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Abstract

The notion of proof-theoretical or finitistic reduction of one theory to another has a
long tradition. Feferman and Sieg [13, Chap. 1] and Feferman in [22] made first steps
to delineate it in more formal terms. The first goal of this paper is to corroborate
their view that this notion has the greatest explanatory reach and is superior to others,
especially in the context of foundational theories, i.e., theories devised for the purpose
of formalizing and presenting various chunks of mathematics.

A second goal is to address a certain puzzlement that was expressed in Feferman’s
title of his Clermont-Ferrand lectures at the Logic Colloquium 1994: “How is it that
finitary proof theory became infinitary?” Hilbert’s aim was to use proof theory as a
tool in his finitary consistency program to eliminate the actual infinite in mathematics
from proofs of real statements. Beginning in the 1950s, however, proof theory began
to employ infinitary methods. Infinitary rules and concepts, such as ordinals, entered
the stage.

In general, the more that such infinitary methods were employed, the farther
did proof theory depart from its initial aims and methods, and the closer did
it come instead to ongoing developments in recursion theory, particularly
as generalized to admissible sets; in both one makes use of analogues of
regular cardinals, as well as “large” cardinals (inaccessible, Mahlo, etc.).
([19]).

The current paper aims to explain how these infinitary tools, despite appearances to
the contrary, can be formalized in an intuitionistic theory that is finitistically reducible
to (actually Π0

2-conservative over) intuitionistic first order arithmetic, also known as
Heyting arithmetic. Thus we have a beautiful example of Hilbert’s program at work,
exemplifying the Hilbertian goal of moving from the ideal to the real by eliminating
ideal elements.

Keywords: relative interpretability, partial conservativity, proof-theoretical reduction,
infinite proof theory, ordinal analysis
MSC2000: 03F50; 03F25; 03E55; 03B15; 03C70

1 Introduction

Leibniz conceived of mathematics in a very modern way as mathesis universalis, i.e., as
the most general theory of structures and their relationships. As formal correlates to
structures we have axioms abstracted from them that subsequently become organized into
axiom systems or theories which describe and classify these structures. Husserl, who called
them “Theorieformen”, was one of the first thinkers to adumbrate a systematic study of
theories as objects of investigation in their own right.1

1See Centrone [16].
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Die in solcher Abstraktion definierten Theorienformen lassen sich nun zueinan-
der in Bezug setzen, sie lassen sich systematisch klassifizieren, man kann
solche Formen erweitern und verengen, man kann irgendeine vorgegebene Form
in systematischen Zusammenhang mit anderen Formen bestimmt definierter
Klassen bringen und über ihr Verhältnis wichtige Schlüße ziehen. [36, p. 431]

The move to the study of formal theories as objects of mathematical investigations in their
own right is of course most prominent in Hilbert’s metamathematics and his new science
of Beweistheorie (proof theory). This article will be concerned with various relationships
that obtain between theories and in particular with notions of reductions between mathe-
matical theories. In the natural sciences, reduction often serves the purpose of explaining
the objects and phenomena of one science in terms of more basic or fundamental objects
and phenomena of another science, such as chemical reaction in terms of quantum me-
chanics and heredity in terms of genes. Reductions between mathematical theories are also
important in mathematics as for instance in Descartes recasting of Euclidian geometry in
analytic geometry and Hilbert’s interpretations of non-Euclidian geometries in the theory
of real numbers. In this article, however, the main interest lies in foundational theories
developed for the purpose of accounting for large parts of mathematics of which first order
number theory (also known as Peano Arithmetic, PA), second order number theory (Z2)
and Zermelo-Fraenkel set theory with the axiom of choice (ZFC) are canonical examples.

There are many important relations between theories that provide reductions of one
theory to another: relative interpretability, double negation, functional and realizabil-
ity translation, (partial) conservativity, and proof-theoretic or finitistic reducibility. In
the first part of this article we shall have a closer look at several notions of reducibility
and argue that the notion of proof-theoretic reducibility is the most important and most
encompassing.

The second part of the paper addresses a fundamental problem in proof theory. In or-
dinal analysis the proof-theoretic strength of a theory T is often determined by embedding
T into an infinitary proof system and showing cut elimination for the infinitary system,
where the lengths and cut ranks of derivations are measured by ordinals from an ordinal
representation system. How is that that this kind of detour through the infinite still gives
rise to finitistic reductions between theories?

2 Reductions

Let’s begin with the first and simplest notion. By a theory T , which always comes as-
sociated with a language L, we mean a set of sentences of L (to be thought of as the
non-logical axioms of T rather than the set of its theorems). If T is understood we refer
by L(T ) to its language.

Given theories T and T ′, we say that T has a relative interpretation in T ′ if the
primitives of L(T ), i.e., the relation, constant, function symbols and the scope of the
variables of L(T ) can be defined in L(T ′) in such a way that every theorem of T is
transformed into a theorem of T ′ via this translation. In more detail this means the
following:

Definition 2.1 1. Let L1 be a language and T be a theory with language L2. An
interpretation function ∗ of L1 into T is given by:

(a) An L2-formula χ(x) (x being its sole free variable) such that T ⊢ (∃x)χ(x).2

2{x | χ(x)} constitutes the domain over which the interpreted quantifiers of L1-formulas will be ranging;
so quantifiers become relativized to {x | χ(x)}.
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(b) For each constant c of L1, a formula ψc(x), with all free variables exhibited,
such that

T ⊢ ∃!x (χ(x) ∧ ψc(x)).

(c) For each n-ary predicate P of L1, a formula ψP (x1, . . . , xn) ∈ L2 with all free
variables exhibited.

