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Probabilistic modelling methods are increasingly being em-

ployed in engineering applications. These approaches make

inferences about the distribution for output quantities of in-

terest. A challenge in applying probabilistic computer mod-

els (simulators) is validating output distributions against

samples from observational data. An ideal validation met-

ric is one that intuitively provides information on key differ-

ences between the simulator output and observational distri-

butions, such as statistical distances/divergences. Within the

literature only a small set of statistical distances/divergences

have been utilised for this task; often selected based on user

experience and without reference to the wider variety avail-

able. As a result, this paper offers a unifying framework of

statistical distances/divergences, categorising those imple-

mented within the literature, providing a greater understand-

ing of their benefits, and offering new potential measures as

validation metrics. In this paper two families of measures for

quantifying differences between distributions, that encom-

pass the existing statistical distances/divergences within the

literature, are analysed: f -divergence and Integral Proba-

bility Metrics (IPMs). Specific measures from these families

are highlighted, providing an assessment of current and new

validation metrics, with a discussion of their merits in deter-

mining simulator adequacy, offering validation metrics with

greater sensitivity in quantifying differences across the range

of probability mass.

1 Introduction

Validation is a crucial part of any model generation, es-

pecially for complex computer models (herein defined as

simulators), without which, trust in outputs for specific input

domains cannot be obtained. Traditionally, validation met-

rics for quantifying the simulators’ level of adequacy have

been deterministic, as most modelling techniques produce

deterministic outputs. In this setting, distance metrics are

commonly used, such as mean squared errors and L2-norms

as they provide a clear and interpretable method of validat-

ing and understanding the simulators performance. However,

in recent years, best practice in validation [1, 2] has seen a

move towards understanding and quantifying uncertainties

within the modelling procedure; providing better informa-

tion to make more robust decisions from simulators. By

incorporating uncertainties, simulator outputs provide more

information than just a mean (or deterministic) prediction.

This presents new challenges in selecting validation metrics

such that both the mean predictive performance and uncer-

tainties are appropriately assessed.

This paper focuses on the problem of quantifying differ-

ences between probabilistic simulator outputs and observa-

tional samples, specifically the distance between two distri-

butions from these sources. As a result, the simulator output

and observational variables considered in this paper are those

that can be defined as random variables, typically applying

to ordered magnitude variables, e.g. stress, acceleration etc.,

as well as ratio variables, such a temperature in Kelvin. The

Area Metric and Kolmogorov distance have been extensively

applied in this scenario [2–6]. This paper provides a context
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for these distances by defining their relationships within a

wider range of statistical distances, specifically those related

to the f -divergence and Integral Probability Metric (IPM)

families of distances. Considering these broader families

of distances provides not only new understanding of these

established distance metrics, but also reveals measures with

novel potential for application as validation metrics.

The list of validation metrics within this paper is not

intended to be exhaustive, but encompass those commonly

implemented within the literature. For example, the reliabil-

ity metric, which has been developed for similar purposes,

is not categorised by these two families [7, 8]. This is be-

cause the reliability metric assesses the probability that the

Mahalanobis distance between the simulators’ mean and ob-

servational data, given the simulator covariance, is less than

a given tolerance (meaning it only considers low order sta-

tistical moments) and is better categorised as a type of hy-

pothesis; with the authors linking it to Bayesian hypothesis

testing [7, 8]. It is noted that although the emphasis of this

paper is in validation metrics that quantify differences be-

tween distributions, each of the measures presented has its

own hypothesis test which could be used to make informa-

tive decisions.

The outline of the paper is as follows. Section 2 pro-

vides a criteria for an ideal validation metric, clarifying the

difference between a validation metric and the mathematical

definition of a metric. Subsequently, the two families of mea-

sures, f -divergences and IPMs respectively, are introduced

in Sections 3 and 4; with specific measures within these fam-

ilies defined and reviewed. These distance/divergence mea-

sures are demonstrated on numerical examples (Section 5) in

order to demonstrate and evaluate their applicability as vali-

dation metrics. Following these discussions the measures are

applied to model predictions from Bayesian History Match-

ing (BHM) on a five storey building structure (Section 6).

These provide a practical examination of the information

each provides, leading to a discussion on how to use these

measures in practice. Finally Section 7 offers conclusions

and highlights areas for further research.

2 Validation Metrics and Metrics

This paper is concerned solely with validation metrics in

a probabilistic setting, and in comparing their performance

in providing a quantification of differences between distribu-

tions. The definition of a validation metric is a computable

measure that quantifies the agreement between predictions

from a simulator and observational data [2, 4, 9]. It has been

stated in the literature that a validation metric should be sep-

arate from the criteria used in deciding whether to accept the

simulator for a particular predictive context, and therefore a

given validation metric is only required to quantify the dif-

ference [4, 9].

In order to assess the merits of particular dis-

tances/divergences as validation metrics it is appropriate to

define criteria for an ideal validation metric. Combining pre-

vious criteria from the literature [3, 4, 9], and the authors’

opinions, these criteria in the context of probabilistic engi-

neering simulators are:

1. It should quantify the difference between the simulator

predictions and observational data [3, 4, 9]

2. It should be interpretable and aid identifying simulator

improvements

3. It should provide objective information and be consis-

tent when applied to different probabilistic models or

applications [3, 4]

4. It should account for the complete form of the distri-

bution (and not just statistical moments) - if the under-

lying distribution of the observational data is unknown

it should ideally have a non-parametric estimator with

convergence guarantees

For clarity of terminology within this paper, the term

validation metric is used to refer specifically to those math-

ematical operators that quantify the dissimilarities between

predictions and observational data. The term metric, where

used on its own, refers to the strict mathematical distance

definition i.e. a distance D(·, ·) is a metric if it abides by four

requirements [2]:

1. Non-negative: D(x,y)≥ 0

2. Identity of indiscernibles: D(x,y)= 0 if and only if x= y

3. Symmetric: D(x,y) = D(y,x)
4. Triangle inequality: D(x,z)≤ D(x,y)+D(y,z)

where x, y and z are three quantities (which for the sim-

plest case would be points). It may be necessary for a vali-

dation metric to be a mathematical metric, the merits of this

will be discussed further within this paper.

