
This is a repository copy of Co-designing the computational model and the computing 
substrate.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/147381/

Version: Accepted Version

Conference or Workshop Item:
Stepney, Susan orcid.org/0000-0003-3146-5401 (2019) Co-designing the computational 
model and the computing substrate. In: UCNC 2019, Tokyo, Japan, June 2019, 03-07 Jun 
2019. 

https://doi.org/10.1007/978-3-030-19311-9_2

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Co-designing the computational model

and the computing substrate

(invited paper)

Susan Stepney

Department of Computer Science, University of York, UK
York Cross-disciplinary Centre for Systems Analysis, University of York, UK

Abstract. Given a proposed unconventional computing substrate, we
can ask: Does it actually compute? If so, how well does it compute?
Can it be made to compute better? Given a proposed unconventional
computational model we can ask: How powerful is the model? Can it
be implemented in a substrate? How faithfully or efficiently can it be
implemented? Given complete freedom in the choice of model and sub-
strate, we can ask: Can we co-design a model and substrate to work well
together?

Here I propose an approach to posing and answering these questions,
building on an existing definition of physical computing and framework
for characterising the computing properties of given substrates.

1 Introduction

There are many proposed unconventional computational models: reservoir com-
puting, general purpose analogue computing, membrane computing, reaction-
diffusion computing, quantum computing, morphogenetic computing, and more.
There are just as many proposed unconventional computing substrates: slime
moulds, carbon nanotubes, gene engineered bacteria, gold nanoparticle networks,
memristors, optical systems, and more. But how to match model and substrate
to get an effective unconventional computer?

In order to tackle this question, I work through several stages. I describe one
definition of what is meant by physical computing, to distinguish a system that
is computing from one which is just ‘doing its thing’ (§2). I describe a method
for determining how well a given substrate performs as a physical computer
implementing some computational model (§3). I then discuss how this method
could be adapted to determine how well a given computational model captures
the computing performed by some substrate (§4), and then how these approaches
might be combined to co-design model and substrate (§5).
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2 When does a physical system compute?

2.1 Abstraction/Representation theory

It is necessary to be able to determine when a substrate is specifically computing,
as opposed to merely undergoing the physical processes of that substrate, before
we can determine how well it is doing so.

To address the question of when a physical system is computing, we use
abstraction/representation theory (AR theory) [14, 15, 16, 17, 35], in which
science, engineering, and computing are defined as a form of representational
activity, requiring the use of a ‘representation relation’ to link a physical system
and an abstract model in order to define their operation. We use AR theory to
distinguish scientific experimentation on a novel substrate from the performance
of computation by that substrate.

The compute cycle is shown in figure 1. An abstract problem A is encoded
into the computational model asmp; abstractly the computation C producesm′

p
;

this is decoded as the solution to the problem, A′. To implement this abstract
computation, the encoded model is instantiated into the physical computer state
p; the computer calculates via H(p), evolving into physical state p′; the final
state is represented as the final abstract model mp′ .

For the abstract computation to have been correctly physically computed,
we require mp′ ≃ m′

p
(where how close the approximate equality needs to be

is device- or problem-dependent). Ensuring this equality holds is a process of
debugging the physical system, including how it is instantiated (engineered, pro-
grammed and provided with input data), and how its output is represented. Then
we say that the initial instantiation, physical evolution, and final representation
together implement the desired abstract computation C(mp).

From this model, Horsman et al [14] define computing as the use of a physical
system to predict the outcome of an abstract evolution.

2.2 Example: AR theory applied to Reservoir Computing

In order to demonstrate how AR theory can be applied to unconventional com-
puting, we here outline its use applied to reservoir computing (RC) in materio
[6]. RC is a popular choice of model for many unconventional substrates, because
it treats the substrate as a black box. The stages of AR theory specialised to
RC with a carbon nanotube substrate are:

– computational model: a formal model of reservoir computing, such as the
Echo State Network model [18].

– instantiation:
• the substrate is engineered to be an RC: here the physical RC is a blob
of carbon nanotubes in polymer, deposited on an electrode array

• the substrate is configured (programmed) to be an RC suitable for a
particular task: here by applying voltages to a subset of the electrodes;
which voltages to apply to which electrodes for a particular task are
typically evolved during the programming phase
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Fig. 1. Physical computing in AR theory. The full compute cycle, starting from initial
abstract problem A, encoding in terms of an abstract computational model, instantia-
tion into a physical computer p, physical evolution of the device, followed by represen-
tation of the final physical state, then decoding to the abstract answer to the problem
A′.

• the substrate is provided input data, through another subset of electrodes
– physical substrate evolution: given the input configuration (program plus

data) the physical system evolves under the laws of physics, producing an
output

– representation: the output is extracted as voltages from a further subset of
the electrodes, then passed through the RC output filter (trained during the
programming phase) here implemented in a PC.