(d) For each n-ary function symbol f of L1 a formula ψf (x1, . . . , xn, y) ∈ L2, with
all free variables exhibited, such that

T ⊢
n∧

i=1

χ(xi) → ∃!y (χ(y) ∧ ψf (x1, . . . , xn, y)).

The translation ∗ is then lifted to formulas of L1 in the obvious way. At the atomic
level we use the formulas given above for predicate, constant and function symbols
respectively. ∗ distributes over the logical particles as expected:

(¬ϕ)∗ ≡ ¬ϕ∗

(ϕ ◦ ψ)∗ ≡ ϕ∗ ◦ ψ∗ for ◦ ∈ {∧,∨,→}

(∃xϕ(x))∗ ≡ ∃x (χ(x) ∧ ϕ(x)∗)

(∀xϕ(x))∗ ≡ ∀x (χ(x) → ϕ(x)∗).

2. Assume that S and T are two first-order theories. Then S is said to have a rel-
ative interpretation in T via the function ∗ (of L(S) into T ) if for every axiom
ϕ(x1, . . . , xn) of S,

T ⊢
n∧

i=1

χ(xi) → ϕ∗(x1, . . . , xn).

We say that S is r-interpretable in T (in symbols S E T ) if S has a relative inter-
pretation in T for some translation ∗.

3. If S and T are mutually r-interpretable in each other, we signify this by S ≡ri T .

4. This concept of relative interpretation is sometimes credited to Tarski although it was
informally and implicitly used before by Hilbert and others. In the more recent usage
one omits “relative” (see [40]). However, as there are many flavors of interpretation
that we will be discussing, e.g. realizability and functional interpretations, it will be
convenient to stick to the name “relative interpretation” to avoid ambiguity.

There are some interesting cases, where the relation E can be expressed in terms of partial
conservativity. The latter notion will be of great importance for this paper, so we turn to
it next.

Definition 2.2 We recall the usual stratification of formulas of the language of first-
order arithmetic or Peano arithmetic, PA, into the classes of Σ0

k and Π0
k-formulas. A

formula is said to be in Σ0
k if it is of the form ∃x1 . . . Qxk A(x1, . . . , xk) where the string

of k number quantifiers at the front is alternating between existential and universal quan-
tifiers and the matrix A(x1, . . . , xk) only contains bounded number quantifiers. Π0

k is
defined dually. Likewise, in the language of formal second order arithmetic, Z2, a formula
∃X1 . . . QXk B(X1, . . . , Xk) is said to be Σ1

k if the string of second order quantifiers alter-
nates and B(X1, . . . , Xk) does not contain any second order quantifiers (in the same vein
one defines Π1

k-formulas). Both languages will be viewed as part of the language of set
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theory by interpreting number quantifiers as ranging over the first limit ordinal ω, second
order quantifiers as ranging over subsets of ω and interpreting addition and multiplication
as ordinal addition and multiplication, respectively.

For theories T1, T2 and Γ a collection of formulas contained in L(T1) ∩ L(T2) (either
directly or via the foregoing identification), define

T1 ⊆Γ T2 :⇔ ∀ϕ ∈ Γ (T1 ⊢ ϕ⇒ T2 ⊢ ϕ).

We say that T2 is Γ-conservative over T1 if T1 ⊆Γ T2 and T2 ⊆Γ T1. We convey this by
writing T1 =Γ T2.

A perhaps unexpected and non-intuitive case of theories related via E is the following.

Remark 2.3 Let Con(T ) be the arithmetized predicate expressing (in a natural way) that
the theory T is consistent. As a non-trivial example we have PA + ¬Con(PA) E PA

(see [63]).

It is instructive to study the relationE on extensions T ofPA that are primitive recursively
axiomatized theories and have the same language as PA. Such theories are reflexive,
namely T proves the consistency of all its finite subtheories, i.e., T ⊢ Con(T ↾k) for all
k ∈ N, where T ↾k is the theory consisting of the first k-many axioms and Con(T ↾k)
expresses its consistency.

The equivalence classes stemming from the relation of mutual relative interpretability,
i.e., S ≡ri T , give rise to degrees of interpretability, yielding a dense distributive lattice (see
[40]). The next result shows that for such theories E is closely related to the provability
of consistency for finite fragments and the ⊆Π0

1
relation.

Theorem 2.4 (Hilbert & Bernays, Feferman, Orey, Lindström, Guaspari)3

For extensions S, T of PA as above, the following are equivalent.

(i) S E T .

(ii) For all n ∈ N, T ⊢ Con(S ↾n).

(iii) S ⊆Π0
1
T .

The previous theorem and also Remark 2.3 show that the notion of relative interpretability
is of rather limited use when it comes to foundational theories, i.e. theories designed for the
purpose of formalizing and capturing various parts of mathematics. Mutual reducibility
should at least entail that both theories have the same algorithmic consequences, meaning
that if one of them proves that an algorithm terminates on all integer inputs then the other
should do so as well. In other words, at a minimum, mutual partial conservativity should
hold for Π0

2-statements. The latter class of statements contains many famous conjectures
in mathematics (e.g. the twin prime conjecture). In mathematical logic one finds many
interesting and surprising reductions between theories that turn out have the same Π0

2-
theorems. Moreover, there is also a sizable number of them that are not reducible to each
other via relative interpretation. S E T requires that T accounts for S tout court. We owe
it to Hilbert’s genius that reductions need not be total. A theory T asserting the existence
of ‘ideal’ objects, in the sense of his legendary program, may prove the same elementary

3For more details see [40, Section 6, Theorems 5 and 6]. Also the history of this theorem is related in
[40]. A crucial tool in the proof is the arithmetization of Gödel’s completeness theorem due to Hilbert and
Bernays [34].
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theorems (including Π0
2-theorems) about elementary objects (such as the naturals) as a

theory S without S being able to account for the ‘ideal’ objects of T .
Let us now return to the plan of providing a sample of interesting reducibility results

for further discussions. From a technical point of view they were initially obtained by a
plethora of methods from different branches of mathematical logic such as the constructible
hierarchy, forcing, functional interpretation, recursively saturated models, realizability,
topos theory, and cut elimination to name a few. Albeit all of these reductions will be
expressed as partial conservativity results, they also turned out to be examples of pairs of
theories that are proof-theoretically equivalent (a notion that will be introduced in 2.1),
sometimes requiring completely new proofs.

