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Spectral Pitch Similarity is a Predictor
of Perceived Change in Sound- as Well
as Note-Based Music

Roger T. Dean1, Andrew J. Milne2 and Freya Bailes3

Abstract
Spectral pitch similarity (SPS) is a measure of the similarity between spectra of any pair of sounds. It has proved powerful in
predicting perceived stability and fit of notes and chords in various tonal and microtonal instrumental contexts, that is, with
discrete tones whose spectra are harmonic or close to harmonic. Here we assess the possible contribution of SPS to lis-
teners’ continuous perceptions of change in music with fewer discrete events and with noisy or profoundly inharmonic
sounds, such as electroacoustic music. Previous studies have shown that time series of perception of change in a range of
music can be reasonably represented by time series models, whose predictors comprise autoregression together with series
representing acoustic intensity and, usually, the timbral parameter spectral flatness. Here, we study possible roles for SPS in
such models of continuous perceptions of change in a range of both instrumental (note-based) and sound-based music
(generally containing more noise and fewer discrete events). In the first analysis, perceived change in three pieces of
electroacoustic and one of piano music is modeled, to assess the possible contribution of (de-noised) SPS in cooperation
with acoustic intensity and spectral flatness series. In the second analysis, a broad range of nine pieces is studied in relation to
the wider range of distinctive spectral predictors useful in previous perceptual work, together with intensity and SPS. The
second analysis uses cross-sectional (mixed-effects) time series analysis to take advantage of all the individual response series
in the dataset, and to assess the possible generality of a predictive role for SPS. SPS proves to be a useful feature, making a
predictive contribution distinct from other spectral parameters. Because SPS is a psychoacoustic “bottom up” feature, it may
have wide applicability across both the familiar and the unfamiliar in the music to which we are exposed.

Keywords
Continuous responses, psychoacoustics, perception of change, spectral pitch similarity, timbre, sound-based music

Submission date: 20 December 2018; Acceptance date: 9 April 2019

A large body of work has assessed the perceived pleasant-

ness or fit of conventionally tuned notes or chords within a

specified context of preceding scale, melody or chord

sequence (Krumhansl, 1990; Milne, Laney, & Sharp,

2015). Much evidence suggests that enculturation, and

even relatively short-term familiarization, can contribute

to such responses. However, there is also evidence that

basic psychoacoustic features might contribute to the

responses, independent of prior exposure and learning, and

thus possibly be more fundamentally explanatory. For

example, in recent works, Milne has revealed that a novel

psychoacoustic feature, spectral pitch similarity (SPS), and

the closely related spectral pitch class similarity, are

strongly predictive for the perceived fit and similarity of

successively sounded tones or chords with harmonic or

somewhat inharmonic spectra (Milne et al., 2015; Milne,

Laney, & Sharp, 2016; Milne & Holland, 2016).

The SPS of two tones (or segments of continuous sound)

is the degree to which they have partials with closely
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similar frequencies. SPS uses a Gaussian smoothing around

the component frequencies, based on prior psychoacoustic

knowledge of imprecision of pitch perception. SPS was

originally derived with a view to its application to what

Landy has termed “note-based music” (Landy, 2009),

music involving instruments that mainly produce harmonic

complex tones, discrete events, and commonly defined

pitch and harmonic structures. Examples are familiar mem-

bers of the classical canon, such as piano or chamber music

by Mozart, Beethoven, or Mahler. But in contrast, much

music of the last 70 years focuses on, or strongly embraces,

continuous timbral change, sometimes downplaying dis-

crete events and distinct pitches, sometimes also not using

metrical rhythmic structures. In comparison with note-

based music, such music often involves more continuity,

and greater timbral flux (faster changes in spectral fea-

tures), including greater noise components. Examples are

noise- or glitch music, drum and bass, and acousmatic

music such as that of Xenakis, Stockhausen, or Wishart.

Such music has been termed “sound-based music” (Landy,

2009), and hence the present article asks whether SPS is

relevant to perception of such music, as well as to note-

based music. Naturally, hybrids of the two types of music

exist, forming a continuum; for clarity, we note that the axis

of tonality versus atonality (a key feature of the classical

canon up to the early 20th century) is primarily a subdivi-

sion of note-based music, since tonality and even pitch are

absent or less common in sound-based music.

