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A B S T R A C T

The ability to predict spatial variation in biodiversity is a long-standing but elusive objective of landscape

ecology. It depends on a detailed understanding of relationships between landscape and patch structure and

taxonomic richness, and accurate spatial modelling. Complex heterogeneous environments such as cities pose

particular challenges, as well as heightened relevance, given the increasing rate of urbanisation globally. Here

we use a GIS-linked Bayesian Belief Network approach to test whether landscape and patch structural char-

acteristics (including vegetation height, green-space patch size and their connectivity) drive measured taxo-

nomic richness of numerous invertebrate, plant, and avian groups. We find that modelled richness is typically

higher in larger and better-connected green-spaces with taller vegetation, indicative of more complex vegetation

structure and consistent with the principle of ‘bigger, better, and more joined up’. Assessing the relative im-

portance of these variables indicates that vegetation height is the most influential in determining richness for a

majority of taxa. There is variation, however, between taxonomic groups in the relationships between richness

and landscape structural characteristics, and the sensitivity of these relationships to particular predictors.

Consequently, despite some broad commonalities, there will be trade-offs between different taxonomic groups

when designing urban landscapes to maximise biodiversity. This research demonstrates the feasibility of using a

GIS-coupled Bayesian Belief Network approach to model biodiversity at fine spatial scales in complex landscapes

where current data and appropriate modelling approaches are lacking, and our findings have important im-

plications for ecologists, conservationists and planners.

1. Introduction

A central and long-standing objective of landscape ecology is the

ability to predict spatial variation in biodiversity. This requires accurate

spatial biodiversity models at scales relevant to research and planning.

Such tools support policies that aid conservation and optimise land-use

patterns with minimal negative ecological impacts. They would also be

valuable for assessing how land-use change influences ecosystem ser-

vice provision, as biodiversity both underpins this provision

(Millennium Ecosystem Assessment, 2005) and can itself be viewed as

an ecosystem service (Bagstad, Semmens, Waage, & Winthrop, 2013).

Modelling biodiversity requires an understanding of how it responds

to landscape patterns, and which structural components are most in-

fluential in driving biodiversity responses. This can be challenging for

numerous reasons. Aggregation of accumulated records at regional or

national scales can characterise spatial patterns of biodiversity, at least

for widely recorded groups (e.g. Anderson et al., 2009). It is extremely

rare, however, for local scale biodiversity data on species occurrence or

abundance to be available systematically across an entire study region

(Gillespie et al., 2017). In such cases, there are generally three broad

types of approach that can be used to model biodiversity across the

region of interest. The first is modelling or extrapolating from species

occurrence data, such as combining single species distribution models

to predict spatial patterns of species richness across an area (e.g.
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Milanovich, Peterman, Barrett, & Hopton, 2012) or combining local

species frequency curves to produce richness estimates for combined

taxonomic groups (and to adjust for recorder effort; Dyer et al., 2017).

Second, local-scale well-resolved biodiversity sample data can be

combined with land cover types, climate and other environmental data

to define the environmental 'envelope' relevant to certain taxa and then

used to predict species presence/absence based on the occurrence or

otherwise of suitable habitat, and this information can then be gen-

eralised over a wider study area and multiple species. Although in-

formative, this approach lacks a directly modelled relationship between

biodiversity and the environment (Massimino, Johnston, & Pearce-

Higgins, 2015). The final approach uses habitat quality (e.g. a combi-

nation of area, habitat type, connectivity and threat) as a proxy for

biodiversity or a measure of biodiversity potential (e.g. Kovacs et al.,

2013). Biodiversity modelling for conservation planning often uses the

first of these (Rodríguez, Brotons, Bustamante, & Seoane, 2007),

whereas natural capital and ecosystem service planning uses the third

(e.g. InVEST, LUCI; see Bagstad et al., 2013). Other methods such as

hierarchical Bayesian approaches have also been explored to a lesser

extent for hierarchical count data (Fordyce, Gompert, Forister, & Nice,

2011). These differences in approach tend to complicate the compar-

ison and synthesis of model outcomes and agreement on optimum

planning solutions. A key challenge remains how to predict landscape-

scale spatial patterns in biodiversity by combining often-limited data

(on both biodiversity and its predictors) with general ecological prin-

ciples, so to generate predictions specific and sensitive enough to be

useful for planning, conservation and natural capital assessment.

Urban areas provide an important situation in which the develop-

ment of tractable biodiversity models is crucial. Urban development

threatens some elements of biodiversity, yet urban areas often contain

significant biodiversity, including threatened species (Ives et al., 2016).

Towns and cities, at least in developed regions, are also highly regu-

lated environments with a range of planning legislation and guidelines

that create the potential to fine-tune detailed aspects of land use, in-

cluding those affecting biodiversity (Norton, Evans, & Warren, 2016).

Our ability to take advantage of this opportunity is limited, however, as

current approaches to biodiversity modelling cannot generate accurate

or useful predictions in urban landscapes due to high landscape com-

plexity and heterogeneity (Kattwinkel, Strauss, Biedermann, & Kleyer,

2009). It is thus very difficult for planners to predict how biodiversity

will respond to alternative urban designs.

Bayesian Belief Networks (BBNs), a form of probabilistic influence

network, provide an alternative method with a number of potential

advantages over the previously described approaches to biodiversity

modelling that can be applied depending on the demands of the study.