Theorem 2.5 (i) (Gödel 1938, 1940, [27, 28]) ZFC + GCH =L(PA) ZF, where GCH
stands for the generalized continuum hypothesis.

(ii) (Shoenfield 1961 [60]) ZFC+GCH =Π1
4
ZF.

(iii) (Platek [43] 1969, Kripke, Silver (both unpublished) 1969) ZFC+GCH =L(Z2) ZFC.

(iv) (Parsons 1970 [42], Friedman 1976 [24]) IΣ0
1 =Π0

2
PRA and WKL0 =Π0

2
PRA.4

(v) (Barwise & Schlipf 1975 [9]) Σ1
1-AC0 =L(PA) PA.

(vi) (Kripke, Solovay 1960s (independently), Felgner 1971 [23]) Von Neumann-Bernays-
Gödel class set theory with the global axiom of choice, NGBC, is conservative over
ZFC for formulas of L(ZF).

(vii) (Kolmogorov 1925 [39], Gentzen 1933 [25], Gödel 1933 [26]) PA is conservative
over intuitionistic first order arithmetic (also known as Heyting arithmetic, HA)
for almost negative formulas.5

(viii) (Kleene 1945 [38]) HA+ Church’s thesis =Π0
2
PA.

(ix) (Gödel 1958 [29]) PA has a functional interpretation in Gödel’s equational theory
T of functionals of finite type. This is the known as the Dialectica interpretation.

(x) (Goodman 1976, 1978 [30, 31]) HAω + ACtype =L(HA) HA. Here HAω denotes
Heyting arithmetic in all finite types with ACtype standing for the collection of all
higher type versions ACστ of the axiom of choice with σ, τ arbitrary finite types.

(xi) (Barr 1974 [7]) Every classical geometric theory is conservative over its intuitionistic
version with regard to geometric implications.6

(xii) (Rathjen 1993 [47], Setzer 1993, 1998 [58, 59]) Σ1
2-AC+Bar Induction7 is reducible

4Here IΣ0
1 stands for the fragment of PA with induction restricted to Σ0

1-formulas, PRA for primitive
recursive arithmetic, and WKL0 for a fragment of Z2 in which weak König’s Lemma is the signature
axiom. WKL0 is a very famous system in the the program of reverse mathematics (cf. [62]).

5A formula is almost negative if it does not contain ∨, and ∃ only immediately in front of ∆0
0 formulas.

6A geometric theory (sometimes called coherent theory) is one whose axioms are geometric implications,
i.e. universal closures of implications of the form D1 →D2, where each Di is a positive formula, i.e. a
formula built up from atoms using solely conjunction, disjunction and existential quantification.

7Σ1
2-AC is the schema ∀x∃Y B(x, Y ) → ∃Z∀xB(x, Zx) with B(x, Y ) of complexity Σ1

2 and Zx = {u |
2x3u ∈ Z}. Bar induction stands for the schema of transfinite induction along a well-founded set relation
for all second order formulas. This theory is very strong from the point of view of reverse mathematics. In
reverse mathematics one aims to calibrate the strength of theorems from ordinary mathematics, using as
a scale certain natural subsystems of Z2. It has turned out that there are five systems (dubbed the “big
five”) that occur most often. All of them are much weaker than Σ1

2-AC+Bar Induction. Since the latter
is reducible to Martin-Löf type theory, it follows that almost all Π0

2-theorems of ordinary mathematics are
constructively true (for more on this see [46]).
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to Martin-Löf ’s 1984 type theory. More specifically, every Π0
2-theorem of the former

is a theorem of the latter system.

(xiii) (Rathjen 1993 [47]) Let CZF be Constructive Zermelo-Fraenkel set theory, REA be
the regular extension axiom (cf. [1, 2, 3, 4]), and KP be Kripke-Platek set theory
(cf. [8]).

CZF =Π0
2

KP

CZF+REA =Π0
2

Σ1
2-AC+ Bar Induction.

(xiv) (Crosilla, Rathjen 2001 [17], Rathjen 2017 [45]) Let MLTT− be intensional Martin-
Löf type without W -types and UA be Voevodsky’s univalence axiom. Let CZF− be
CZF without set induction and INACC be the axiom that every set is contained in
an inaccessible set.

MLTT− +UA =Π0
2

CZF− + INACC =Π0
2
ATR0

where ATR0 stands for the theory of arithmetical transfinite recursion which is one
of the central theories of reverse mathematics (see [62]).

Of the foregoing cases of theory reduction, only the theories in (i), (ii), (iii), respectively
stand in the relation ≡ri. Obviously, ZFC+GCH E ZF holds by relativizing all quantifiers
to L since AC and GCH are validated in the constructible hierarchy. Of course, the
really interesting information contained in (ii) and (iii) is lost if rendered in this way:
the point of (ii) is that if in principle we want to avoid AC8 we can still use it and also
the generalized continuum hypothesis if we want to prove a theorem expressible in the
language of first order number theory and more generally if the theorem’s statement does
not have a complexity beyond Π1

4 (which is actually pretty high). Likewise, if we are
concerned with proving statements of second order arithmetic from ZFC we can freely
use GCH as an extra hypothesis.