Thus, the purpose of this study is to assess the possible

perceptual influence of SPS, and specifically, to determine

as a first step whether SPS may be influential in models of

the continuous perception of change in music, not only in

note-based contexts involving tonal harmonies expressed in

melodies and chords, but also in sound-based music where

such tonal features are either subordinate or lacking.

We measure listeners’ continuous perceptions of change

in response to our stimuli, as described in previous work

(Dean & Bailes, 2010) and elaborated in the Methods sec-

tion of this article. The instruction to indicate perceived

change has the advantage of being sufficiently general that

it can encompass the full range of what each individual

subjectively deems to be substantial enough to record. In

this way the measure is designed to capture the most impor-

tant perceptions of sonic change, without prescribing what

these should be. It has been found previously that such

continuous perceptions of change are similar amongst

music expertise groups such as specialists in electroacous-

tic music, versus expert musicians, versus non-musicians

(Dean, Bailes, & Dunsmuir, 2014a). Perceived arousal and

valence, the dimensions of affect often studied in studies of

music emotion, can be substantially influenced by ongoing

perceptions of change, as judged by vector autoregression

analysis, a multivariate form of time series analysis

(described further in the Methods section). In contrast, per-

ceived change is hardly influenced by arousal or valence

(Bailes & Dean, 2012). “Change” seems therefore to be a

response measure close to perception, rather than deeply

influenced by cognition and expertise, and hence apt for

our purpose here to obtain evidence on the possible percep-

tual role of SPS.

The continuous perception of change while listening to a

variety of music has been measured and modeled in several

studies (Bailes & Dean, 2012). Broadly, these have shown

using time series analysis techniques that continuous varia-

tion in acoustic intensity and spectral properties (com-

monly assessed as the MPEG7 high-level parameter

spectral flatness)1 interact as predictors in successful mod-

els, with the influence of intensity predominating. Particu-

larly in recent studies of perception of timbres of individual

short sounds, or continuous perception of phrasing in

timbre-focused music such as some electroacoustic music

(Olsen, Dean, & Leung, 2016), a variety of other spectral

parameters (e.g., spectral centroid, spectral flux, inharmo-

nicity, roughness, spectral spread) have also been found to

be important.

Here, our hypothesis was that when spectral parameters

are involved in models of continuous perception of change,

progressive change in SPS would prove to be a useful pre-

dictor, given its success in relation to note-based music. We

derived a measure of the SPS of one temporal frame to the

next temporal frame, in which as previously the cosine

similarity of successive spectral pitch representations is

determined. Our focus on sound-based (containing signif-

icant acoustic noise) as well as note-based music required

minor additions to the measurement protocol to take

account of the substantial noise floors in some of the music

studied (see Methods). Thus, throughout this manuscript

SPS refers to SPS measured on de-noised acoustic signals

(the process used to denoise the signals and then to obtain

their SPS is detailed, below, in “Acoustic Measures”).

We used two previously obtained datasets of perception

of change in relation to a wide range of music. One com-

prised only four pieces, and was suitable for time series

analysis piece by piece (Bailes & Dean, 2012; Dean &

Bailes, 2010). The other comprised nine diverse pieces

(Dean & Bailes, 2016), and provided enough data to allow

a cross-sectional time series analysis of all pieces and all

participants taken together, in which the individuality of

each response series was retained and modeled with ran-

dom (group-level) effects, as explained below under

“Autoregressive Time Series Analysis (TSA) and Cross-

Sectional Time Series Analysis (CSTSA).” In relation to

the first dataset, we took a general approach of establishing

a basal autoregressive (AR) time series model (summarized

below), and then considering whether appropriate lags (pre-

vious values) of SPS alone could contribute to the model of

perceived change. Then, following earlier work, we added

acoustic intensity and spectral flatness and their lags as

predictors, and assessed whether SPS still had a contribu-

tion to make (for all models, each individual lag had a

duration of 500 ms). In the case of the nine-piece second

dataset, where data were sufficient in extent and diversity,
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we firstly established a model of perceived change contain-

ing autoregression, acoustic intensity, and all the spectral

parameters considered (centroid, flatness, flux, inharmoni-

city, roughness, spread, together with SPS).