Finally, it is noted that each of the measures investi-

gated as potential validation metrics within this paper can

be formed into a frequentist hypothesis test, where the null

hypothesis is that the simulator output and observational dis-

tributions are equal. By posing the problem of whether sim-

ulator outputs are adequate as a hypothesis test, a simulator

can be determined inadequate, for a given significance level,

if it causes the null hypothesis to be rejected (it is noted that

statistically a hypothesis can never be proved, only rejected).

At a fundamental level, a hypothesis test provides a

statistically rigorous framework for calculating a threshold,

based on a given statistical distance, with which to make a

decision about whether the simulator is invalid. The pro-

cess for obtaining this threshold will be different for each

measure, and will lead to different properties of the hypoth-

esis test. In addition, the effectiveness of a given hypothe-

sis test will depend on the distance/divergence measure it is

constructed from. For these reasons, the paper focuses on

the abilities of each measure investigated to quantify differ-

ences between distributions that occur anywhere within the

probability mass, and does not perform hypothesis testing. If

a measure is unsuccessful in quantifying dissimilarities any-

where in the probability mass, then it will not perform well

as a general hypothesis test.
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3 f -Divergences

The first family of distances/divergences considered are

f -divergences (also known as Csiszár’s φ-divergences). This

category includes measures such as the Kullback-Leibler

(KL)-divergence, and defines distances/divergences that de-

pend on a ratio between probability measures [10]. These

measures are of the form,

Dφ (P,Q) =
∫

M
φ

(

dP

dQ

)

dP (1)

where M is a measurable space and φ is a convex function.

P and Q are stated as probability measures, but generally

will be utilised in the form of a Probability Density Func-

tion (PDF) or Cumulative Density Function (CDF). Equa-

tion (1) holds when P is absolutely continuous with respect

to Q and −∞ otherwise. Different forms of the f -divergence

depend on the choice of function φ with notable cases be-

ing the KL divergence, φ(t) = t log(t), Hellinger distance,

φ(t) =
(√

t −1
)2

, and Total Variation distance, φ(t) = |t −1|
[10]. This family of divergence measures is widely used

throughout information theory and machine learning [11].

3.1 Kullback-Leibler Divergence

The KL-divergence is the most widely used f -

divergence and has many applications. A notable example

is in performing variational inference as it represents a nat-

ural formulation of the ratio between two likelihood func-

tions [12]. The KL-divergence of probability measures P and

Q is,

DKL (P,Q) = KL(P||Q) =
∫

p(x) log

(

p(x)

q(x)

)

dx (2)

where p(x) and q(x) are probability distributions of the ran-

dom variable x, and is a measure of relative entropy [11].

It takes either the units nats or bits depending on the base

of the logarithm, respectively exponential or base two. The

divergence informs of the average number of extra nats (or

bits) required to encode the data given that the distribution

Q is used to model the ‘true’ distribution P. More simply, it

measures information lost when Q is used approximate P. It

is noted that a frequentist hypothesis test exists for the KL-

divergence [13]. Resultantly, the hypothesis test could be

used to objectively determine whether there are statistically

significant differences between the simulator and observa-

tional distributions.

The KL-divergence can be difficult to estimate when the

distribution form is unknown, and often proves challenging

when the dimension size of samples increases (i.e. in the

instants where d increases when M = Rd). On the other

hand, the divergence can be practical to compute between

low-dimensional probability density functions and therefore

Fig. 1. Estimation of KL-divergence using data-dependent parti-

tions where P∼ N (0,1) and Q∼ N (1,1). DKL (P,Q) = 0.5.

is useful when the observational density function is known

or can be accurately approximated.

Empirical estimation of the KL-divergence in a non-

parametric manner for continuous distributions can be per-

formed using several approaches [14, 15]. However, often

these non-parametric estimators require large sample sizes

in order to converge as illustrated in Fig. 1. This example

studies the convergence rate of one method for obtaining em-

pirical estimate of the KL-divergence; calculated via data-

dependent partition method proposed by Wang et al. [14]. In

this example the empirical estimator is obtained when sam-

ples are drawn from two Gaussian distributions, P∼N (0,1)
and Q ∼ N (1,1). 500 repetitions were performed at each

sample size in order to demonstrate the variance of the esti-

mator. It is clear from Fig. 1 that although the estimator will

converge, this can be slow and requires a large sample size.

In most engineering applications it is often not possible to

obtain even hundreds of samples at each input indicating a

drawback with the estimator.

3.1.1 Jenson-Shannon Distance

The KL-divergence is not a true mathematical metric

as it does not meet two of the four requirements: it is nei-

ther symmetric nor does it obey the triangle inequality. A

smoothed and symmetrised form of the KL-divergence is the

Jenson-Shannon divergence [16], which by taking the square

root becomes a metric, known as the Jenson-Shannon dis-

tance,

DJSD (P,Q) =

√

1

2
DKL (P,M)+

1

2
DKL (Q,M) (3)

where M = 1
2
(P+Q) and is the midpoint of the probability

measures P and Q. The Jenson-Shannon distance will always

produce a finite result, unlike the KL-divergence as P and Q

are always absolutely continuous with respect to M [16]. The

computational overheads of the Jenson-Shannon distance are

high due to the evaluation of the mixture distribution M,
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which becomes prohibitive in high dimensional data [17]. By

construction it is less sensitive to scenarios when distribution

Q contains sample values that are impossible in P, unlike the

KL-divergence, as it is bounded [16].