In all the other cases of theory reduction, i.e., (iv)-(xiv), the relation ≡ri, for various
reasons, does not obtain between the respective theories:

1. The theory WKL0 of (iv) is finitely axiomatizable, and therefore, WKL0 E PRA

would yield an interpretation into a finite fragment of PRA, which is impossible.9

Likewise in (v), Σ1
1-AC0 is finitely axiomatizable whereas PA is not. The former

theory has non-elementary speed-up over PA. The same considerations apply to
GBC and ZFC in (vi).

2. Relative interpretability usually doesn’t work across theories based on different log-
ics. The double negation interpretation behind (vi) does not distribute over the
logical connectives. The same holds for the realizability interpretation that un-
derlies (viii). Also Gödel’s functional interpretation of (ix) does not distribute over
quantifiers. Similarly, the proof of (x) uses a combination of realizability and forcing,
and there does not exist a plain interpretation of HAω +ACtype in HA.

3. Again in (xii)-(xiv), we have reductions across different logics which cannot be ren-
dered relative interpretations. In (xiii) CZF + REA E Σ1

2-AC + Bar Induction is
ruled out since the strength of CZF + REA with classical logic is that of ZF. In
the same vein, CZF− + INACC E ATR0 cannot hold as CZF− + INACC based on
classical logic is stronger than ZFC.

8Recall that in 1905 several famous French analysts wanted to ban AC for uncountable families of sets
from mathematics (see [37]).

9Indeed, WKL0 has non-elementary speed-up over PRA, cf. Definition 3.5 and [15].
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4. The case of (xi) is quite different from the others in that it applies to a large collection
of mathematical theories. Geometric theories are rather ubiquitous. They include
all algebraic theories, such as group theory and ring theory, all essentially algebraic
theories, such as category theory, the theory of fields, the theory of local rings,
lattice theory, projective geometry and the theory of separably closed local rings (aka
“strictly Henselian local rings”). The interest in geometric theories is not restricted
to mathematics, e.g. it has been argued in [5] that Kant’s transcendental logic is
(infinite) geometric logic.

(xi) was originally proved non-constructively, using topos-theoretic methods and
the axiom of choice, but there is also an easy proof using Gentzen’s Hauptsatz,
i.e. cut elimination (cf. [18]). This also works for infinite geometric theories that
are expressed in the language of infinitary logic and are defined in the same way as
geometric theories except for allowing infinitary disjunctions in D1 and D2 (cf. [54]).

Remark 2.6 The examples (iv), (v), and (vi) from Theorem 2.5 are particularly pretty
illustrations of Hilbert’s “Methode der idealen Elemente” [33] and of what Husserl before
him described as the “Durchgang durch das Unmögliche” and “Durchgang durch das
Imaginäre”10, respectively, in his 1901 Göttingen Doppelvortrag (see [16]). The idea here
is that via an adjunction of ideal elements to the objects of a base theory S we arrive at
an extended theory T with more objects. Crucially in these cases, putting ourselves in
the place of S-people, we cannot speak about the objects of the T -people since there does
not exists a translation by which quantification over the T -world can be construed as (a
fancy) quantification over particular objects of our S-world.11

Having seen the failure of relative interpretability to account for the theory reductions
in Theorem 2.5, we are desirous of finding one that has a greater scope and covers all of
them.

2.1 Proof-theoretical reduction

The notion of proof-theoretical reduction first appeared in chapter 1 of [13] written by
Feferman and Sieg. Subsequently it played a prominent role in Feferman’s 1988 paper on
relativized Hilbert programs.

All theories T considered in the following are assumed to contain a modicum of arith-
metic. For definiteness let this mean that the system PRA of Primitive Recursive Arith-
metic is contained in T , either directly or by translation.

Definition 2.7 Let T1, T2 be a pair of theories with languages L1 and L2, respectively,
and let Φ be a (primitive recursive) collection of formulae common to both languages.
Furthermore, Φ should contain the closed equations of the language of PRA.

We then say that T1 is proof-theoretically Φ-reducible to T2, written T1 ≤Φ T2, if there
exists a primitive recursive function f such that

PRA ⊢ ∀φ ∈ Φ ∀x [ProofT1(x, φ) → ProofT2(f(x), φ)]. (1)

T1 and T2 are said to be proof-theoretically Φ-equivalent, written T1 ≡Φ T2, if T1 ≤Φ T2
and T2 ≤Φ T1.

The appropriate class Φ is revealed in the process of reduction itself, so that in the
statement of theorems we simply say that T1 is proof-theoretically reducible to T2 (written

10I.e., going through the impossible and the imaginary, respectively.
11For a partial realization of Hilbert’s original program see Simpson [61].
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T1 ≤ T2) and T1 and T2 are proof-theoretically equivalent (written T1 ≡ T2), respectively.
Alternatively, we shall say that T1 and T2 have the same proof-theoretic strength when
T1 ≡ T2.

Remark 2.8 Since the reduction of theories is required to be provable in PRA and the
latter is often considered to be co-extensional with finitism (see [65]), the notion of proof-
theoretical reduction is synonymously used with finistic reduction. Alternatively, we will
therefore say that T1 is finitistically reducible to T2 if T1 is proof-theoretically reducible to
T2.