For spectral flux and SPS only, each value represents the

relationship between two successive temporal frames of the

audio data stream. Thus, they are both somewhat like first-

differenced variables, which are obtained by replacing a

series by the series representing successive differences

amongst the values, and commonly used to make data

series statistically stationary (more details below, in

“Autoregressive Time Series Analysis (TSA) and Cross-

Sectional Time Series Analysis (CSTSA)”). From the ini-

tial full model, we then used a systematic model selection

procedure (see Methods) to achieve parsimony while

retaining good fit. This then gave a strong indication of the

likely general role of SPS, which was found to be quantita-

tively and statistically significant in predicting perceived

change responses.

Methods

The analyses here are based on two studies, summarized in

Tables 1 and 2. The note- and sound-based pieces used in

these studies have been described in detail in previous pub-

lications (first study: Dean & Bailes, 2010; Bailes & Dean,

2012; Dean et al., 2014a; Dean, Bailes, & Dunsmuir,

2014b; second study: Dean & Bailes, 2014, 2016). We

describe below the participants’ task used here (perception

of change in the music) and detail the acoustic analyses

(several of which have not been applied before to these

data), and the modeling of perceptions of change.

Participants

The first study had 16 undergraduate participants (12

female), the second study had 21 undergraduate participants

(all female). These were nonmusicians; additional demo-

graphic information is available in the previous publications.

Stimuli and Procedure

The participants’ task in both studies was to indicate their

continuous perception of musical change (self-defined)

while listening. The detailed instructions provided to the

participants were as follows:

You are going to hear a piece of music over headphones. Your

task is to detect whether the music changes and to indicate this

by moving the mouse during any perceived change. The

greater the change, the faster you should move the mouse. For

example, it may be that you wish to make a scrubbing motion

with the mouse to indicate a strong and sudden change in the

music. The smaller the change, the slower you should move

the mouse. For example, it may be that you wish to move the

mouse only slightly to indicate a subtle change in the music.

Please move the mouse for the duration of any change. If you

DON’T think the music changes, keep the cursor still. Please

try to maintain your CONCENTRATION throughout each

piece. Your mouse movements will be recorded while the

sound is playing. There is NO NEED TO CLICK the mouse

while the sound is playing.

In essence participants were required to move a com-

puter mouse at a rate reflecting the rate of the change they

perceived, and to stop when they heard no change. Mouse

movement was used because it is an activity that corre-

sponds well with the activity and energy symbolized by

sonic change. Mouse movement rates were averaged over

500 ms windows, to give a 2 Hz sampled time series. Prior

work and the models here demonstrate that this sampling

rate was ample, since predictor influences operate over

periods up to 5 seconds. One participant failed to complete

the response to one piece, so there were 188 individual

response series under analysis from Dataset 2.

Acoustic Measures

All acoustic measures were obtained at 2 Hz (i.e., analysis

frames were 500 ms). SPS was measured using a MATLAB

script by the second author (developed from the earlier

analysis described in Milne et al., 2016). The script and

associated scripts are available on the supplemental web

page at https://osf.io/prsbw/.

SPS is the cosine similarity (uncentred correlation)

between two magnitude spectra in the log–frequency

domain. Crucially, however, all peaks in both spectra are

smoothed by a Gaussian distribution, using convolution in

the log–frequency domain, prior to their cosine similarity

being calculated. This smoothing models inaccuracy of

pitch perception and the extent of this inaccuracy is para-

meterized by the standard deviation of the Gaussian distri-

bution, which is here set to 10 cents—this being close to

values found optimal in previous studies (Milne et al., 2015

and Milne et al., 2016, cf. Figure 1 in the latter). The roll-

off parameter used in previous studies with tones (to allow

for decreasing or increasing perceptual weighting of

ascending harmonics in the acoustic signal) is not used in

the present study, since many of the sounds are more com-

plex, highly inharmonic, and involve considerable noise.