Bayesian approaches are historically varied and include methods that

have a long history of use in text retrieval and medical diagnosis, where

they are more commonly known as ‘naive Bayes classifiers’ (Lewis,

1998; Pakhomov, Buntrock, & Chute, 2006). As networks, they can

cope effectively with incomplete information on the relationships be-

tween variables, thus facilitating modelling when data availability is

insufficient to render a deterministic approach feasible (Korb &

Nicholson, 2010). BBNs are thus well-suited to complexity and in-

complete knowledge, which are common in ecological systems

(Jellinek, Rumpff, Driscoll, Parris, & Wintle, 2014; Landuyt et al.,

2013). They can also be used to incorporate expert knowledge on the

direction and strength of the effects of variables that influence biodi-

versity. Previously, BBNs could only operate on tabular data with model

outcomes extracted and mapped separately (Aitkenhead & Aalders,

2009; Stassopoulou, Petrou, & Kittler, 1998). A recent advance, shared

with other modelling approaches, is the ability to link BBNs with spatial

data in order to incorporate spatial relationships into the model struc-

ture directly and to generate mapped model outcomes (e.g. predicted

biodiversity) at a per-pixel level (Chee et al., 2016; Smith et al., 2018).

This now allows BBNs to provide the mapped biodiversity predictions

needed to inform planning and our understanding of biodiversity

responses to landscapes. Although linking BBN modelling with GIS

functionality is not in itself novel, such methods have not previously

been used to explore biodiversity in urban environments, which pose

particular challenges for predicting biodiversity due to their highly

heterogeneous and complex nature (Norton et al., 2016).

In this study, we present a GIS-linked BBN-based modelling method

for predicting spatial patterns in urban biodiversity and use it to test

relationships between urban habitat structure and biodiversity. We

develop models based on mapped factors influencing biodiversity in

urban areas described in a recent, and the first, meta-analysis of intra-

urban biodiversity responses (Beninde, Veith, & Hochkirch, 2015). We

then inform the BBNs with co-located richness data on plant, in-

vertebrate and vertebrate (avian) communities sampled across three

urban areas in southern England, and apply these spatially to produce

biodiversity maps for entire urban areas at two different spatial re-

solutions to consider scale dependencies. The datasets used for pre-

dictors and, in particular, observed urban biodiversity represent rea-

sonably complete and thorough data relative to those which are

commonly available for urban areas. We assess the sensitivity of model

output to the predictors in order to explore the relative influence of

those drivers in determining predicted biodiversity. We also examine

the correlations between taxa in their modelled spatial patterns of

biodiversity to assess whether taxa are predicted to share common re-

sponses to the urban environment, and thus whether planning inter-

ventions are likely to benefit multiple taxonomic groups. Finally, we

consider the key spatial patterns and drivers of urban biodiversity

suggested by the model, and their consequences for urban conservation

planning, and discuss the extent to which our modelling approach may

be a practical tool for such work. This approach differs from past bio-

diversity modelling methods by fitting richness values directly to

mapped predictors in a BBN modelling framework, with the key ad-

vantage of this approach being the ability to allow the model to gen-

erate its own conditional probabilities based on the available data. In

interpreting model outcomes, we then focus on landscape and patch

structural characteristics that are within the ability of urban planners

and land managers to control. Our aim was to build on the current state

of knowledge about the key drivers of urban biodiversity by testing

consequent predictions using an approach capable of producing robust

results at a sufficiently fine spatial scale to be relevant to urban plan-

ners and land managers.

2. Methods

2.1. Study area

The study region was the combined built-up areas of three large UK

towns that are close to each other but separated by areas of arable land,

pasture, grassland and woodland (total urban area 183 km2: Milton

Keynes, Bedford, and Luton; Fig. 1). The towns exhibit a broad range of

urban forms and histories, capturing much of the diversity found across

the UK’s urban landscapes.

Milton Keynes (including Newport Pagnell and Bletchley; 52° 0′N,

0° 47′W) is a planned ‘new town’, developed during the 1960s. The

town is structured around a grid of major roads designed for ease of

automotive travel, and is characterised by large areas of public green

space, consisting of parks and green areas bordering foot and cycle

paths (Milton Keynes Council, 2015). Milton Keynes had a population

of 229,941 in 2011, across 89 km2 with a population density of 2584

inhabitants km−2 (Office for National Statistics, 2013).

Bedford (52° 8′N, 0° 27′W) developed in the Middle Ages as a

market centre and exhibits the radial development pattern typical to

many British towns. In 2011, its population was 106,940 across 36 km2,

with a population density of 2971 inhabitants km−2 (Office for

National Statistics, 2013).

Luton (Luton/Dunstable conurbation; 51° 52′N, 0° 25′W) devel-

oped heavily during the nineteenth century as an industrial centre. Its
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urban pattern contains large industrial zones and residential ‘terraced’

housing. The region had a 2011 population of 258,018 across 58 km2,

with a population density of 4448 inhabitants km−2 (Office for

National Statistics, 2013).

2.2. Model formulation

Beninde et al. (2015) conducted a meta-analysis of 87 published

studies on factors influencing urban biodiversity (as species richness or

species diversity, depending on the source) from 75 cities worldwide.

This research looked at predictors including local (within-patch) and

landscape (surrounding context) variables, as well as biotic (e.g. ve-

getation characteristics), abiotic (e.g. microclimate), and design (e.g.

patch size) factors, each at an appropriate degree of specificity with

respect to landscape and biodiversity measures (and the correlations

between them). Species richness was found, in the majority of analysed

papers, to exhibit positive relationships with patch size, corridor-based

connectivity, and a range of vegetation factors including plant density,

Fig. 1. Study area locations and sampling locations for invertebrate/plant (diamonds) and bird (crosses) richness in Bedford, Luton and Milton Keynes, UK.
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vegetation structure and height and the amount of greenspace in the

surrounding area.