Remark 2.9 Feferman’s notion of proof-theoretic reducibility in [22] is more relaxed in
that he allows the reduction to be given by a T2-recursive function f , i.e.

T2 ⊢ ∀φ ∈ Φ ∀x [ProofT1(x, φ) → ProofT2(f(x), φ)]. (2)

The disadvantage of (2) is that one forfeits the transitivity of the relation ≤Φ. In practice,
however, proof-theoretic reductions always come with a primitive recursive reduction, so
nothing seems to be lost by using the stronger notion of reducibility (for more details
see [49]). Moreover, it has turned out that in actuality, i.e. in the cases studied in the
literature, the class Φ always comprises the Π0

2-sentences.

A paper [41] by Niebergall sets out to provide a good explication of the concept “the
theory S is reducible to theory T”. The results are summarized as follows: “I show
that one is quite naturally led to the well-known concept of “relative interpretability” as
a candidate for a general explication of “reducibility”. But what about alternative non-
equivalent, maybe “incomparable”, explications? Most of the rest of this paper is an attempt
to show that there actually are no, and can be no, convincing explicanta of “reducibility”
which are very different from relative interpretability.” For sure, (relative) interpretability
is a natural and venerable concept. But the conclusion that there can be no convincing
explanation of “reducibility” very different from interpretability is surprising (also see [21]).
Well, of course it depends on what “incomparable” and “very” in the quote mean. At any
rate, many important phenomena, as we have seen in the discussion following Theorem
2.5, are not covered by this notion. More often than not, it turns out that it is either
too general or too narrow. It’s perhaps advisable to reflect on the wider purpose of these
notions by looking at their natural habitat of application. Proof-theoretic reducibility is a
crucial notion in the foundations of mathematics where the focus is on ”natural” theories
that serve as background frameworks for the formalization of chunks of mathematics.
By contrast, the notion of interpretability is typically concerned with all theories of a
certain kind, where reasonableness is not part of the concept of a theory. This leads to
degree-theoretic studies of theories which focus on the algebraic structure of degrees of
interpretability. In the latter enterprise the inclusion of “unreasonable” theories is of the
essence (see [40]).

3 Weak Theories of Inductive Definitions

In this final chapter we come to the main part of this article which aims to explain
how infinitary derivations can be used in proof theory without compromising finitistic
reduction. The length of these derivations and the cost of their transformations is usually
controlled by ordinals from an ordinal representation system. From the work of Gentzen in
the 1930’s up to the present time, this central theme is manifest in the assignment of ‘proof
theoretic ordinals’ to theories, measuring their ‘consistency strength’ and ‘computational
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power’, and providing a scale against which those theories may be compared and classified.
This branch of proof theory is known as ordinal analysis (see [56, 66, 49, 53] for more
information).

Our goal will be achieved with the help of intuitionistic fixed point theories that are
obtained from intuitionistic theories of inductive definitions by relaxing the least fixed
point property associated with an inductively defined set.

A central feature of many constructive approaches to mathematics (e.g. Martin-Löf’s
type theory) is the insistence that sets of objects have to be generated according to rules.
Formal theories of inductive definitions were proposed and investigated in the 1960s with
the aim of assaying the scope of constructive foundations.12

From a set-theoretic point of view, any monotone operator on N gives rise to an
inductive definition. A monotone operator is a map Γ that sends a set X ⊆ N to a
subset Γ(X) of N and is monotone, i.e. X ⊆ Y ⊆ N implies Γ(X) ⊆ Γ(Y ). Owing to
monotonicity, the operator Γ will have a least fixed point IΓ ⊆ N, i.e. Γ(IΓ) = IΓ and for
every other fixed point X of Γ (i.e. Γ(X) = X) one has IΓ ⊆ X. Set-theoretically IΓ is
obtained by iterating Γ through the ordinals,

Γ0 = ∅, Γ1 = Γ(Γ0), Γα = Γ(
⋃

ξ<α

Γξ).

The axioms of set theory guarantee that one finds an ordinal τ such that Γ(Γτ ) = Γτ , and
the set Γτ will be the least fixed point, on account of Γ’s monotonicity.

If one adds a new 1-place predicate symbol P to the language of arithmetic, one can
describe the so-called positive arithmetical operators. They are of the form

ΓA(X) = {n ∈ N | A(n,X)}

where A(x, P ) is a formula of the language of PA upon augmentation by P in which
the predicate P occurs only positively. The syntactic condition of positivity then ensures
that the operator ΓA is monotone. Below we shall focus on special positive arithmetic
operators. More generally, we shall allow for iterated inductive definitions.

Definition 3.1 The language L1(Q) extends that of Heyting Arithmetic, by means of
a new unary predicate symbol Q, whereas L1(Q,P ) denotes the extension by two unary
predicate symbols P and Q. For convenience we assume that the free variables v0, v1, v2, . . .
and the bound variables x0, x1, x2, . . . are syntactically different. Terms are built from free
variables, constants and function symbols in the usual way.

The set of strictly positive operator forms is characterized by the strictly positive
formulas of L1(Q,P ). The latter are generated by the following clauses:

1. Every formula of L1(Q) is a strictly positive formula.

2. For every term t the formula P (t) is a strictly positive formula.

3. The strictly positive formulas are closed under ∃, ∀,∧ and ∨.

4. If A is an L1(Q)-formula and B is a strictly positive formula, then A → B is a
strictly positive formula.

12At the time a particular focus of proof theorists was Spector’s 1960 functional interpretation of Z2 via
bar recursive functionals. The question whether such functionals are acceptable on constructive grounds
was of great interest to proof theorists, constructivists and logicians who wanted to plumb the boundaries
of constructivism (e.g. Gödel).
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A strictly positive operator form is a strictly positive formula that contains at most v0 and
v1 as free variables. The set of accessibility operator forms is the subset of the strictly
positive operator forms that have the form

A ∧ ∀z[B(z) → P (z)]

with A,B ∈ L1(Q). The set of strongly positive operators forms is the set of strictly
positive operators forms that are generated by the clauses 1–3 (omitting 4).