Table 1. Dataset 1.

Musical extracts (date; duration) Description

Anton Webern: Variations for Piano,
op. 27, nos. 2 and 3 (1936; ca. 3’)

Piano music; serial;
note-based

Iannis Xenakis: Bohor (1962; ca. 3’) Electroacoustic music;
sound-based

Trevor Wishart: Red Bird (1977; ca. 3’) Electroacoustic music;
sound-based

Roger Dean: soundAffects (2003; ca. 3’) Electroacoustic music;
sound-based

Dean et al. 3
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Given the high noise content, signal–noise separation

was used to remove the noise floor prior to smoothing and

calculating cosine similarity. The method used to achieve

this signal–noise separation is detailed in (Sethares, Milne,

Tiedje, Prechtl, & Plamondon, 2009). For each component

of the spectrum, the median magnitude is calculated across

a centred window of 40 bins. If the magnitude of that com-

ponent is less than noiseFactor times the window’s median,

Figure 1. Acoustic features of Dataset 2 and their correlations. The diagonal shows the distributions of feature values for the eight
parameters studied. The x-axis scale for each parameter can be seen alternately in the bottom and top line of the figure; the y-axis is
shown alternately on the left and right. The other graphs show the scatter plots and the fit for each pair of features (and the measured
correlation and probability level for each plot is shown in the square placed symmetrically on the opposite side of the diagonal). The
features are in order along the diagonal: acoustic intensity; spectral flatness; SPS; spectral centroid; roughness (labelled dissonance);
spectral flux; inharmonicity; and log (spectral spread). *** indicates significance at p < .001 (for all correlations).

Table 2. Dataset 2.a

Musical extracts (release date when appropriate; duration) Description

Australian aboriginal music (released 1994; 1’39”) Wonga style, male singers, clapsticks and didjeridu:
primarily sound-based

Art of Noise: “Camilla” (released 1996; 1’55”) A drum and bass remix: primarily sound-based
Balinese Gamelan: The Munduk Village Ensemble (2’10”) Traditional: hybrid, note- and sound based
Miles Davis: Tutu (1986; 2’3”) Rhythmic, funk-oriented jazz: hybrid, note- and sound based
Brian Eno: “Unfamiliar Wind (Leeks Hill)” (1978-82, 1’48”) Ambient electronic: sound-based
Philip Glass: Gradus (1992; 1’59”) Saxophone solo: note-based
Mozart: Piano Concerto No. 21 in C Major, K. 467,

3rd Movement (2’19”)
Piano and orchestra: note-based

Hazel Smith and Roger Dean: The Riting of the Runda
(1995; 1’20”)

Performance text in a constructed language, electroacoustic
manipulation: sound based

Iannis Xenakis: Metastaseis (1955; 1’59”) Textural orchestral music: primarily sound-based

aExtracts listed in alphabetical order (group or artist’s last name) by artist/creator.
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it is considered noise and removed. The parameter noise-

Factor, therefore, controls the threshold between signal and

noise. After preliminary investigation of the spectral pat-

terns obtained from several of our target pieces, including

comparison with conventional Fast Fourier Transform

spectra, this was set throughout the analyses at 3. A con-

sequence of this is also that some audio frames in our

analysis, where there are no discrete spectral peaks (rather

all sound is within the energy range of the noise floor) do

not contain any usable frequency values: that is, at least one

of the spectral pitch vectors is all zeros and so cosine dis-

tance is mathematically undefined (it is 0/0). Thus, in order

then to measure cosine similarity between successive

frames, a minimal amount of random statistical noise (a

small multiple of MATLAB’s “eps,” the floating-point

relative accuracy parameter) is added to each, to ensure that

vectors always contain at least very small values. Such addi-

tion of statistical noise is commonly used for similar pur-

poses, for example, in cepstral analyses. Cosine similarity

measures, such as SPS, are favorable from the point of view

of emphasizing spectral pattern similarity since, like correla-

tion, they are unaffected by alterations in overall acoustic

intensity levels (unlike spectral flux, which uses a Euclidean

metric that is sensitive to overall magnitude).