We built our BBNs on the most feasible available representations of

those predictors found to exhibit the strongest influences on urban

biodiversity. These were implemented here as raster surfaces of patch

size (area), corridor-based connectivity and vegetation height (see

Supplementary materials for summary table). Vegetation height was

used both due to its direct importance and as a composite proxy for

influential vegetation structural factors, representing a single metric

that is feasible to measure and interpret at landscape scales (described

in more detail below). Another important identified predictor, amount

of surrounding greenspace, was not addressed directly but is largely

incorporated within our measures of connectivity and patch area.

2.3. Landscape factor input data: Patch area, connectivity and vegetation

height

Patch area and connectivity data were based on a raster LULC map

created from colour infrared aerial photography (http://landmap.

mimas.ac.uk/). The imagery was taken on 2 June 2009 for Bedford,

30 June 2009 and 24 April 2010 for Luton, and 8 and 15 June 2007 and

2 June 2009 for Milton Keynes, based on cloud-free image availability.

Vegetated and paved surfaces were separated using the Normalised

Difference Vegetation Index (NDVI). UK MasterMap data (Ordnance

Survey (GB), 2017) were subsequently used to identify buildings, water

features, and major roadways. Habitat patches were defined as con-

tiguous areas of greenspace regardless of vegetation type in order to

maintain a generalised and multi-species perspective. Patch area (ha)

was then calculated using Fragstats software (McGarigal, Cushman, &

Ene, 2012) to encapsulate the amount of green space surrounding each

point on the landscape. An 8-cell neighbourhood rule was used for

patch inclusion, i.e. pixels were considered part of the same patch if

they were diagonally as well as directly adjacent to one another. The

resulting raster map of patch area (ha) was then incorporated a model

predictor.

Corridor-based metrics of habitat connectivity have been identified

as strong predictors of biodiversity in urban environments, whereas

more generic connectivity metrics based on habitat proximity alone are

less effective (Beninde et al., 2015). Circuit theory connectivity

(Dickson et al., 2018) encapsulates this corridor-based approach and

was thus used here, using Circuitscape software (McRae, Shah, &

Mohapatra, 2013) to represent connectivity as a raster map of cumu-

lative current, which is analogous to predicted wildlife flow or inverse

cost-distance (see McRae, Dickson, Keitt, & Shah, 2008). Cumulative

current data were obtained from Grafius et al. (Grafius, Corstanje,

Siriwardena, Plummer, & Harris, 2017) who used the LULC map de-

scribed above and data on Great Tit (Parus major) and Blue Tit (Cya-

nistes caeruleus) movements. These woodland species are sufficiently

adaptive to be common in UK urban environments, but their move-

ments within urban environments are constrained by habitat frag-

mentation (Cox, Inger, Hancock, Anderson, & Gaston, 2016) making

them suitable species for corridor-based metrics of habitat connectivity.

The connectivity metric is sensitive to the impacts of landscape features

surrounding each pixel, and thus includes important elements of nearby

landscape context in the models that are not accounted for by patch

area or vegetation height.

Vegetation height (m) was measured using airborne LiDAR between

June and September 2012 (Casalegno, Anderson, Hancock, & Gaston,

2017; Hancock, Anderson, Disney, & Gaston, 2017) and used as a broad

proxy for overall habitat maturity and vegetation structural diversity

(Bradbury et al., 2005) in a form that was feasible to measure and to

interpret at the landscape scale. Exact vegetation heights between 0 and

1m, while expected to be ecologically meaningful, could not be reliably

measured by the technology so we hereafter considered vegetated areas

with heights of 0m to represent mown lawn and 1m to represent taller

grasslands. The data were recorded at 2m resolution, and aggregated

by mean value to 5m resolution. Mean value aggregation was preferred

to other methods as it preserves overall patch character, which we

expected urban organisms to be more responsive to than patch extremes

given the high heterogeneity of urban landscapes at fine scales (Norton

et al., 2016). All predictor datasets were thus available at 5m resolution

and, additionally, following mean value aggregation, at 25 m resolu-

tion. The coarser scale was explored because it is comparable to the

scale of widely available datasets such as the 25m UK Land Cover Map

2015 and 30 m Landsat-derived land cover maps.

2.4. Biodiversity input data

Sampling across the study area using a stratified random design

yielded datasets on the richness of eight taxonomic groups: in-

vertebrates (to order level), litter organisms (to species level),

Coleoptera (to family level), Diptera (to family level), birds (to species

level) and non-tree plants (to species level, including all vascular plants

from the ground, field and shrub layers). Plants were considered as total

non-tree plants, as well as being separately categorised into native and

neophyte non-tree plants for analysis, given the particular abundance of

non-native plant species present in urban areas via landscaping, the

expectation that they may be more strongly influenced by human ac-

tivity and their available taxonomic resolution (to species level, as

above). All the selected taxa are significant components of urban bio-

diversity and were selected because collectively they represent a wide

range of habitat requirements, movement scales and ecological func-

tions, and in some cases are particularly prominent forms of biodi-

versity that are important to human experience of nature (see

Supplementary Materials for full details of sampling methodologies).

Our primary interest in this study was the relative taxonomic richness.

We use the term ‘richness’ to refer to the measured and modelled

richness of each taxonomic group in accordance with the level of spe-

cificity described here. Note that, although data were gathered at three

different time points (2009/2010 for aerial imagery, 2012 for LiDAR

and 2013/2014 for biodiversity surveys), negligible change to urban

land cover in the study area took place during this time.