Definition 3.2 The language Lstrict arises from L(HA) by adding a new unary predicate
PA for every strictly positive operator form A(P,Q, v0, v1) of L1(Q,P ).

To formulate axioms pertaining to PA we use the following shorthands: PAs (t) stands
for PA(〈t, s〉) and PA<s(t) for t = 〈(t)0, (t)1〉∧(t)1 < s∧PA(t). Here 〈·, ·〉 denotes a primitive
recursive pairing function with projections (·)0 and (·)1.

The theory ÎD
i

n(strict) has Lstrict as its language and is based on intuitionistic logic.
It comprises all axioms of HA with the induction scheme extended to all Lstrict-formulas
and has for every strictly positive operator form A(P,Q, v0, v1) the fixed point axiom:

(∀y < n)(∀x)[PAy (x) ↔ A(PAy , P
A
<y, x, y)].

Let ÎD
i

<ω(strict) :=
⋃
n∈N ÎD

i

n(strict).

The theories ÎD
i

n(acc), ÎD
i

<ω(acc), ÎD
i

n(strong), and ÎD
i

<ω(strong) are defined analo-
gously by restricting the fixed point axioms to the pertaining operator forms.

Remark 3.3 If one adds the schema

(PA-Induction) (∀x)[A(ϕ, x) → ϕ(x)] → (∀x)[PA(x) → ϕ(x)],

for all formulas ϕ(v), to the axioms of ÎD
i

1(strict) one arrives at a rather strong theory,
denoted by IDi

1(strict), which is of the same strength as its classical version ID1(strict).
PA-Induction schematically express the leastness of the fixed point predicate PA.

The classical theories ÎDn(strict) are much weaker than IDi
1(strict). Yet, ÎD1(strict)

is stronger than PA and ÎDn+1(strict) is stronger than ÎDn(strict). That the intuitionis-
tic theories exhibit a completely different behavior, was first observed by Wilfried Buchholz
(see [10]). Indeed, it turned out that all the intuitionistic fixed points hierarchies collapse
to HA.

Buchholz’ work in [10] spawned several extension results.

Theorem 3.4 (i) (Buchholz [10]) HA =Π0
2
ÎD

i

n(strong).

(ii) (Arai [6]) ÎD
i

<ω(strong) is conservative over HA

(iii) (Rüede, Strahm [64] ) The theories ÎD
i

1(strict) and ÎD
i

<ω(acc) are conservative over
HA for all negative and Π0

2-sentences of L(HA).

(iv) The above results still obtain when one adds schemata TI(≺) for primitive recursive
≺ to the above theories.

(v) All of the theories of (i), (ii), (iii) are finistically reducible to HA.

(vi) All of the theories of (i), (ii), (iii), when augmented by TI(≺), are finistically re-
ducible to HA+TI(≺).
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Proof : Buchholz’ proof uses an interpretation of ÎD
i

n(strong) in HA + Church’s thesis
which is known to be conservative over HA for Π0

2-formulas.
(ii) Arai’s extension uses the techniques that were used in Goodman’s theorem to show

that HAω + AC, i.e., Heyting arithmetic in all finite types together with the axiom of
choice for all type levels, is conservative over HA.

(iii) Rüede and Strahm’s proof first employs recursive realizability to reduce ÎD
i

n(strict)

to ÎD
i

n(acc) (following Buchholz [12]) and subsequently models ÎD
i

n(acc) in a classical the-
ory with arithmetic comprehension, using an argument from [20], where it is shown that
a Π0

2 fixed point can be obtained for the accessibility inductive definition of Kleene’s O.
(iv) follows from the fact that all transformations between the pertaining theories also

work in the presence of TI(≺).
(v) and (vi). The methods employed are direct proof transformations that give rise to

primitive recursive functions. More details will be provided in Theorem 3.9. ⊓⊔

3.1 Measuring the complexity of reductions

The foregoing reductions can be engineered by primitive recursive functions. Still there
remains the question whether these results can be obtained by stricter notions of reduction.
This has been investigated by Michael Toppel in his thesis [67]. To discuss the cost of proof
transformations, we recall some notions pertaining to length of proofs and proof-growth.
Taking any of the familiar proof systems (e.g. Hilbert-style, natural deduction, sequent
calculus, Schütte calculus), the length of a proof (aka derivation and deduction), D, will
be denoted by |D|. The latter is the total length of D, i.e., counting the total number of
all occurrences of symbols in D.

A function g : N → N has polynomial growth rate if it is eventually dominated by a
polynomial p(x) in x with coefficients in N, i.e., there exists m ∈ N such that g(x) ≤ p(x)
for all x > m.

By 2nk we denote the tower of k many two’s with the number n at the top, i.e., 2n0 = n

and 2nr+1 = 22
n
r . A function g : N → N is said to have (at most) elementary growth (or

Kalmar elementary growth) if there exists a number m such that g is eventually dominated
by the function x 7→ 2xm. By contrast, we say that g has super-exponential growth rate if
there exists a polynomial p(x) in x with coefficients in N such that g(x) ≤ p(2xx) for all
sufficiently large x ∈ N, but g does not have elementary growth.