Acoustic intensity and spectral flatness time series (2

Hz) were obtained in the earlier work using Praat (version

5.0, Boersma 2001).

In brief, intensity corresponds to unweighted sound

pressure level (SPL) in dB. Spectral flatness is measured

as Wiener Entropy, expressed on a log scale from 0 to

minus infinity (the latter corresponds to an infinitely thin

spectral peak, the former to white noise). For the modeling

of the second, nine-piece dataset, there was sufficient data

to allow the assessment of additional potentially salient

acoustic parameters. Based on prior work on both isolated

sounds and continuous timbral music (Olsen et al., 2016;

Peeters, Giordano, Susini, Misdariis, & McAdams, 2011;

Siedenburg, Fujinaga, & McAdams, 2016) we chose five

additional features from the Essentia toolbox (Bogdanov

et al., 2013): centroid (which measures the weighted fre-

quency mean of the spectrum); flux (which measures

jointly progressive changes in intensity and spectrum);

inharmonicity (as above); “dissonance” (as it is named by

Essentia, but perhaps better termed roughness, the term we

will use below); and spread (a measure of how concentrated

the spectral energy is with respect to frequency range).

Autoregressive Time Series Analysis (TSA) and Cross-
Sectional Time Series Analysis (CSTSA)

Discrete time series of many processes, for example in

physics, movement, physiology, and psychology, including

perceptions of musical change and affect, are autocorre-

lated. This means that to some degree the value of the next

event in the time series is predictable from some set of the

preceding values. In the case of perceptions of musical

change, lags (that is, previous events) of up to about 10

sampled at 2 Hz (i.e., 5 seconds) may be predictive. This

means that conventional correlational and regression

approaches are not applicable to modeling such time series

(reviewed in Dean & Dunsmuir, 2016). Extensive specia-

lized techniques of TSA have thus been developed to deal

with such data. TSA models represent the autoregression of

the dependent variable. They also consider the impact of

lags of other potential predictors, which may be exogenous

(i.e., for present purposes, uninfluenced by the dependent

variable), such as the acoustic temporal features of a musi-

cal piece whose perception is studied, or endogenous (i.e.,

potentially mutually influential or influenced by the depen-

dent variable). In the present study we have no endogenous

variables to consider, and we deal with univariate time

series analysis: a tutorial on these methods in relation to

musical perceptions is available (Dean & Bailes, 2010). We

also mention a type of multivariate TSA, called Vector

Autoregression, which allows the assessment of interac-

tions between endogenous variables. Especially in univari-

ate TSA, it is important to ensure that the studied time

series are statistically stationary, which means that the

mean, variance, and the autocorrelations of the series vari-

able are constant across the time series. When raw time

series are not stationary, stationarity is commonly achieved

by differencing the series: that is, constructing a series

whose values are the differences between successive pairs

of values from the original series; this was required here in

some cases (as detailed later). Such stationary differenced

series normally have zero means.

CSTSA is a mixed-effects version of time series analy-

sis, which allows the simultaneous analysis of a panel of

time series gathered from different individuals in response

to a given stimulus (the data are sometimes termed “panel”

or “longitudinal” data). Each individual series is preserved

in the data and model, and possible random effects on

groups, participants, or items can be considered. In our case

observed random effects described the different propensi-

ties of individuals to autoregress their change responses.

There were no significant random effects of pieces’ or

participants’ propensities to induce perceived change (such

as random intercepts: this is not expected with zero mean

differenced series in any case), as distinct from the general

power of acoustic intensity or SPS kinetics to influence

these perceptions as fixed effects. As with mixed-effects

analysis in general, the approach strengthens the statistical

power of the assessment of the fixed effects—the response

propensities shared across individuals—which is here the

main issue of concern. Detailed discussions of CSTSA in

analysis of continuous responses to musical affect are

available (Dean et al., 2014a, 2014b).