3.2 Hellinger Distance

The Hellinger distance is another statistical distance

within the f -divergence family. It can be considered anal-

ogous to the Euclidean distance as it is the L2-norm between

two probability measures,

DH (P,Q) =

√

1

2

∫
(

√

p(x)−
√

q(x)
)2

dx (4)

and is formed such that DH (P,Q) ≤ 1. In addition, the

Hellinger distance is a metric meeting all four requirements.

This provides an intuitive interpretation of the distance where

values of zero mean the two probability density functions are

exactly equal and a distance close to one indicates very dis-

similar probability density functions; however, the distance

will nonlinearly change within these bounds. Frequentist

hypothesis tests utilising the Hellinger distance also exist,

which may aid decision making about simulator adequacy

[18, 19].

3.3 Total Variation Distance

Total Variation distance is the L1-norm equivalent to the

Hellinger distance [20],

DTV (P,Q) =
1

2

∫
|p(x)−q(x)|dx (5)

and is the only distance measure that can be classified as both

an f -divergence and IPM (discussed in Section 4) [10]. In

IPM form, Total Variation is written as,

DTV (P,Q) = sup
|| f ||∞≤1

|p(x)−q(x)| (6)

and, like the Hellinger distance, Total Variation takes values

in [0 1] aiding objectivity across applications. The metric

can also be used within a frequentist hypothesis test [21].

4 Integral Probability Metrics

IPMs differ from f -divergences as they depend on the

difference rather than ratio of probability measures. The gen-

eral form of IPMs is defined as,

DF (P,Q) = sup
f∈F

∣

∣

∣

∣

∫
M

f dP−
∫

M
f dQ

∣

∣

∣

∣

(7)

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

Fig. 2. An example of the Kolmogorov distance between P =
N

(

0,0.82
)

and 20 samples from Q= T (5) where DK (P,Q) =
0.26.

where F is a class of functions on M and sup is the supre-

mum: the least upper bound of pointwise differences. The

choice of F leads to various IPMs, such as the Total Vari-

ation distance where F = { f : ‖ f‖∞ ≤ 1}; the Kolmogorov

distance where F = {✶(−∞,t] : t ∈Rd}; Maximum Mean Dis-

crepancy (MMD) where F = { f : ‖ f‖H ≤ 1} (i.e. all f that

are Reproducing Kernel Hilbert Space (RKHS), H); and the

Wasserstein distance where F = { f : || f ||L ≤ 1} where L

here refers to Lipschitz functions. These distances and their

properties are considered in more depth below.

4.1 Kolmogorov Distance

The Kolmogorov distance is the maximum L1-norm be-

tween two CDFs bounded [0, 1] and mathematically defined

as,

DK (P,Q) = sup
x∈R

|FP (x)−FQ (x)| (8)

where FP (x) is a CDF for the probability measure P over the

random variable x. The Kolmogorov distance is simply the

largest vertical difference between the two CDFs and is most

commonly used in hypothesis testing [22].

Figure 2 illustrates an example of the distance for a set

of samples (forming an Empirical Cumulative Density Func-

tion (ECDF)1) F̂Q (x) and a known distribution FP (x). Note,

however, the distance holds if either P or Q are known or

empirical. This is an advantage of the Kolmogorov distance,

meaning it has the ability to handle a mixture of empirical

and/or known CDFs, making it a flexible non-parametric tool

for validation purposes.

The Kolmogorov distance is closely related to the To-

tal Variation distance, described in Section 3.3. If the prob-

ability function is non-decreasing then Total Variation will

provide the same solution as the Kolmogorov distance [23].

Furthermore, Total Variation is an upper bound on the Kol-

mogorov distance i.e. DK (P,Q)≤ DTV (P,Q) [20].

1An ECDF is mathematically defined as F̂N (x) = 1
n ∑n

i=1✶(Xi ≤ x).
4 Copyright c© by ASME



4.2 Maximum Mean Discrepancy Distance

MMD is a measure of the maximum distance between

the mean embeddings of two sample sets in a RKHS; pro-

jected using the function class F , where the function f is

called a reproducing kernel k(·, ·) [24]. The distance is de-

fined as,

DMMD (P,Q) = sup
f∈F

|Ex ( f (x))−Ey ( f (y))| (9)

where x and y are samples from P and Q respectively. There

are several kernel types that can be chosen within the MMD

metric, with a popular choice being the radial basis kernel

[24, 25], defined as,

k(x,x′) = exp

(

−‖x− x′‖2

2σ2

)

(10)

where σ is an associated hyperparameter that controls the

width of the kernel. It is noted that most kernels will have

some set of hyperparameters that need to be determined.

A common approach for determining these hyperparame-

ters is to use the median pairwise distance among the joint

data [26]. The choice of kernel should reflect the prior belief

about the smoothness of the underlying distribution and is

often selected in a heuristic manner. However, Gretton et al.

proposed an optimisation methodology for large sample sets

in [27] whereby for a given α level (the significance level of a

hypothesis test [24,25,28]) the technique selects linear com-

binations of kernels that minimise the probability of Type II

errors and thus maximise the test power when used as the

metric for a two sample hypothesis test [24]. In this paper

by Gretton et al. the method is shown to perform well in the

context of large data sets, where estimating the hyperparam-

eter via a median heuristic approach and kernel selection via

selecting the kernel with the largest MMD (i.e. choosing the

conservative kernel) fails. In contrast, most validation tasks

present the converse problem of involving small sample sizes

where limited data could pose challenges to implementing

this procedure.

