal is sensitive to the local (near-field) dielectric properties
of the sample.

In 2008, the first QCL-based s-SNOM was reported using an
external detector by Huber et al.119 Arguably, the simplest solution to
s-SNOM at THz frequencies and in the MIR is to combine the laser
and the detector in one device and to use an LFI detection scheme.
Craig et al. performed MIR near-field spectroscopy of trace explosives
using such an approach, achieving a spectral resolution of 0.25 cm�1

and a spatial resolution of 25 nm with an EC QCL source tunable
from 7.1 to 7.9mm.123 This is particularly relevant in the THz range
due to the lack of fast and sensitive detectors. A 2016 study by Dean
and co-workers demonstrates this approach,124 achieving a spatial res-
olution of k/100 using a 2.53THz QCL. Subsequently, in 2017,
Degl’Innocenti et al. augmented the system with a custom-designed
tuning fork to enhance the sensitivity of the detection scheme102 and
Giordano et al. demonstrated such a system combined with an AFM
with improved image quality125 (see Fig. 11).

2. Refractive index measurement

An interesting application of LFI lies in materials analysis and
extraction of a complex refractive index of a remote target with the aid
of calibration standards.69,73 In principle, the SM signal is imprinted
with information on the target’s reflectivity and phase-shift on reflec-
tion. With a suitably designed experiment, their relative impact can be
measured; with calibration standards, it is possible to estimate their
numerical value. However, different signal processing and parameter
extraction methods are required depending on the nature of the target.

FIG. 10. (a) Photograph of murine model biopsy; (b) En face section of the corre-
sponding SOX10 stained histology; and (c) LFI image.116 Adapted with permission
from Rakić et al., Proc. SPIE 10030 (2016). Copyright 2016 SPIE.116
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The case that is closest to the theoretical ideal is the extraction of
optical constants of polished homogeneous and isotropic samples.69,73

The main difficulty here lies in differentiating between a change in
phase due to a change in the phase-shift on reflection and a change in
phase otherwise accumulated in the external cavity (for example,
resulting from a change in the target distance). More challenging is the
case of granular materials (such as plastic explosives).126 Their random
nature presents one with additional complexity requiring methods
which rely on ensemble characteristics rather than the characteristics
of a single point on the target. Finally, the small change in the refrac-
tive index brought about by free-carrier injection can also be identi-
fied,127 opening up the possibility for application in the semiconductor
industry including the dopant profile and level measurements.

a. Homogeneous materials analysis. The shape of an SM wave-
form is fundamentally affected by the reflectivity of the external target
through the feedback parameter C [see (2)]—it is proportional to the
amplitude reflection coefficient, among other factors [see (3)].

An SM waveform is also affected by the external target’s phase-
shift on reflection, although it is difficult—but not impossible—to tease
apart from the transmission phase in the case where the external target
is homogeneous, isotropic, optically flat, and well-aligned. When the

current of the laser is linearly modulated, the second order effect is a
linear chirp of the lasing frequency. This chirp leads to a predictable
linear dependence of the transmission phase over time. The phase-
stimulus in this situation can be ideally written as

uðtÞ ¼ u0 þ
UD

T
t � hR;

where hR is the phase-shift on reflection, u0 is the round trip phase-
shift on transmission at the beginning of the frequency sweep, T is the
period of the linear current (frequency) sweep, and UD is the linearized
change in phase caused by the current sweep.

This swept-frequency LFI experiment can be used with calibra-
tion standards to extract the complex refractive index of such a
target.73,128 For a detailed description of the method and the relation-
ship between the complex refractive index of a target and accuracy of
the extracted refractive index, see Ref. 69. Similarly, Bertling and
co-authors demonstrated the use of swept-frequency LFI to estimate
the ethanol content of alcoholic solutions.75

b. Granular materials analysis. The technique outlined in Sec.
IVB2 can in principle be used for materials analysis of a single point
on an external target. However, it requires sample preparation that

FIG. 11. LFI scattering type near field optical microscope with nanometer resolution at THz frequencies.125 Reprinted with permission from Giordano et al., Opt. Express
26(14), 18423–18435 (2018). Copyright 2018 OSA Publishing. (a) Schematic of the experimental setup; (b) 3rd harmonic component of the SM signal; (c) the AFM topographic
image of gold on a silicon sample; (d) the corresponding LFI image; and (e) the depth profile with reference to the green line in (d).
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can be challenging or unrealistic for certain types of targets. An appli-
cation of particular interest that has shown promise in the far infrared
(FIR) and THz is materials analysis of plastic explosives (see Fig. 12).