2.5. Model construction

BBN modelling was conducted using Netica software (Norsys, 2016)

with the ‘GeoNetica’ extension enabling the integration of predictor

datasets directly as spatial data. The BBN made predictions within ve-

getated areas, as most biodiversity observations and predictions were

limited to these areas. Bird surveys were centred on vegetated areas,

but encompassed mixed areas containing both vegetated and non-ve-

getated surfaces, e.g. paved surfaces, buildings and water.

Separate but comparable (i.e. possessing the same network struc-

ture) BBN models were created for each of the nine taxonomic groups,

with each group's taxonomic richness as the model outcome. The in-

fluence network for each BBN included patch area, connectivity and

vegetation height as model predictors, and biodiversity (richness) as the

response variable. The predictor variables were chosen for their

theorised direct influence on urban biodiversity; a decision that re-

presents the primary input of expert knowledge into our modelling

process (as opposed to the direct definition of conditional probabilities,

which, as described previously, is also a possibility in BBN modelling

where data availability is poorer). Conditional probabilities define the

relationships between landscape factors and biodiversity, and were

obtained through processing individual 'cases', where each case re-

presented a point observation of richness and landscape factor values

found at the same location (mean vegetation height within the 200m

radius used for birds). The model then used these conditional prob-

abilities to predict taxonomic richness at every vegetated location

within the study area. All nodes were automatically discretised with ten

states each based on histogram equalisation for primary modelling. A

simplification of this with five states for each input parameter and three
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Fig. 2. Example Bayesian Belief Network model structure for Bird Species Richness. All models used a comparable structure, with only the dependent variable (i.e.

taxonomic richness) and conditional probabilities changing between models. Arrows denote the direction of probabilistic influence implemented in software rather

than causal relationships between the factors.

Fig. 3. Predicted taxonomic richness (maximum probability value/mode) at 25m resolution for Bedford, Luton and Milton Keynes, UK: a) invertebrate order-level

richness, b) species-level litter organism (Isopoda, Diplopoda, Chilopoda, and Pseudoscorpiones) richness, c) family-level Coleoptera richness, d) family-level Diptera

richness, e) total non-tree plant species richness, f) native non-tree plant species richness, g) neophyte non-tree plant species richness, and h) bird species richness.

D.R. Grafius, et al. Landscape and Urban Planning 189 (2019) 382–395
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for dependent variables was used for ease of visualisation of model

structure (Fig. 2) and consistency when comparing conditional prob-

abilities (discussed below).

2.6. Model performance and sensitivity testing

Model performance was assessed using a goodness-of-fit measure,

reported as the model's error rate, that expresses the frequency with

which the model's strongest prediction (most likely outcome) is in-

correct against the observed data. It does not represent validation in the

same sense as in deterministic modelling, due to the Bayesian prob-

abilistic inference base, but supplies an analogous measure of con-

fidence in the model predictions (Aalders, 2008; Taalab et al., 2015b).

Sensitivity analysis determined how much the beliefs (i.e. biodiversity

predictions) were influenced by each new finding in the predictor nodes

(i.e. changes in patch area, connectivity and/or vegetation height).

Sensitivity was expressed as the expected reduction in variance of the

expected real value due to a finding in a particular node (e.g. complete

insensitivity would occur if the addition of new data records to the

existing model caused no reduction in this variance). The conditional

probabilities for the node states were extracted from the models and

graphed as a heat map to show the predicted factor probability at each

state level of biodiversity (after Fraser et al. (2016)).

2.7. Correlations between predicted biodiversity metrics

Regularly-spaced point samples from the model output maps were

tested for correlations between different models to quantify the degree

of difference and similarity between model predictions for different

taxa. A regular grid of points (spaced at 25m intervals) was generated

and clipped to the map extents, then used to extract raster values for

import into R where correlation tests were run (R Development Core

Team, 2016). Spearman’s rank correlation was used to evaluate

agreement between the predicted biodiversity maps. The permutation-

framework Spearman's method using the R 'coin' package (Hothorn,

Hornik, van de Wiel, & Zeileis, 2006) was used to generate a reliable p-

value statistic given large numbers of tied values in the data. Our ob-

jective here is to assess spatial patterns in the co-occurrence of low or

high biodiversity values across different taxa, i.e. whether there is

spatial congruence in the biodiversity ‘hotspots’ across taxa. We thus do

not take spatial autocorrelation into account, as this would distort the

spatial patterns of interest.

3. Results

3.1. Predicted richness

Output maps show predicted richness across the study area for total

invertebrates, species-level litter organisms, family-level Coleoptera,

family-level Diptera, total non-tree plant species, native non-tree plant

species, neophyte non-tree plant species and bird species, according to

25m resolution data (Fig. 3) and 5m resolution data (Supplementary

Materials). The BBN models calculate a probability range at each pixel

rather than a single value; displayed maps depict the maximum prob-

ability value (mode) at the centre of this probability range. Summary

statistics are given for sampled richness data in Table 1, and of pre-

diction map values in Table 2 (for 5m resolution results and mapped

landscape factor inputs, see Supplementary Materials).

Fig. 3. (continued)
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3.2. BBN model performance and predictor sensitivity

Error rates for 25m models ranged between 46% for bird species

richness and 69% for invertebrate order richness (Table 3), whereas the

5m models exhibited error rates between 45% for neophyte plant

richness and 74% for bird richness (see Supplementary Materials).

Models at the two different spatial resolutions performed with largely

comparable error rates, but we focus here primarily on the 25m scale,

given its comparability with available datasets and relevant scales of

inquiry to ecologists and planners seeking to understand landscape-

scale urban biodiversity.