MMD is a frequentist statistic and thus can be empiri-

cally estimated in both unbiased and biased forms, depend-

ing on whether the sample means are calculated using the

U-statistics (unbiased),

D2
MMDu (P,Q) =

1

m(m−1)

m

∑
i=1

m

∑
j 6=i

k (xi,x j)

+
1

n(n−1)

n

∑
i=1

n

∑
j 6=i

k (yi,y j)

− 2

mn

m

∑
i=1

n

∑
j=1

k (xi,y j) (11)

or V-statistics (biased),

D2
MMDb (P,Q) =

1

m2

m

∑
i, j=1

k (xi,x j)+
1

n2

n

∑
i, j=1

k (yi,y j)

− 2

mn

m,n

∑
i, j=1

k (xi,y j) (12)

where m and n are the number of points in the samples X

and Y respectively. These two forms of the statistic will both

be zero when P=Q and large when the distributions are far

apart. MMD is a non-parametric technique, meaning that the

form of the distribution does not need to be known before

estimation.

4.2.1 Maximum Mean Discrepancy Witness Function

MMD, defined in Eq. (9), provides a key additional ben-

efit in that the kernel embedding can be applied over a vari-

able t in order to visualise the behaviour of the RKHS em-

beddings. This produces the witness function, f ∗. An empir-

ical estimation of the witness function can be defined as,

f ∗(t) ∝
1

m

m

∑
i=1

k (xi, t)−
1

n

n

∑
i=1

k (yi, t) (13)

and used to provide a method for visually determining the

dissimilarities between two distributions. The witness func-

tion is zero intuitively where the two distributions are the

same, positive when P is larger than Q, and negative when Q

is greater than P, as far as the smoothness constraint allows.

To demonstrate the effectiveness of the witness function,

a one-dimensional example is presented in Fig. 3. The sce-

nario considers the difference between a Student’s t distri-

bution with eight degrees of freedom and a Laplace distri-

bution, L (0,0.71). 10000 samples were drawn from each

distribution and the MMD distances (both biased and unbi-

ased) calculated using a radial basis kernel with σ = 0.85;

DMMDu = DMMDb = 0.11. Visually, the witness function in

Fig. 3 highlights where key differences in the probability

mass occur.

The witness function can be implemented as a tool for

locating the differences between distributions and helping

diagnose model inadequacies. For example, if in Fig. 3 X

are simulator predictions and Y observations, it can be eas-

ily identified that more probability mass is located around

zero from the sample set Y than is modelled by X; this is

indicated by negative values in the witness function. In addi-

tion, X has more probability mass in both tails, indicated by

the positive values in the witness function. A near symmet-

ric witness function indicates that the mean predictions are

very similar. The witness function in this example would di-

agnose a conservative simulator output, where a distribution

with a steeper probability mass decay from the mode would

5 Copyright c© by ASME
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Fig. 3. An example of a witness function between 10000 samples from X ∼ T (8) and Y ∼ L (0,0.71), DMMDu = DMMDb = 0.11,

where L (·, ·) and T (·) are Laplace and Student’s t distributions. A radial basis kernel where σ is inferred from the median heuristic

is implemented. Panel (a) are the PDFs of the distributions from which the finite samples are drawn and panel (b) are the mean kernel

embeddings of the two samples and the witness function over a space t .

improve the prediction. In this one dimensional case this in-

formation may appear obvious, however this will not always

be the case in more complex and bespoke distributions. Fur-

thermore, in higher dimensional spaces it becomes challeng-

ing to compare two PDFs. The witness function potentially

provides a very useful, low dimensional, interpretable diag-

nostic for such scenarios.

4.3 Area Metric

The Area Metric, proposed by Ferson et al. [3], is a pop-

ular validation metric in engineering for assessing the differ-

ence between two distributions [2, 4–6]. The Area Metric is

the area of the L1-norm between two CDFs,

DArea (P,Q) =
∫

|FP (x)−FQ (x) |dx (14)

and is illustrated in Fig. 4.

Fig. 4. An example of the Area Metric (the shaded region) between

P = N
(

0,0.82
)

and 20 samples from Q = T (5). In this case

DArea (P,Q) = 0.64.

The metric also represents the distance between quan-

tile functions (inverse CDFs) i.e.
∫ |F−1

P (p)−F−1
Q (p) |d p

where p is a probability [2]. This is the definition of a

Kantorovich metric, i.e. DW (P,Q) =
∫ |FP (x)−FQ (x) |dx =∫ |F−1

P (p)−F−1
Q (p) |d p where F−1 is the inverse function of

the general distribution function F [29, 30]. This means that

the Area Metric is part of the Wasserstein (or Kantorovich)

distances, and is, in fact, the univariate case. As a result

the Wasserstein distance hypothesis tests [31] could be ap-

plied to the Area Metric such that decisions could be made

about the statistically significant differences between simu-

lator predictions and observational data. More generally, the

Area Metric is part of a family of metrics, known as the Lp

metrics, where the Lp-norm is taken rather than L1 [29].

Oberkampf and Roy state in [2] that a significant merit

of the Area Metric is that the units are that of the quantity in

question, i.e. if the random variable X were an observation of

stress in MPa then the units of the Area Metric are also MPa,

since probability is dimensionless [2]. The distance therefore

scales with the units of observed quantity.

5 Numerical Case Studies

In order to compare the statistical distances/divergences

introduced in Sections 3 and 4 against the criteria in Sec-

tion 2, several numerical examples are considered. These

case studies are intended to demonstrate relative differences

between the measures, in regard to the validation metric cri-

teria, and not as a complete mathematical analysis of each

equation’s sensitivities.

The scenarios considered in this section are all com-

parisons of continuous distributions with known mathemat-

ical forms. In order to keep comparisons consistent, nu-

merical integration is implemented to calculate each dis-

tance/divergence (however, it is noted that for certain distri-

bution forms, the integrals in some distances/divergences can

be solved in closed form e.g., the Hellinger distance between

two Gaussian distributions).
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Fig. 5. A comparison of probabilistic distances/divergences for two

Gaussian distributions, P ∼ N (0,1) and Q ∼ N (µx,1); where

the mean µx is varied from [-6 6] with a fixed variance. Panel (a)

shows the KL-divergences and Area Metric, as these have units.