This description makes it clear that there is computation done in both the instan-
tiation stage and the representation stage, in addition to the physical compute
stage. Here the computing in the instantiation stage occurs during the ‘program-
ming’ substage; this effort can be amortised over many runs on specific data,
much as how classical computing ignores the cost of compilation and testing
when analysing the computational resource costs of algorithms. The computing
performed in the representation stage here, however, of processing with the out-
put filter, occurs for each run, and so needs to be included in the overall cost of
the computation.

Such instantiation and representation costs are one way to ‘hide’ the true
cost of unconventional computation [3], and care must be taken to analyse these
fully, in addition to the use of other unconventional computing resources [2].

3 How well does a physical system compute?

3.1 How well does a carbon nanotube reservoir compute?

AR theory defines when a substrate is computing with respect to a model. We
have employed this to developed CHARC, a method to characterise how well
some material substrate can instantiate and implement a given computational
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Fig. 2. Carbon nanotube in polymer behaviour space (grey) superimposed on a 100
node ESN behaviour space (black). From [7]

model [5, 7]. We have applied CHARC to a reservoir computing model instanti-
ated in carbon nanotubes, and also in simulations.

CHARC works in the following way. First, we take a baseline system: a simu-
lation of the computational model, here an ESN [18]. We do not want to merely
examine how well a substrate implements a particular task running under a
model, but rather how well it implements the model in general. So next, we
decide on some ‘behavioural measures’ that characterise the model: for our defi-
nitional work with ESNs we use memory capacity (MC), kernel rank (KR), and
generalisation rank (GR), but other measures can be used.

We then explore how well our baseline system covers the behavioural space
defined by the measures, by instantiating the model with many different configu-
rations, and evaluating the measures for each. There is a non-linear relationship
between configuration space, which we use to instantiate models, and behaviour
space, where we measure their properties. This means that random selection in
configuration space leads to a biased sampling of behaviour space. Instead we
use Novelty Search [25, 26, 27] to explore as much of behaviour space as possible.

Once we have a baseline of the amount of behaviour space covered by the
baseline system (figure 2, black), we repeat the process with the candidate sub-
strate, and measure how much of the behaviour space it covers: how many differ-
ent reservoirs it can instantiate (figure 2, red). We see from the figure that our
current carbon nanotube system can instantiate reservoirs, but only relatively
small ones.

3.2 How well could a carbon nanotube reservoir compute?

We have demonstrated that our carbon nanotubes in polymer, deposited on a
64 electrode array, can be instantiated as small reservoir computers.

We could use the CHARC framework to engineer bigger and better in materio
RCs, by using the amount of behaviour space covered as a fitness function in a
search process, exploring carbon nanotube and polymer densities and types.
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3.3 How well do other substrates compute?

The current CHARC framework can be used directly to assess other proposed
RC substrates, simulated or physical, in the same manner.

The CHARC approach is not limited to reservoir computing, however. It can
be adapted to evaluate how well a substrate implements other computational
models. A new set of measures that provide a behaviour space specific to the new
computational model need to be defined. Then the process is the same: define
the behaviour space; use a simulation of the model itself as a baseline; discover
what region of behaviour space the proposed substrate can be instantiated to
cover, relative to the baseline.

4 How well does a computational model fit?

So far we have been focussing on evaluating, and eventually designing, substrates
with respect to a given computational model: given the top abstract process of
figure 1, evaluate the suitability of a given substrate to instantiate the bottom
physical process. In this section I discuss the reverse problem: evaluating, and
eventually designing, computational models with respect to a given substrate.

Most historical computational models were abstracted from existing sub-
strates, for example: electronic analogue computing from the ability of circuits
to implement differential equations; the Turing machine model from human ‘com-
puters’ calculating by following precise instructions. Some unconventional com-
putational models are inspired by the behaviours of specific physical, chemical
and biological substrates: for example, reaction-diffusion models, and membrane
models. However, there is often no explicit experimental validation of such the-
oretical models: how well do they capture the computing done by the substrate,
or are they an abstraction too far?

Consider reversing the CHARC framework, to explore the space of computa-
tional model representations with respect to a given substrate. Performing such
an exploration would need a language to express the computational models that
provide the search landscape. A dynamical systems view of computation [34]
could provide one such language. A dynamical system comprises a set of state
variables, with equations over these variables defining the system dynamics.
The relevant behaviour space would comprise dynamical properties: trajectories
through state space, transients, attractors, bifurcation structure of parameterised
systems, and so on.

Such a system can be visualised as graph, where nodes represent state vari-
ables, and contain the equations as state transition automata or time evolution
definitions; the links show the explicit dependencies between variables. Such a
visualisation is typically used for Cellular Automata, where the ‘cells’ correspond
to the graph nodes, and the links are implicit connections to the neighbourhood
nodes. Moving around the model space moves through the space of such graphs.