However, there is additional complexity associated with extract-
ing the complex refractive index of such a granular material embedded
in an inert matrix.126 The idea presented therein relies on the same
swept-frequency approach—the key difference is that the material of
interest is interrogated multiple times over different spatial locations,
leading to a collection of SM signals, each imprinted with slightly dif-
ferent complex refractive indices. The approach taken in Ref. 126 is to
set up an over-determined linear system of equations with parameters
C=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

; Ca=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

, and hR � u0. Solving this system of equa-
tions via least squares over a series of spatial patches on the target
results in a “cloud” of points in parameter space (see Fig. 12).

The potential phase ambiguity in hR � u0 is resolved automati-
cally by unwrapping the phase across two periods and employing the
well-known K-means algorithm and the Silhouette Coefficient (see
Ref. 126 for details). A central point in parameter space is then selected
using the mean-shift algorithm, and is taken as representative of the
ensemble characteristics of the target. This can then be used with cali-
bration standards to obtain numerical estimates of the effective optical
characteristics of the granular material.

This noncontact procedure could potentially be carried out with
pulsed QCLs18 (enabling higher-temperature operation), or extended
heterogeneous laser structures with a wider tuning range.19

c. Free carrier distribution. Mezzapesa and coworkers reported in
Ref. 127 the imaging of the distribution of the free carrier concentra-
tion and the corresponding spatial variation of the refractive index via
LFI using a THz QCL, enjoying the usual benefits of coherent sensing
without the need for an additional detector (see Fig. 13).

This photoinduced change in the spatial refractive index can also
be used for beam formation and beam manipulation, as reported in

Ref. 76. In that work, photoinduced metamaterials were created
through the manipulation of the photocarrier distribution on a semi-
conductor wafer by means of a NIR cw optical pump beam through a
spatial light modulator (SLM). A periodic spatial pattern on the wafer
that is of subwavelength results in significant anisotropy in the result-
ing material, giving rise to the possibility of simultaneous positive and
negative permittivities of a beam’s polarization states. This approach
has only optical components and avoids the need for fabrication,
pointing toward unprecedented control of the emission characteristics
of THz QCLs.

3. Gas detection

A major area of application of LFI with QCLs is to trace gas
detection,129–133 although it appears in the literature under the moni-
ker of optical-feedback cavity-enhanced absorption spectroscopy (OF-
CEAS). The combination of QCLs with LFI has been demonstrated
for sensing traces of formaldehyde,134 atmospheric methane,135,136 the
hydroperoxyl radical in a plasma jet,137 water vapor measure-
ments,138,139 and for multiple trace gasses,140 to highlight only a few.
In the THz frequency range, the narrow linewidths offered by QCLs is
also particularly well-suited to high-resolution spectroscopy of gases,
for which absorption features are typically spectrally narrow.141–146

The theoretical formalism appears a little different from LFI at
first sight (see, e.g., Ref. 147, Sec. 5.3.1)—however, the basic model in
OF-CEAS is the three-mirror model and gives rise to the excess
phase equation given in (1) for which the simple model of a

FIG. 12. The distribution of the point cloud together with the centroid for three plastic
explosives: METABEL, SEMTEX, SX2 (indicated by red, green, and blue clouds and
circle, cross, and triangle markers, respectively). Also shown for comparison are the
point clouds for three homogeneous plastics HDPE, PC, and HDPE Black (indicated
by orange, cyan, and yellow clouds and square, star, and diamond markers, respec-
tively).126 Reproduced with permission from Han et al., Sensors 16, 352, 2016.
Copyright 2016 licensed under a Creative Commons Attribution (CC BY) license.

FIG. 13. (a) Representative intensity distributions of the infrared pump laser by
placing a charge-coupled device (CCD) camera at the sample position. The pattern
was computer controlled by a spatial light modulator (SLM) and projected onto the
silicon surface. Dark pixels of the SLM liquid crystal maintain the polarization of the
incident light and define the exposed area. (b) Terahertz imaging in the reflection
mode of a photoexcited electron plasma on semiconductors. The spatial distribution
of free carrier charges corresponds to the structured beam profile.127 Reproduced
with permission from Appl. Phys. Lett. 104(4), 041112 (2014). Copyright 2014 AIP
Publishing.
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frequency-independent external target reflectivity—arising in
(1)–(3)—is replaced by a general reflection transfer function.