Panel (b) presents the Hellinger, Total Variation, Kolmogorov and

MMD distances. The MMD distance is calculated from 2000 sam-

ples with a radial basis kernel where σ is inferred from the median

heuristic, and all other distances from numerical integration over the

range [-30 30] in 0.01 steps.

The first two scenarios explore the sensitivity of these

distance/divergence measures to changes in lower order mo-

ments, specifically in the context of Gaussian distributions,

P ∼ N (0,1) and Q ∼ N
(

µx,σ
2
x

)

. In the first case study

the mean µx is varied and the variance σ2
x is fixed, the sec-

ond case considers the mean µx fixed and the standard de-

viation σx variable. The third example quantifies each dis-

tance/divergence between several other distribution forms.

As a result, comments are made about each measure’s sensi-

tivity to general changes in probability mass, such that the

fourth validation metric criteria in Section 2 can be more

widely assessed.

5.1 Sensitivity to Variation in the Mean — Gaussian

Distribution Case

Figure 5 displays a comparison of the dis-

tances/divergences when the mean is varied (in a Gaussian

distribution context). Figure 5a presents the KL-divergences
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Fig. 6. A comparison of probabilistic distances/divergences for two

Gaussian distributions, P ∼ N (0,1) and Q ∼ N
(

0,σ2
x

)

; where

the standard deviation σx is varied from [0 6] with a fixed mean.

Panel (a) shows the KL-divergences and Area Metric, as these have

units. Panel (b) presents the Hellinger, Total Variation, Kolmogorov

and MMD distances. The MMD distance is calculated from 2000

samples with a radial basis kernel where σ is inferred from the me-

dian heuristic, and all other distances from numerical integration over

the range [-30 30] in 0.01 steps.

and Area Metric, as these both have units, with Fig. 5b

showing a comparison of the remaining dimensionless

measures.

For this example the KL-divergence is symmetric (i.e.

DKL (P,Q) = DKL (Q,P)). It is also slow to increase and as

a result may struggle to detect small variations in the mean.

The unbounded nature of the KL-divergence also makes it a

difficult measure to interpret, especially if used as a valida-

tion metric. In contrast, the Area Metric values are equal to

the distance between the two distribution means i.e. when

µx = 2, DArea (P,Q) = 2. This result follows, as the Area

Metric mathematically becomes the distance between the

two distribution means, when the remaining statistical mo-

ments (in this case the variances) are the same.

Comparing the distance metrics bounded on [0 1] — the

Hellinger, Total Variation and Kolmogorov distances — il-

lustrates that Total Variation and Kolmogorov distances are

equally more sensitive to the change in mean (based on these

7 Copyright c© by ASME



measures gradients) between [-2 2], where outside of this in-

terval the Hellinger distance is then more sensitive. With the

knowledge that these have an upper bound of 1, the distances

become quite large relatively quickly, i.e. when µx = 2 To-

tal Variation and Kolmogorov distances are 0.68 compared

with 0.62 for the Hellinger distance. For this scenario the

distances can be interpreted as not close and would lead to

an acknowledgement of significant inadequacy in the rela-

tionship between the simulator and observations. It is argued

that these distances give a better indication of the relative

difference between the distributions providing a more ob-

jective comparison when compared with the KL-divergence

and Area Metric. The MMD distances do not have an up-

per bound but track relatively consistently with the Total

Variation, Kolmogorov and Hellinger distances. It is noted

that the MMD’s non-parametric, sample-based approxima-

tion of the distributions leads to oscillations in the metrics.

Additionally, both bias and unbiased results are very similar

and become less sensitive to changes in the mean ≥ 4 and

≤ −4 when compared with the Kolmogorov and Hellinger

distances.

5.2 Sensitivity to Variation in the Standard Deviation

— Gaussian Distribution Case

The second scenario, shown in Fig. 6, considers varia-

tions in the standard deviation with a fixed mean. Figure 6a

presents the KL-divergences and Area metric. This example

demonstrates the asymmetric nature of the KL-divergence

where more nats of information are required in order to en-

code Q when P is the model distribution than in the opposing

case. This is because there is a greater overlap in probability

mass when Q approximates P, and therefore less informa-

tion required to encode P, than in the alternative case for

this example (however, in the scenario where the means are

varied and the standard deviations are fixed the overlap in

probability mass is the same for both cases). This means

that the KL-divergence will often favour conservative model

distributions, which can be useful for a validation setting.

However, this can also be a negative attribute of the KL-

divergence, as it could lead to a modeller over-inflating the

predictive uncertainties from a simulator such that it pro-

duces a lower KL-divergence. Moreover, the units of the

KL-divergence are difficult to intuitively interpret. The Area

Metric, on the other hand, linearly scales with a change in

variance and appears almost symmetric about the variance

of P. This suggests that the Area Metric struggles to differ-

entiate between under- and over-estimations of the variance;

an unhelpful property in validation. Nonetheless the Area

Metric is valuable as the units are the same as the quantity of

interest.

In comparison, Total Variation, Hellinger and Kol-

mogorov distances, displayed in Fig. 6b, appear more sensi-

tive to underestimation of the variance, indicated by a steeper

gradient of distances below a standard deviation of 1. In this

case study, Total Variation is more sensitive to changes in

the standard deviation than the Hellinger or Kolmogorov dis-

tances. Here, the Kolmogorov distance becomes less sensi-

-4 -2 0 2 4 6 8
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Fig. 7. Distributions used in the comparison of dis-

tance/divergences.

tive than the Hellinger distance, which is due to the fact that

the Kolmogorov distance is less sensitive to changes in the

tails, compared to difference in the central probability mass.

Again, both MMD distances track in a similar manner to the

Hellinger distance between standard deviations of 0.5 and

2, becoming less sensitive outside these values, but still pe-

nalising under-estimation of the variance more heavily than

over-estimation.