Definition 3.5 If S is a theory and S ⊢ ψ let Dψ
S denote the shortest proof of ψ in S.

Let S and T be theories such that S is a subtheory of T . Let Γ be a set of formulas of
L(S).

(i) We say that T has at most polynomial speed-up over S with respect to Γ if there
exists a polynomial p(x) with coefficients in N such that

|Dψ
S | < p(|Dψ

T |)

holds for all ψ ∈ Γ such that S ⊢ ψ.

(ii) T is said to have super-exponential speed-up over the theory S with regard to Γ if
there exists a sequence ψn of Γ-theorems of S such that there is no function g with
elementary growth rate satisfying |Dψn

S | < g(|Dψn

T |) for all n, however, there exists a

function f with super-exponential growth rate such that for all n, |Dψn

S | < f(|Dψn

T |).
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To state the results of Theorem 3.4 in a precise quantitative form, it is important to pay
attention to the way how function symbols for primitive recursive functions are handled
in the language.

Definition 3.6 The set of primitive recursive function symbols (p.r.f.s) is inductively
defined as follows:

1. The symbol for the successor function S is a symbol for a p.r.f.s of arity 1.

2. The symbol for the constant-0-function of arity n, Cn, is a p.r.f.s of arity n.

3. The symbol for the projection to the k-th of n inputs, Pnk , is a p.r.f.s of arity n.

4. If fn1

1 , . . . , f
nn1+1

n1+1 are p.r.f.s with their arities shown, then [Sub(fn1

1 , . . . , f
nn1+1

n1+1 )]n,
where n := max{n2, . . . , nn1+1}, is a p.r.f.s of arity n.13

5. If fn1

1 , fn2

2 are p.r.f.s with their arities shown, then [Rec(fn1

1 , fn2

2 )]n, where n :=
max{n1 + 1, n2}, is a p.r.f.s of arity n.

Definition 3.7 The axioms of the p.r.f.s are the universal closures of the following for-
mulas.

1. For S:
¬S(x) = 0̄

S(x) = S(y) → x = y

2. For a Cn:
Cn(x1, . . . , xn) = 0̄

3. For a Pnk :
Pnk (x1, . . . , xn) = xk

4. For a fn ≡ [Sub(fn1

1 , . . . , f
nn1+1

n1+1 )]n:

fn(x1, . . . , xn) = fn1

1 (fn2

2 (x1, . . . , xn2
), . . . , f

nn1+1

n1+1 (x1, . . . , xnn1+1
))

5. For a fn ≡ [Rec(fn1

1 , fn2

2 )]n:

fn(0, x1, . . . , xn−1) = fn1

1 (x1, . . . , xn1
)

fn(S(y), x1, . . . , xn−1) = fn2

2 (fn(y, x2, . . . , xn−1), y, x3, . . . , xn2
).

We require additional measures of complexity for terms.

Definition 3.8 Assume f is a p.r.f.s. The degree of f , dg(f), is defined as follows:

1. If f is S,Cn or Pnk , then dg(f) = 1.

2. If f ≡ [Sub(fn1

1 , . . . , f
nn1+1

n1+1 )]n, then

dg(f) =

n1+1∑

i=0

dg(fi) + 1.

13Note that there have to be n1 function symbols substituted into a function symbol with arity n1.
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3. If f ≡ [Rec(fn1

1 , fn2

2 )]n, then

dg(f) = dg(f1) + dg(f2) + 1.

For a term t, define dg(t) to be the largest degree of a p.r.f.s occurring in t.
The rank of t, rk(t), is defined as follows.

1. If t ≡ x or t ≡ 0̄, then rk(t) = 0.

2. If t ≡ f(t1, . . . , tn), then rk(t) = n · (max{rk(ti)|1 ≤ i ≤ n}+ 1).

For naturals k, n,m define km0 := m and kmn+1 := kk
m
n .

Theorem 3.9 Assume that both ÎD
i

n(strict) and HA are formulated with the same prim-
itive recursive function symbols of degree ≤ g (thus finitely many). Moreover, let W be a
family of binary Σ0

0 definable relations of the language of HA. By TI(≺) we denote the

schema of transfinite induction along ≺ for all formulas of ÎD
i

n and TIarith(≺) denotes
the schema of transfinite induction along ≺ for all formulas of HA. Then there exists a
polynomial P (X) with positive integer coefficients such that for all almost negative and Π0

2

formulas A of HA,

ÎD
i

n(strict) + {TI(≺) |≺∈ W}
m
A ⇒ HA+ {TIarith(≺) |≺∈ W}

P (m2g
2g)

A .

Proof : This a consequence of the following results from [67]: Lemma 4.1.6, Theorem
4.1.12, Theorem 4.2.8 and Theorem 4.3.1. ⊓⊔

The foregoing Theorem shows that the cost of proof transformation between ÎD
i

ω(strict)
and HA is controlled by an elementary function. As a special case, note that if we restrict
the vocabulary to the symbols for the functions 0, S,+, ·, then their degree is ≤ 3 and thus
x 7→ P (x66) is an upper bound for the cost of this proof transformation. ⊓⊔

The foregoing theorem has important consequences as far as ordinal analysis is con-
cerned in that it can be used to show that proof-theoretical reductions between theories
established via ordinal analysis are even strictly finitistic. Here strictly finitistic means
that the proof transformations are controlled by elementary functions and can formally be
proved in elementary recursive arithmetic. The next subsection will provide some details
as to how this is achieved.

3.2 ÎD
i

<ω(strict) plus TI(≺) as a metatheory for ordinal analysis

That the theory in the title of this subsection provides a background theory in which the
proof theory of infinitary derivations with ordinal labels from an ordinal representation
system (with ordering ≺) can be carried out in an almost unencumbered style, was first
pointed out by Wilfried Buchholz in [10].