Parameter sensitivities in the models reflect the strength of re-

lationships between predictors and biodiversity predictions for each

taxon (Table 3). For the 25m models, parameter sensitivities were

variable between taxa but vegetation height exhibited the greatest

sensitivity for five of eight taxa. It also had the highest mean (3.3) and

maximum (6.3) percentage variance reduction across all taxa combined

(cf. connectivity, mean 2.4 and maximum 3.1; and patch area, mean 2.0

and maximum 3.1).

Predicted richnesses of total invertebrates, litter organisms, total

plants, native plants and neophyte plants were most sensitive to vege-

tation height and exhibited relatively high percentage variance reduc-

tion (respectively 6.3, 5.3, 3.9, 3.2 and 3.2). Coleoptera richness pre-

dictions were most sensitive to connectivity but by a relatively small

margin compared to patch area and vegetation height. Diptera and bird

species richnesses were both most sensitive to patch area.

All measured plant richness predictions (total, native and neophyte)

were most sensitive to vegetation height and least sensitive to patch

area. The error rate for neophyte plant richness predictions was notably

lower than other plant types, suggesting a stronger predictive ability.

Predicted bird richness was more sensitive to patch area than to other

parameters (2.5), with responses to vegetation height exhibiting the

lowest sensitivity (0.9).

The 5m and 25m models exhibited similar parameter sensitivities

for most outcome variables but not all, e.g. Coleoptera was most sen-

sitive to connectivity in the 25m model and vegetation height in the

5m model. Diptera was most sensitive to patch area at 25m but ve-

getation height at 5m, and native plants were most sensitive to patch

area at 25m but vegetation height at 5m. The magnitude of scale de-

pendence in the relative importance of key drivers of biodiversity may

therefore vary by taxon (see Supplementary Materials for 5m model

results and performance).

3.3. Probabilistic associations between landscape factors and taxonomic

richness

Heat maps show the nature of probabilistic associations between

values of landscape factors and predicted richness levels using simpli-

fied node levels (Fig. 4, Table 4). Here, high conditional probabilities

reflect the likelihood of an outcome given a set of parent node states;

e.g. low Coleoptera family richness is expected in areas with low ve-

getation height, whereas high Coleoptera richness is expected in pat-

ches with moderately large area and high connectivity. Vegetation

height appeared to be a strong predictor of total invertebrate richness,

with the highest conditional probabilities associated with low to mod-

erate vegetation height at moderate to high levels of predicted richness.

Predicted litter organism richness exhibited strong associations with

low vegetation height at low diversity levels, with patch area and

connectivity appearing to play stronger roles at higher richness levels.

Low levels of predicted Coleoptera and Diptera richness appeared to be

Fig. 3. (continued)
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associated with moderately low vegetation heights. High total and

neophyte plant richness predictions were associated with moderately

low vegetation heights and moderately high connectivity. Lastly, all

levels of predicted bird richness (i.e. low as well as high richness)

showed strong associations with moderately low vegetation heights

(1–5m, i.e. shrubs and small trees).

3.4. Correlations between model predictions

High variation was present in the size and direction of correlation

coefficients between models for different taxa (Table 5). Positive and

negative correlations were approximately equal in number, with posi-

tive correlations relatively weak in many cases (8 of 28 correlation

coefficients were positive and greater than 0.15). Notably high positive

correlations (defined here as> 0.5) were found between total in-

vertebrate richness and litter organism species richness (0.79), Co-

leoptera and Diptera richness (0.53), and between total and neophyte

plant richness (0.56; note that neophyte and native plants are both

included in total plant richness, so some self-correlation is expected).

Negative correlations were generally weaker than the strongest positive

correlations, with the strongest being between Diptera and total plant

richness (−0.65), bird and neophyte plant richness (−0.47), and be-

tween bird and total plant species richness (−0.44). There was also a

notable negative correlation between neophyte and native plant rich-

ness (−0.25).

4. Discussion and conclusions

The modelling approach described here represents a method for: (1)

applying current knowledge about the factors, supported by evidence,

Fig. 3. (continued)

Table 1

Summary statistics of observations on invertebrate, plant and bird richness.

'Litter organisms' include species from Isopoda, Diplopoda, Chilopoda, and

Pseudoscorpiones. Invertebrate samples were taken at the same sites as plant

samples, but only contain n= 243 observations due to a sweep net malfunction

at one site.

Mean Std. Dev. Min. Max. n

Invertebrate Order Richness 12.1 2.4 7 18 243

Litter Organisms Species Richness 2.1 2.6 0 14 243

Coleoptera Family Richness 4.0 2.3 0 12 243

Diptera Family Richness 9.5 4.7 0 25 243

Total Plant Species Richness 14.5 7.9 0 46 244

Native Plant Species Richness 11.0 7.9 0 46 244

Neophyte Plant Species Richness 2.9 6.0 0 30 244

Bird Species Richness 12.5 2.6 4 24 451

Table 2

Summary statistics of model prediction raster maps (25m resolution) for in-

vertebrate, plant and bird richness. ‘Litter organisms’ include species from

Isopoda, Diplopoda, Chilopoda, and Pseudoscorpiones. Values are based on

mean model results at each pixel.

Mean Std. Dev. Min. Max.