5.3 Different Distribution Forms

The next examples, presented in Tables 1 and 2, com-

pare the statistical distances for different forms of distribu-

tion. The first two examples compare standard Gaussian and

Laplace distributions (with the same mean and variance) —

example one — as well as standard Gaussian and Student’s t

distributions — example two. These two comparisons have

been chosen as the distribution forms in each case have small

dissimilarities, as shown in Fig. 7. For these two examples,

the KL-divergences (in both directions) indicate that rela-

tively small amounts of information are required to encode

the ‘true’ distribution, from the low KL-divergences given

the log ratio relationship.

The Kolmogorov distance shows very small distances,

which is expected given its insensitivity to differences away

from the central probability mass. The MMD distances, both

biased and unbiased, produce comparable results calculating

larger distances for the Laplace than the Student’s t distri-

butions. The biased MMD produces almost equivalent dis-

tances to the Total Variation distance. The Hellinger dis-

tances also show that the standard Gaussian is closer to the

Student’s t distribution than the Laplace distribution, but by

a relatively smaller amount. The two Area Metrics for these

examples are equal. This demonstrates a failure to capture

the knowledge that a Student’s t is expected to be closer to

the standard normal than a Laplace distribution.

Evaluating the KL-divergence for the next two exam-

ples — a comparison of Gamma and Gaussian distributions

in example three, and of uniform and Gaussian distributions

in example four — presents issues with using numerical in-

tegration, but provides informative results. The Gamma dis-
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Example P Q DKL (P,Q) DKL (Q,P) DH (P,Q) DTV (P,Q)

1 N (0,1) L (0,0.71) 0.07 0.23 0.16 0.12

2 N (0,1) T (5) 0.03 0.12 0.11 0.06

3 G (2,1) N (1,1) - ∞ 0.38 0.25

4 U (−4,4) N (0,1) - ∞ 0.46 0.49

Table 1. Examples of f -divergences for different distributions. Numerically integrated over the range [-30 30] in 0.01 steps. KL-divergences

are in nats.

Example P Q DK (P,Q) DMMDu (P,Q) DMMDb (P,Q) DArea (P,Q)

1 N (0,1) L (0,0.71) 0.06 0.12 0.12 0.15

2 N (0,1) T (5) 0.03 0.04 0.05 0.15

3 G (2,1) N (1,1) 0.25 0.26 0.26 1.00

4 U (−4,4) N (0,1) 0.25 0.44 0.44 1.20

Table 2. Examples of IPM distances for different distributions. Numerically integrated over the range [-30 30] in 0.01 steps apart from the

MMD distances which are estimated from 2000 samples with a radial basis kernel where σ is inferred from the median heuristic.

tribution contains no probability mass below zero, as it is

bounded at one end. It is therefore impossible for a Gaus-

sian distribution that has symmetric probability mass over

the [−∞ ∞] range, to ever be able to replicate the Gamma

distribution, given any amount of additional information; it

will always have some probability mass beyond the bound.

In contrast, a Gamma distribution would require an infinite

amount of additional information below zero to replicate the

Gaussian distribution. The KL-divergence, calculated in this

manner, is extremely informative in diagnosing these issues,

i.e. that it is not possible to model the observational distribu-

tion using the simulator distribution. Similar problems also

exist in the comparison of a uniform and Gaussian distribu-

tions, given that the uniform distribution contains no proba-

bility mass outside of its range.

The Kolmogorov distances for these examples are the

same, illustrating once again the insensitivity of this mea-

sure to deviations that are outside the central probability

mass. Moreover, the Total Variation, Hellinger and MMD

distances, including the Area Metric, all quantify that the

uniform and Gaussian distribution distances are further than

the Gamma and Gaussian distribution. Once more the Total

Variation is almost equivalent to the MMD distances.

5.4 Discussion of Numerical Case Studies

The results from empirical numerical observations

indicate the strengths and weaknesses of the dis-

tances/divergences considered. It can be summarised

that the KL-divergence becomes very sensitive in scenarios

where large amounts of extra information are required to

replicate the ‘true’ distribution, and its convex nature makes

it ideal for optimisation settings. This makes the divergence

useful for scenarios when the question of whether to obtain

more observations or simulator runs to solve issues of inade-

quacy are asked. The major drawback of the KL-divergence

it is not easily interpretable.

The Kolmogorov distance is flawed as a general distri-

bution validation metric for the aforementioned reasons. It

is not recommended as the sole qualification of the distance

between distributions as it fails to adequately meet the fourth

validation metric criteria in Section 2. The Total Variation,

Hellinger and Kolmogorov distances are arguably more ob-

jective in comparing two distributions given that 0 indicates

they are the same and 1 that the distributions are as far as

possible — criteria three from Section 2. Furthermore, the

Total Variation and Hellinger distances provide better quan-

tification of a wider variety of differences when compared to

the Kolmogorov distance. These two distances are sensitive

to a variety of differences in probability mass and would be

appropriate for most engineering applications, and in the au-

thor’s opinion are relatively interpretable from the results in

Table 1.

Furthermore, the MMD distances for these numerical

case studies tend to provide similar distances to both the To-

tal Variation and Hellinger distances, and may be practical

in a variety of settings due to its non-parametric formulation.

However, for small sample sizes it will be more dependent

on kernel and hyperparameter choices adding a level of mod-

eller input that may be unwanted — although calculation of

the median heuristic removes a level of subjectivity.

Lastly, the Area Metric, although in the units of the

quantity of interest, is relatively hard to objectively inter-

pret. The Area Metric also displayed difficulty in differen-

tiating between under- and over-estimation of the variance

for these numerical examples, often problematic when con-

servative results are required.