We are used to thinking of computational models in dynamical systems terms,
even if not explicitly. Several examples include:
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(a) (b)

(c) (d)

Fig. 3. The time evolution of a range of computational dynamical systems, showing
their complex dynamics. The N components of the state vector run along the x axis;
the T timesteps run down the y axis. (a) Elementary CA rule 110, N = 400, T = 200,
random (50% 0s, 50% 1s) initial condition, periodic boundary conditions. (b) A K = 2
RBN with N = 200, T = 80; state components are ordered to expose the attractor
and the ‘frozen core’. (c) A threshold coupled lattice, threshold x∗ = 0.971, N = 200,
T = 100; each component’s value xn ∈ [0, 1] is indicated by its shading from white
= 0 to black = 1. (d) An ESN reservoir, with N = 100, T = 100; each node’s value
xn ∈ [−1, 1] is indicated by its shading from white = −1 to black = 1. Input is a square
function, cycling through 1 for 20 timesteps then 0 for 20 timesteps. This ESN is in
the chaotic dynamics regime.

– Cellular Automata [1, 36, 37, 38]: discrete time, discrete space, regular topol-
ogy, node equations are boolean functions (figure 3a)

– Random Boolean Networks [9, 20, 21]: discrete time, discrete space, random
topology, node equations are boolean functions (figure 3b)

– Coupled Map Lattices [19], threshold coupled maps [29, 30, 31]: discrete
time, continuous variable, linear topology, each node equation is a (typically
logistic) map with input (figure 3c)

– Reservoir computers: the ESN model is discrete time, continuous variable,
random topology, node equations are some non-linear sum of inputs (fig-
ure 3d)

A computational dynamical system needs to allow inputs and outputs. Inputs
may be provided on inititialisation, as the intitial state, as is typically the case
with CAs and RBNs. Alternatively, the dynamical system can be open, allowing
inputs through time as the dynamics evolves, as is typical with RCs. Outputs
may comprise the final attractor state, or may be read by observing (a projection
of) the system state through time.
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One thing all the systems in figure 3 have in common is a fixed size state
space. However, classical computational models allow the state space to change
as the computation progresses: in a Turing Machine, symbols can be written to a
growing tape; in higher-level programming languages, variables can come in and
go out of scope. This implies that the language of dynamical systems we wish
to use should support developmental, or constructive, dynamical systems, where
the state space can change in response to the progression of the computation.
There is no need for a substrate to mirror such growth explicitly: it could instead
allow computing processes to move into new areas of existing material (as in
classical computing memory). However, more biological substrates with actual
material growth might require such a growth model. Such a dynamical system
has a higher level meta-dynamics. Approaches such as BIOMICS [8, 28] and
MGS [12, 33] provide suggestive starting points for such languages.

Dynamical systems may be coupled in flat or hierarchical architectures. For
example:

– Coupled Lattice Maps and threshold coupled maps are themselves a coupling
of multiple instances of some discrete-time dynamical system, typically the
logistic map

– Quasi-uniform cellular automata comprise coupled patches of CAs, each with
different rules [13, 32]

– Reservoirs can be coupled together, to form ‘reservoirs of reservoirs’ [4]
– RBN ‘atoms’ can be combined into ‘molecular’ boolean networks using an

Artificial Chemistry [10, 11, 24]

One reason for considering unconventional substrates is that they may per-
form some tasks ‘better’ than conventional substrates: if not faster, then maybe
with lower power, in hostile environments, in ways matched to what they are
processing, or some other advantage. This leads to the idea of combining various
disparate substrates, each doing what it does best, into a heterotic computing
system [17, 22, 23]: a multi-substrate system that provides an advantage over a
single-substrate system.

So, in summary, an appropriate language for capturing computational models
that could be explored in a CHARC-like framework is one that supports discrete
and continuous open dynamical systems, including constructive dynamical sys-
tems with a meta-dynamics, that can be combined and coupled in hierarchical
architectures and in heterotic architectures.

Once such an approach is established, it could be extended to include stochas-
tic systems and quantum systems in order to cover the full gamut of potential
computing substrates.

5 Co-designing models and substrates

I have described a demonstrated approach, CHARC, that can be used to evaluate
substrates for how well they can instantiate the RC model. This approach can
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be extended to other computational models, and could be put in a design loop
to engineer improved substrates.

I have also discussed reversing this process, to design computational models
appropriate for given substrates.

The final suggested step is to combine both these processes into a co-design
approach: design models to fit substrates, whilst engineering those substrates to
better fit the models. This would allow other features to be considered in the
overall system, from ease of manufacture of the substrate to expressivity and
naturalness of the model.

Additionally, the vertical lines in figure 1 (instantiation and representation;
including input and output) can be addressed here in a unified manner.

6 Conclusion

In order to take unconventional computing to the next level, from small demon-
strators and simple devices to large scale systems, we need a systematic engi-
neering approach.

The discussion here is meant to point the way to one potential such process:
a framework for co-designing computational models and computing substrates,
to ensure the benefits of UC can be achieved without sacrificing novelty in either
side of the design.
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