Invertebrate Order Richness 11.6 0.8 9 15

Litter Organisms Species Richness 2.0 0.8 1 6

Coleoptera Family Richness 4.0 0.6 2 6

Diptera Family Richness 10.0 1.3 7 15

Total Plant Species Richness 15.9 2.4 8 22

Native Plant Species Richness 12.1 1.8 7 19

Neophyte Plant Species Richness 3.6 1.5 1 9

Bird Species Richness 12.9 0.8 11 16
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that influence urban biodiversity; (2) considering these factors in the

context of specific local data for the system or area being studied; (3)

combining these in an influence network to depict spatial patterns of

modelled biodiversity across entire urban areas at a sufficiently fine

resolution to be responsive to variation in urban landscape form, and

thereby relevant to planning considerations and landscape-scale re-

search. The scientific basis for our model structure stems from the

findings of the meta-analysis of Beninde et al. (2015); although meta-

analyses have limitations, they provide a summary of our knowledge of

a system and can form a suitable evidence base for defining the network

of important influences on a variable of interest, which in turn can form

the basis for modelling that system (Stewart, Higgins, Schünemann, &

Meader, 2015). Both the 5m and 25m analyses produced largely

comparable results and error rates, leading us to believe that both scales

have value and may be worthy of further exploration. However, we feel

that the 25m analysis is likely to be of greatest relevance to urban

planners and landscape managers given its comparability with available

datasets and common scales of inquiry. We next consider the ecological

implications of the model predictions (i.e. test results), the performance

of the models, and the practicality and application of using this ap-

proach for urban conservation and planning.

4.1. Predicted spatial patterns and key drivers of urban biodiversity

Broad generalities can be discerned from the prediction maps

(Fig. 3) and the conditional probability heat maps (Fig. 4) about the

relationships between urban biodiversity and landscape structure. Ve-

getation height emerged as an important factor for multiple taxa, with

low or moderate heights associated with low biodiversity in litter or-

ganism, Coleoptera, Diptera and native plant richness. There is there-

fore an expectation that in areas dominated by low vegetation height

(such as mown lawns), the biodiversity of these groups will be rela-

tively low. Large woodlands (e.g. greater than 10 ha in size), which are

generally high in all three landscape factors (see Supplementary

Materials for landscape factor maps), by contrast, exhibited high pre-

dicted biodiversity for some taxa including invertebrates, litter organ-

isms and birds (Fig. 3). Conditional probabilities (Fig. 4) further support

the expectation that total invertebrate, litter organism, Coleoptera,

Diptera and bird richness will be greater in larger patches, which is

consistent with past research on species-area relationships in urban

landscapes (Nielsen, van den Bosch, Maruthaveeran, & van den Bosch,

2014).

Taller vegetation is not, however, invariably associated with greater

biodiversity. Richness predictions for all three plant types were gen-

erally low in areas of tall vegetation such as woodlands, and Diptera

varied by scale. Since modelled plant taxa did not include trees, this

suggests that urban ground, field and shrub layer plants are more di-

verse in areas of low to moderate vegetation height, and more con-

strained in woodlands. Conditional probabilities show that an inter-

mediate level of vegetation height (1–5m; second box from the left in

Fig. 4) is an important driver of richness predictions for invertebrates,

total plant species, neophyte plant species and bird species, although

the direction of association is not consistent across all taxa. Inter-

mediate vegetation height was associated with high richness predic-

tions for invertebrates, total and neophyte plants and birds, suggesting

that meadows, hedges and shrubs at this height support biodiversity for

these taxa. By contrast, litter organisms, Coleoptera, Diptera and native

plants had lower richness predictions associated with these areas. The

association between neophyte plants and intermediate vegetation

height in particular may be consistent with the fact that some propor-

tion of these species are likely to have been planted, for example in back

gardens, rather than naturalised, particularly in urban settings. Ad-

ditionally, many neophytes are ruderal species, well-adapted to colo-

nising fragmented or more frequently disturbed habitats (Crawley,

Harvey, & Purvis, 1996; Thompson & McCarthy, 2008) and are thus

common in these urban areas of mixed vegetation.

Bird species richness did not show strong spatial relationships with

input variables compared to other taxa. Predicted bird richness was

most sensitive to patch area, which may be a consequence of the mobile

nature of birds and associated larger home range sizes compared to our

other focal groups. This suggests that habitat extent is a key driver of

urban avian biodiversity, but the complexity of the response suggests

that other factors are also important (Deák, Hüse, & Tóthmérész, 2016).

The typically lower sensitivities of avian richness models relative to

other taxa may partly arise from a mismatch in the scale of modelling

compared to the larger home range size of most bird species, meaning

that individual birds may use multiple, diverse habitat patches. In ad-

dition, a stronger effect of vegetation height and connectivity was ex-

pected (Hinsley et al., 2009) but its lack may be due to the absence of

woodland specialists that are sensitive to fragmentation from urban

areas in the UK. Whilst the urban avifauna mostly comprises species

that are generalists (Evans, Chamberlain, Hatchwell, Gregory, &

Gaston, 2011) individual species exhibit preference for a range of ve-

getation structures, from short open vegetation to tall trees, and thus

summation of richness across all these types of species may further

weaken relationships between species richness and patch size and ve-

getation height.

4.2. Correlations between taxa

Managing urban areas to optimise biodiversity would be simpler if

areas that supported high diversity of one group also supported high

diversity of other groups. We found limited evidence for this as a slim

majority of correlation coefficients were positive (15 compared to 13)

and those that were positive were often rather limited in strength (12

out of 15 were lower than 0.5).