It is noted that all the examples considered here have

been for univariate distributions. Different conclusions may

be found with higher-dimensional distributions in line with

the findings of Aggarwal et al. where fractional norms in-

crease sensitivity for high-dimensional non-statistical dis-

tances [32]. This is left as further research, as this paper
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Fig. 8. Test setup of the representative five storey building structure.

is focused on providing a framework for utilising statistical

distances in the validation of probabilistic model outputs.

6 Case Study: Bayesian History Matching Example

An experimental case study is provided in order

to demonstrate the applicability of the considered dis-

tance/divergence measures as validation metrics. The case

study considers a five storey building structure displayed

in Fig. 8 constructed from aluminium 6082. The ob-

jective of this analysis was to calibrate the three mate-

rial properties θ = {E,ν,ρ} of a finite element computer

model, using Bayesian History Matching (BHM) in or-

der to predict the first five bending natural frequencies

{ω1,ω2,ω3,ω4,ω5} of the structure under varying levels of

mass, x = {0,0.1, . . . ,0.5}kg, attached to the first floor.

Experimental data were obtained using experimental

modal analysis, whereby the structure was excited laterally

with a 409.6Hz bandwidth Gaussian excitation via an elec-

trodynamic shaker and five accelerometers used to capture

the response at each floor. The sample rate and sample time

were chosen such that the frequency resolution was 0.05Hz.

40 averages were acquired for each measurement and for

each level of mass, ten repeats were performed in order to

obtain an understanding of the underlying modal frequency

distribution.

The data used in the calibration process were the mean

natural frequencies when the mass was xz = {0,0.3,0.5}kg.

The remaining full repeat data were used as an unseen valida-

tion set z∗. The prior bounds on the material properties were

±10% of the typical values for aluminium 6082; E = 71GPa,

ν = 0.33 and ρ = 2770kg/m3.

6.1 Bayesian History Matching

Bayesian history matching is a methodology for cali-

brating statistical models of the form,

z j(x) = η j(x,θ)+δ j + e j (15)

where z j(x) is the jth observational output given inputs x,

η j(x,θ) is the jth simulator given x and parameters θ. The

model discrepancy and observational uncertainty are δ and

e, respectively. The model assumes that the simulator, model

discrepancy and observational uncertainty are independent

and does not seek to define the model discrepancy’s func-

tional form.

The ‘likelihood free’ technique utilises an implausibility

metric to iteratively discard parts of the input space that were

unlikely to have generated the observational data, given a set

of uncertainties, defined as,

I j(x,θ) =
|z j(x)−E

(

GP j (x ,θ)
)

|

(Vo, j +Vm, j +Vc, j(x,θ))
1/2

(16)

where Vo, Vm, and Vc(x,θ) are variances associated with

the observational, model discrepancy and code uncertain-

ties (the variance of the Gaussian Process (GP) emulator)

and E(GP (x ,θ)) is the mean of the GP emulator. Due to

the focus of this paper being on the assessment of validation

metrics the reader is referred to [33, 34] for a more detailed

overview of BHM.

Once calibrated, the outputs from BHM can be used

to infer the functional form of the model discrepancy term.

Here an importance sampling approach is implemented,

whereby a second GP model is inferred whilst marginalis-

ing out the posterior parameter distribution p(θ |Z). Again,

due to the scope of this paper the reader is referred to [35,36]

for a more detailed explanation of the analysis. The result of

this approach is that calibrated and bias-corrected predictive

distributions can be inferred across the input space.

The predictions from both the BHM and importance

sampling approach for the five storey building structure are

presented in Figs. 9 and 10.

6.2 Validation of output predictions

The proposed validation metrics outlined in the previ-

ous sections were applied to the BHM predictions shown in

Figs. 9 and 10. It is noted that the Normalised Mean Squared

Error (NMSE) for each natural frequency prediction were

157.60, 0.07, 0.01, 0.01 and 0.12 respectively. This deter-

ministic metric would indicate that the mean predictions are

adequate for the second to fifth natural frequencies with large

errors in the first natural frequency (as visually intuitive from

Figs. 9 and 10).

To analyse the predictions, further distance metrics were

applied. The f -divergence measures were all compared to

Kernel Density Estimates (KDEs) of the observational data

and calculated via numerical integration, as presented in

Fig. 11. The KL-divergence (where P is the observational

data and Q the model predictions, Fig. 11a), clearly cap-

tures the large discrepancy for the first natural frequency

predictions at 0.1 and 0.2kg. In general, the first natural

frequency predictions all produce relatively large (> 2) KL-

divergences. Apart from the third natural frequency predic-
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Fig. 9. BHM predictive outputs (ω1,ω2,ω3) with inference of model

discrepancy via importance sampling trained GPs. The shaded re-

gions indicate ±3σ.

tions at 0.2 and 0.3kg, the remaining predictions all have a

KL-divergence < 1.5, with the majority being below 1, in-

forming relatively ‘good’ agreement.

The Hellinger and Total Variation distances (Fig. 11b

and Fig. 11c) also confirm that the first natural frequency

predictions are ‘far’ from the observational data, especially

at 0.1 and 0.2kg. Both of these distances show very similar

distances and relative trends, e.g. that the fifth natural fre-

quency is closest for the 0, 0.2, 0.4 and 0.5kg masses, and far

at 0.1kg due the slight offset in mean. A difference between

these two distances occurs for the first natural frequency at

0.1kg, where Total Variation quantifies a larger discrepancy.

The IPMs are displayed in Fig. 12. The Kolmogorov

distance (Fig. 12a) and Area Metric (Fig. 12c) are compared

to empirical CDFs of the observations. Both of these metrics

Fig. 10. BHM predictive outputs (ω4,ω5) with inference of model

discrepancy via importance sampling trained GPs. The shaded re-

gions indicate ±3σ.

indicate that the first natural frequency predictions at 0.1 and

0.2kg are the furthest away from the observations, with the

Area Metric also stating that the 0.4kg prediction is close.