Hitherto the strategy for arguing that infinitary proof theory can be carried out in an
arithmetic theory beefed up by transfinite induction was based on the observation that it
often suffices to focus on recursive proof–trees instead of arbitrary derivations. In many
cases it is of course possible to restrict oneself to codes for recursive proof trees (see e.g.
[57, 44]). One of the drawbacks of this approach is that it requires a lot of encoding of
metamathematical notions and is cumbersome to carry out in detail.14 As a result, one

14This is also the reason why complete proofs of Gödel’s second incompleteness theorem are hard to find
in the literature.
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frequently resorts to hand waving rendering it difficult to get precise bounds for the length
of proof transformations. The problem gets aggravated when the proof system has even
more complex infinitary proof rules than the ω-rule. The ordinal analysis for Kruskal’s
theorem by Rathjen and Weiermann in [55] used derivations with Buchholz’ Ω-rule, the
formalization of which usually requires an iterated inductive definition, making it far from
clear that one can resort to recursive derivations in this case. A treatment of the latter
in ACA0 was sketched at the end of [55], but the paper’s two finishing lines indicate that
more needs to be done.

To carry out all the details of this constructivization would mean to produce
another lengthy paper. But it is high time that we finished this paper; so we
simply quit at this point.[55, pp. 87–88]

With the help of ÎD
i

2(strict), a complete formalization could finally be furnished by M.
Toppel in [67, chap. 4].

We will only indicate the general procedure for the Schütte-style (cf. [56]) ordinal
analysis of a theory using a derivability predicate D(α, ρ,Γ) signifying that the sequent
Γ is derivable with length α and cut-rank ρ, where the “ordinals” come from some repre-
sentation system ORT with ordering ≺. Such a predicate is usually defined by transfinite
recursion on α according to the following pattern:

(∗) D(α, ρ,Γ) ⇔ α ∈ ORT and Γ is either an axiom or the conclusion

of an inference with premises (Γι)ι∈I such that

for every ι ∈ I there exists αi ≺ α satisfying D(αι, ρ,Γι),

and if the inference is a cut the cut-formulas have rank ≺ ρ.

Alternatively, one can view (∗) as a fixed point axiom in the theory ÎD
i

1. The “well-
foundedness” of the derivability predicate D is then guaranteed in the background theory

ÎD
i

1 + TI(≺) by the fact that the premises always have smaller ordinal “tags” than the
conclusion, i.e., all the relevant results about this notion of derivability can be proved in
the customary way by transfinite induction on the ordinal length and cut-rank.

Let’s discuss a typical example of an ordinal analysis of a classical theory T . The starting
point is an ordinal representation system that gives rise to a primitive recursive (actually
elementary) well-ordering < together with a canonical sequence of initial segments <k of
< such that <=

⋃
k∈N <k. From a proof D of a Π0

2-statement A in T one effectively
determines an initial segment <k of < such that there is a cut free proof of A of length
<k in an infinitary proof system. It is a fact that for many ordinal analyses

ÎD
i

n(strict) + {TI(<k) | k ∈ N}

provides an adequate metatheory for handling infinitary proofs (or rather provability with
ordinal bounds) and the cut elimination procedure (where actually n = 1 or n = 2). In
other words, if a background theory is expressive enough to be able to formalize infinite
derivability and comes equipped with sufficient amounts of transfinite induction, then

intuitionistic logic suffices to carry out an ordinal analysis of T . As a result, ÎD
i

n(strict)+
{TI(<k) | k ∈ N} also proves A and with the help of Theorem 3.9 it follows that HA +
{TI(<k) | k ∈ N} proves A. Thus T is proof-theoretically (or finitistically) reducible to
HA+ {TI(<k) | k ∈ N}.

Ordinal analyses, such as the the ones in Schütte’s book [56] (especially those in chapter
VIII. Predicative Analysis), can be easily seen to just require a metatheory of the form
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ÎD
i

<ω(strict) plus TI(≺). Also ordinal analyses of some of the strongest theories (e.g.
[11, 48, 51, 52]) just require an intuitionistic metatheory.

Whereas most ordinal analysis in the literature can be seen to just require an intuition-
istic background theory (sometimes after removing some unnecessary classical arguments),
there are exceptions to this pattern. For instance in the book by Buchholz and Schütte
[14], the treatment becomes quite enmeshed with classical logic at the meta level. It is
based on the Ωn-rules (and even Ωα-rules) which very likely could be handled in the the-

ories ÎD
i

n+1(strict) and ÎD
i

α+1(strict), respectively, but the authors also frequently use
the principle

∃β P (β) → ∃β [P (β) ∧ ∀γ < β ¬P (γ)]

which is only classically equivalent to transfinite induction. However, there are other
ordinal analyses of the theories treated in [14] that avoid this problem, e.g. the ones from
[11] and [48].
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(eds.): Proceedings of the International Congress of Mathematicians Madrid 2006, Volume II
(European Mathematical Society, 2006) 45–69.

[54] M. Rathjen: Remarks on Barr’s theorem. Proofs in Geometric Theories.. In: Concepts of
Proof in Mathematics, Philosophy, and Computer Science. Ed. by D. Probst and P. Schuster.
Vol. 6. Ontos Mathematical Logic (Walter de Gruyter, Berlin, 2016) 347–374.

[55] M. Rathjen and A. Weiermann: Proof–theoretic investigations on Kruskal’s theorem, Annals
of Pure and Applied Logic 60 (1993) 49–88.
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