The predicted richness values of some taxa exhibited strong positive

correlations with each other, suggesting possible similarities in the

factors driving their biodiversity. Positive correlations between pre-

dicted invertebrate richness and litter organism richness may reflect

Table 3

Results of case testing (error rate) and sensitivity analysis (percent variance reduction as a metric of the relative importance of each input variable) on Bayesian Belief

Network models for invertebrate, litter organism, Coleoptera, Diptera, plant and bird richness at 25m resolution. For each taxonomic group the landscape factor

showing the greatest sensitivity is shown in bold.

Error rate Sensitivity (Percent Variance Reduction)

Vegetation Height Connectivity Patch Area

Invertebrate Order Richness 69.26% 6.32 2.81 1.39

Litter Organisms Sp. Richness 54.51% 5.30 2.80 2.02

Coleoptera Family Richness 67.62% 1.81 2.33 2.03

Diptera Family Richness 64.75% 1.90 2.74 3.05

Total Plant Sp. Richness 65.88% 3.87 3.08 1.65

Native Plant Sp. Richness 67.62% 3.17 2.76 2.36

Neophyte Plant Sp. Richness 48.36% 3.23 1.05 0.70

Bird Sp. Richness 45.68% 0.86 1.37 2.50
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similarity or overlap in habitat dependency. Positive correlations were

also present between Coleoptera and Diptera, and Diptera and bird

richness (cf. Gagné & Fahrig, 2011).

Neophyte plant richness predictions tended to be weakly or nega-

tively correlated to other groups, except total plant richness. This in-

dicates that, at local scales, the planting or spread of non-native plants

may occur at the expense of native plant species and to such an extent

that neophytes threaten to dominate measures of overall plant richness.

This contrasts with work done at larger spatial scales suggesting that

non-native plants add to native plant richness to generate urban hot-

spots of plant richness (Nielsen et al., 2014). Bird richness was also, and

even more strongly, negatively related to total plant richness. Negative

correlations between bird richness and multiple types of plant richness

may reflect that avian richness is generally high in shrub and tree cover,

but these habitat types tend to contain relatively few plant species.

The presence of low or negative correlations, varying sensitivities,

disparate spatial patterns and taxon-specific conditional probabilities

provide evidence that, whereas some taxa may respond similarly to

landscape changes, trade-offs are likely to be present in how landscape

variation impacts different taxa (Sushinsky, Rhodes, Possingham, Gill,

& Fuller, 2013). Some variations in landscape-richness relationships are

expected to reflect differences in the ecological effects of the selected

landscape factors for the different taxa. The low and negative correla-

tions between several invertebrate taxa and plant richness metrics, for

example, are difficult to interpret in the context of the literature and

may be an expression of nuance in biodiversity relationships that our

research has not captured. Neophyte plants may be more common in

highly managed gardens, and/or less supportive of biodiversity among

other taxa than native plants (Manchester & Bullock, 2000; cf. Smith,

Thompson, Hodgson, Warren, & Gaston, 2006); however this does not

explain the low or negative correlations between various invertebrates

and total or native plant richness predictions. Our results show that

vegetation height plays a key role in predicting urban biodiversity, but

that its relationship with overall richness summarises a complex range

of relationships with subsets of the ecological community. Vegetation

height may thus act here as a proxy for more specific aspects of vege-

tation structure or community composition, which in turn have variable

impacts on ecological dynamics.

4.3. Model performance and structure

Although the model error rates (Table 3) varied widely and were

generally large, the mean rate among all models (60.5%) was com-

parable to results found in other studies applying BBNs to environ-

mental systems (e.g. Aalders, 2008; Lemercier, Lacoste, Loum, &

Walter, 2012; Taalab et al., 2015b). The highly complex and indirect

nature of relationships between landscape structure and biodiversity

fostered the expectation of a degree of uncertainty, stemming from

sampling, system conceptualisation and natural variability (Regan,

Colyvan, & Burgman, 2002). Nevertheless, the finding of comparable

error rates, despite our model framework applying only three predictors

to such a complex question, supports the assertion that the predictors

we consider here are strong determinants of urban biodiversity.

The way in which predictors were conceptualised and implemented

here represents only one of many possible ways in which these char-

acteristics can be quantified. Vegetation height was used as a proxy for

maturity and vegetation structure to support applicability of findings to

a wide audience of practitioners and researchers. However, other me-

trics that deal more directly with structural complexity are beginning to

become more widely available with the increasing prevalence of LiDAR

technology and approaches for processing the resulting data (Hancock

et al., 2017). In the case of patch area, how best to define a habitat

patch is not a new debate in landscape ecology (Kupfer, 2012). As

implemented here, an area can be defined as a patch according to

geometric rules that may vary in applicability between different taxa,

and/or not necessarily reflect species responses to habitat patches.

Choices of metric and measurement scale may be based on diverse

criteria, but the methods introduced here appear effective.

An additional consideration, as with any modelling approach, is that

models may be susceptible to mismatches between the spatial scale of

inquiry and the functional scale of key drivers of biodiversity; more-

over, our level of spatial precision (5m) is unlikely to be available for

most applications or studies in other urban areas. The analysis of

models based on 5m resolution data produced similar error rates to

those based on 25m data (see Supplementary Materials), even for the

invertebrate taxa studied, suggesting that effectively capturing land-

scape-richness relationships is a more complex matter than simply ad-

justing the scale of inquiry. For instance, taxa such as birds may interact

with their environment at coarser scales than those used here (e.g.