In addition, both of these metrics better capture that the sec-

ond natural frequency predictions at 0.1kg and 0.2kg have

large discrepancies, due to an offset in the predictive mean.

A challenge here is that the Area Metric magnitudes are all

relatively low, at an order of magnitude of 10−3Hz. This is

caused by the close spacing of the observational points, lead-

ing to small areas between the empirical and predicted CDFs.

At these magnitudes of frequency the Area Metric would

therefore indicate that all predictions, even for the first natu-

ral frequency, are ‘good’, and may lead to the acceptance of

an inadequate model. The biased MMD distance (Fig. 12b)

is utilised in this case study and calculated from the average

distance when 100 repeats of ten samples are drawn from the

predictive distribution. In agreement with the Area Metric,

the MMD distances follow a similar pattern for the first nat-

ural frequency, with it stating that the prediction at 0.4kg is

close.

Finally, a key benefit of the MMD distance over the

other distances/divergences is the ability to interrogate the

differences between distributions via the witness function.

This provides a potentially useful and powerful diagnostic

tool for determining where modelling improvements may

be made. Fig. 13 presents a comparison of the simulator

and observational distributions against the witness function,
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Fig. 11. f -divergence measures applied to the BHM and impor-

tance sampling predictions. Panel (a), (b) and (c) are the KL-

divergence, Total Variation and Hellinger distance, when compared

to KDEs of the observational data. These measures have been cal-

culated via numerical integration.

demonstrating its diagnostic capabilities. Even though the

fifth natural frequency has been ‘adequately’ captured by the

simulator, the witness function clearly highlights several dif-

ferences. The 0, 0.2 and 0.3kg predictions all over-estimate

the variance with slight shifts in the mean values, indicated

by the witness function being negative about the mean and

asymmetric. These results can be interpreted as conserva-

tive, given the relatively small number of observations. For

the 0.1kg case it can clearly be seen that there is an offset
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Fig. 12. IPM statistical distances applied to the BHM and impor-

tance sampling predictions. Panel (a) and (c) are the Kolmogorov

distance and Area Metric when compared to empirical ten point ob-

servational CDFs. Panel (b) is the averaged MMD distance over 100

repeats of ten samples from the predictive distribution. A radial basis

kernel where σ is inferred from the median heuristic is implemented.

in the mean value, although the observation distribution is

still within the majority of the simulators probability mass.

The 0.4kg case shows an offset between the two distribu-

tions. Furthermore, although the simulator appears to have

almost matched the observational data for the 0.5kg case,

the witness function has highlighted that the simulator has a

higher prediction of the mean with a larger variance than the

observational distribution. This highlights the witness func-
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Fig. 13. Witness function ( f ∗(t)) for the fifth natural frequency com-

pared with the Gaussian simulator distributions and KDEs of the ob-

servational data. The witness functions are constructed from a radial

basis kernels where σ is inferred from the median heuristic.

tion’s use in quantifying where the differences in probability

mass occur, potentially aiding the correction of the simulator

or leading an improved experiential test strategy.

7 Conclusion

Understanding and quantifying uncertainties in simula-

tor predictions requires the development of validation met-

rics that can assess the differences between the simulator

and observational distributions. This paper has categorised

existing validation metrics within two families of statis-

tical distances/divergences, namely f -divergences — KL-

divergence, Hellinger distance, Total Variation distance —

and IPMs — Total Variation distance, Kolmogorov distance,

MMD distance and the Area Metric. This has shown that

a wider variety of statistical distances/divergences exist that

could be implemented as potential validation metrics.

It is noted that these measures all rely on multiple sam-

ples of the observations, which may be challenging to ob-

tain in real world applications; although this paper assumes

enough samples are obtainable. For this reason understand-

ing the convergence rates of non-parametric estimators of

these measures should be investigated as further research.

Moreover, the distance/divergence values can be difficult to

objectively interpret. As each of the measures outlined in this

paper have an equivalent frequentist hypothesis test, these

should be investigated such that their performances as vali-

dation metrics can be further scrutinised.

The measures discussed in this paper have been com-

pared both in numerical examples and an experimental case

study. The numerical case studies have led to the conclusion

that the Kolmogorov distance is often insensitive to differ-

ences outside of the central probability mass, making it im-

practical for some validation contexts. The KL-divergence

will often be difficult to interpret, but can provide useful in-

formation in diagnosing problems where significant differ-

ences (or impossibilities) in the probability mass are present.

Both Total Variation and Hellinger distances show a good

level of sensitivity to differences in distributions. The MMD

distances produced similar distances to the Total Variation

and Hellinger distance for these numerical example, meaning

that it could be an informative and stable method for provid-

ing a non-parametric distance between samples. Finally, the

Area Metric is useful in that it quantifies the distance in terms

the quantity of interest units. Despite this, the Area Metric

can be hard to objectively compare. Furthermore, it appears

to fail to distinguish between under- and over-estimation of

the variance for the case studies provided. It is therefore

suggested that for most validation applications, a combina-

tion of the KL-divergence, Area Metric and either the Total

Variation, Hellinger or MMD distances would be effective in

assessing the simulator’s adequacy.

The experimental case study again confirmed the diffi-

culties in interpreting the KL-divergence, with it being most

useful in situation where large differences are present. Both

the Total Variation and Hellinger distances provide simi-

lar quantifications of the differences between distributions

and are able to quantify a range of dissimilarities between

two distribution’s probability mass. In addition, the To-

tal Variation and Hellinger distances, along with the Kol-

mogorov distance, are standardised across problems due to

being bounded [0 1]. The Area Metric produced very small

magnitudes in distance between the simulator predictions

and the observations, which could lead to miss-identifying

inadequacy. Furthermore, the MMD distance provides both

a non-parametric method for assessing distance but also the

ability to interrogate the differences in probability mass us-

ing the witness function. This can be a key tool in diagnosing

areas of difference as part of a wider validation strategy.
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