If one denotes by h(x) the field transfer function, then the
frequency-dependent feedback level [c.f. (2)] is

CðxÞ :¼ jðxÞ sext
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

;

where the frequency-dependent coupling strength [c.f. (3)] is given by

jðxÞ :¼ e
ð1� R2Þffiffiffiffiffi

R2
p jhðxÞj:

The corresponding version of the excess phase equation [c.f. (1)]
reads as

uFB � us þ CðxÞ sin ðuFB þ arctanðaÞ � ArgðhðxÞÞÞ ¼ 0;

where Arg(�) denotes the principal value of the argument of a complex
number, taken here to lie in the interval (�p,p].

The change in laser gain is modeled as

Dg / cos ðuFB � ArgðhðxÞÞÞ:

For small perturbations under which the gain can be locally linearized,
the model given above leads to a SM power or voltage signal of the
same functional form [c.f. (4)]. Note that when hðxÞ ¼

ffiffiffiffiffiffiffi
Rext
p

is the
real amplitude reflection coefficient of the external target, then these
equations reduce to the basic LFI model given in Sec. IIIA.

The idea in OF-CEAS is to self-lock the laser to an external opti-
cal cavity containing the sample under study. The effect of the external
cavity is to spectrally filter the emitted beam and the optical feedback
induces laser linewidth narrowing to lower than the spectral width of
the cavity modes.148 By sweeping the laser’s frequency, the frequency-
dependent effect of transmission through the external cavity directly
impacts the SM signal through jhðxÞj. This can be measured by moni-
toring the laser’s terminal voltage or optical output power.

The precise nature of the field transfer function depends on the
configuration of the OF-CEAS instrument.147,149,150 Figure 14 shows a
few common cavity geometries.

A particularly striking illustration of the effect of jhðxÞj on the
SM signal is shown in Fig. 15.

V. STATE OF THE ART AND THE ROAD AHEAD

The pairing of QCL devices as high-power coherent sources of
MIR and THz radiation with the high-sensitivity and optically simple
technique of LFI has distinct advantages, particularly in the THz
region where there is presently a lack of convenient alternatives for
high-speed high-sensitivity detection. Applications demonstrated to
date range from measuring internal laser characteristics such as

FIG. 14. Schematic drawing of four different
cavity geometries for OF-CEAS.147 From
Morville, Cavity-Enhanced Spectroscopy
and Sensing. Copyright 2014 Springer.
Adapted by permission from Springer
Nature Customer Service Center GmbH.
(a) V-shaped cavity. (b) Brewster angle cav-
ity. (c) Linear cavity with residual mirror bire-
fringence. (d) Ring cavity.

FIG. 15. Signal from the light transmitted through an OF-CEAS V-shaped cavity
geometry as the laser frequency is the 5.26mm MIR QCL which is frequency-swept
(red trace).151 The cavity is filled with ambient air at 100 mbar. Absorption lines of
NO, CO2, and H2O are observed. Adapted by permission from Ventrillard et al.,
Appl. Phys. B 123, 180 (2017). Copyright 2017 Springer Nature Customer Service
Center GmbH.
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emission spectra, linewidth, and phase noise to trace gas detection,
materials analysis, biomedical imaging, and near-field imaging.

In the majority of these applications, the device is operated in cw
mode. However, we see a great deal of potential for applications employ-
ing pulsed mode operation (especially in the THz range), which results
in higher emitted power and higher temperature operation, as well as
potential for time-gating. Our modeling work suggests that pulsed time
of flight as well as more sophisticated swept frequency LFI radar schemes
are feasible. Accurate modeling of the dynamic behavior of QCLs under
optical feedback presents the need for device-specific models. Such mod-
els are becoming available for THz QCLs that take into account the tem-
perature and current/voltage dependence of laser characteristics.17,18,21

These models can be used to predict the behavior of pulsed QCLs experi-
encing optical feedback,18,20 which was a key step to realizing the most
recently demonstrated pulsed LFI system.152,153

We also see potential for multispectral measurements using tun-
able QCLs, particularly in the domain of materials analysis—probing
an external target at a plurality of narrow spectral bands could act as a
way to nondestructively, spectrally “fingerprint” materials in the reflec-
tion mode at a distance.19
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