Siriwardena, Calbrade, Vickery, & Sutherland, 2006), so may be better

represented by considering landscape factors from a radius of 50m or

more around observation points (however, we note that the way con-

nectivity was implemented helped to consider the surrounding land-

scape context). The differences in sensitivity analysis results between

the 5m and 25m models (e.g. Coleoptera, Diptera and native plants)

support the conviction that spatial biodiversity patterns are driven by

different factors at different spatial scales (Pickett & Siriwardena,

2011). Potential scale mismatches between habitat use by taxa and

spatial representation of the landscape are difficult to avoid; in practical

terms (and for policy support), a standard, comparable scale was more

useful for all taxa, rather than introducing greater uncertainty and

impeding comparability through the use of taxon-specific scales.

A final scale-related consideration is that the prediction process

embodied in the model presented here concerns point diversity, i.e. the

expected diversity in a particular defined area, but does not capture

beta-diversity across a site or habitat, which may also be an important

consideration for biodiversity modelling (Ferrier, Manion, Elith, &

Richardson, 2007) and for planning, where questions about biodiversity

might typically be framed at the whole habitat or site level (e.g. a park).

Solutions to this challenge are not straightforward; the reviewed data

on which model structure is based come from samples at multiple scales

concerning different taxa and landscape factors (Beninde et al., 2015)

Fig. 4. Heat maps that visually depict the conditional probabilities driving each model. These represent the strength of the relationships between each model’s input

parameters (patch area, vegetation height and connectivity current; values of bin ranges are shown in Table 4) and the predicted richness of each taxonomic group.

Darker cells denote larger conditional probabilities, i.e. a higher likelihood of an outcome given that set of conditions, or a stronger relationship between the

combination of input value and predicted richness represented by that cell in the heat map. Note: the homogenous appearance of high native plant richness is due to

few data points being present in that range.

Table 4

Bin ranges for input parameter values in Fig. 4 heat maps of Bayesian model conditional probabilities.

Bins Low Moderately low Moderate Moderately high High

Patch Area (ha) 0–1 1–5 5–10 10–100 100–500

Vegetation Height (m) 0–1 1–5 5–10 10–20 20–30

Connectivity Current 0–0.001 0.001–0.002 0.002–0.003 0.003–0.005 0.005–1
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and no single scale is likely to capture turnover effects adequately.

Alternatives include explicit modelling of beta diversity (Ferrier et al.,

2007) or approaches based on the summation of models for individual

species, from which species composition (and hence both alpha and

beta diversity) can be derived (Kattwinkel et al., 2009; Milanovich

et al., 2012; Olden, Joy, & Death, 2006).

4.4. The practical value and implications of BBN modelling of biodiversity

The challenge of moving from individual small-scale studies of

urban biodiversity to general principles for understanding biodiversity

and informing planning and conservation decisions at a city-wide scale

is considerable. There is a need to explore novel potential approaches to

developing such tools, and understand the situations in which they may

be of practical value. The BBN modelling approach that we employ here

has a number of important elements that can increase its potential (cf.

Addison et al., 2013; Chee et al., 2016). First, it uses a generalised

understanding of the key influences on biodiversity that can be based

on empirical meta-analysis (as is the case in this example) or a more

qualitative approach, such as expert opinion, where appropriate. The

general framework can be adapted to make use of the highest quality

information available and to take the local context into account through

expert knowledge. A second advantage is the flexibility in creating both

the structure and conditional probabilities of the network for a parti-

cular element of biodiversity. Finally, the BBN approach has the ca-

pacity to apply the influence network spatially, taking GIS data layers

as input and deriving spatial biodiversity predictions for entire land-

scapes. The capacity to do this begins to make it possible to model

biodiversity consequences of changing urban land use and form, which

is a key element of taking account of biodiversity in the planning cycle

(Norton et al., 2016).

Although we have demonstrated the feasibility of using a GIS-linked

BBN approach for studying urban biodiversity, there remains a need for

future research to compare the performance of this method against

alternative approaches, particularly those conventionally favoured in

biodiversity studies. Bayesian approaches in general offer different

advantages to more conventional modelling methods (Aguilera,

Fernández, Fernández, Rumí, & Salmerón, 2011; Jellinek et al., 2014;

Taalab, Corstanje, Mayr, Whelan, & Creamer, 2015a) but will benefit

from further development of relevant tools to produce more compre-

hensive and user-friendly interfaces and result formats in order to give

them the broadest possible relevance. Nonetheless, we believe our ap-

proach has potential value as a method of biodiversity prediction in

complex landscapes, and could provide a suitable mechanism for in-

corporation into a biodiversity module within an ecosystem service

modelling suite such as InVEST (Tallis et al., 2014).

4.5. Conclusions

We have demonstrated the feasibility of using GIS-coupled Bayesian

Belief Networks to model biodiversity at fine spatial scales in complex

and heterogeneous urban landscapes across a range of taxonomic

groups. Our models performed with error rates similar to BBN models

used in other environmental contexts. Our approach provides useful

information on the sensitivity of biodiversity to different landscape

structural features, thus providing ecological understanding that is re-

levant to planning decisions and assessment of urban development

impacts. Our findings support the conviction that, broadly, richness in

urban areas is increased by (1) the presence of large habitat patches, (2)

high landscape connectivity, (3) tall vegetation and, by extension,

mature vegetation communities (analogous to “bigger, better, more

joined up”; see Lawton et al., 2010). Of these, vegetation height

emerged as exerting a particularly strong influence on biodiversity

across a range of taxonomic groups, although detailed biodiversity re-

lationships may depend on more specific elements of vegetation

structure and complexity than were directly considered here. SpecificT
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responses to these drivers and directionality of associations do, how-

ever, differ between taxa and to some extent across the range of scales

that we use. The results further highlight the established importance of

landscape structural diversity, while equally showcasing the complex

nature of relationships between landscape and biodiversity.
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