For Dataset 1, we modeled the grand average response

of the group of non-musician listeners using autoregression

together with up to 5 lags of the acoustic predictors under

consideration to create AR (autoregressive) and ARX

(autoregressive with external predictors) models. Five lags

Dean et al. 5



were chosen, on the basis that all but one response series

was of order 5 or less in its autoregression (as judged by the

automatic ARIMA [auto-regressive integrated moving

average] auto.arima function in the R “forecast” package)

, and the choice was validated by the fact that no resultant

model required an acoustic predictor lag beyond four.

Models of perceived change in this dataset have been

presented previously (Bailes & Dean, 2012; Dean &

Bailes, 2010) and the extension here was to test the pos-

sible role of SPS.

The more powerful and general analyses were done with

the larger Dataset 2, involving nine diverse musical

extracts. Models of perceived change in this dataset have

not been published previously; rather, the dataset has been

used to investigate perceptions of larger scale musical

structure and to model influences of acoustic and other

factors on perceived affect (Dean & Bailes, 2016). In our

CSTSA using every individual participant response series

within the model, up to 5 lags were again permitted in each

case, both to match the earlier analyses and on the basis of

separately estimated order criteria using Vector Autore-

gression in the “vars” package in R. This also constrained

the number of potential predictors under assessment (circa

45 fixed effects including the autoregressive lags) to an

appropriate range (substantially smaller than the number

of events) even given that the shortest excerpt under study

had only 160 time series events, though many repeated

responses. We used the R lme4 package for these analyses.

In each case, we start with a model containing all the

candidate variables for the particular stage of analysis (as

defined below) and proceed to model selection based on

balancing precision of fit with parsimony. Thus, individu-

ally insignificant predictors are removed unless their

removal substantially worsens the root-mean-square error

(RMSE) between prediction and data, and within those

constraints we seek a minimization of the Bayesian Infor-

mation Criterion (BIC), which is also a primary defense

against overfitting since it penalizes strongly for the addi-

tion of predictors. In the case of the CSTSA, the inclusion

of design-driven random effects (i.e., random effects on

intercept for participant and piece) brings a complexity to

the interpretation of degrees of freedom in the analysis, and

hence to the BIC, and so after removal of insignificant

predictors it is used only as a guide (together with the

RMSE) prior to final selection by means of likelihood ratio

tests (where two nested models can be compared to deter-

mine whether one is probabilistically better than the other,

and without a positive result the simpler is chosen).

In all cases, residuals are assessed for any significant

remaining autocorrelation (which might indicate an inade-

quately specified model). This is done by means of partial

autocorrelation functions (PACF), which assess the direct

influence of lag n on the present event while quantita-

tively discounting for the fact that if lag n influences lag

n � 1 (1st order autocorrelation), then to some degree lag

n inevitably influences lags n� 2 . . . n� 3, etc. indirectly.

Models are accepted providing there are no significant

low-order correlations in the PACFs and few others of

considerable magnitude: with a p < .05 criterion for the

significance of PACFs, one expects by chance 1 in 20

PACF lags that breach the significance limit. In some

cases, the PACF quality criterion required the addition

of AR components in order to achieve a satisfactory qual-

ity of residuals. Such selection approaches have been dis-

cussed in detail in our earlier work (Dean & Bailes, 2010;

Dean et al., 2014a).

Results

Roles of SPS in Models of Perception of Change in
Dataset 1

Here we consider whether SPS can contribute to models of

perception of change in four pieces of unfamiliar music,

based on our earlier models of these data (as shown in

Tables 1 and 2, the pieces comprise excerpts of piano music

by Webern, and of electroacoustic music by Xenakis,

Wishart, and Dean). We ask sequentially:

1. Does SPS alone enhance the optimal purely autore-

gressive time series models (Type 1 models) of con-

tinuous perception of change?

2. Does SPS contribute to such a model to which the

previously studied parameters spectral flatness and

acoustic intensity are also added as potential pre-

dictors (Type 2 models)?

The time series of the continuous perception of musical

change were not stationary and required first differencing

to attain this. Thus, the models concern the first differenced

series; as noted above, SPS already represents the differ-

ence between successive pairs of time samples, and so does

not require differencing.

Tables 3 to 6 shows the key results of these models. For the

Webern piano music example, the perceived change time

series was close to level stationarity, but for comparative

purposes here we chose to model its first difference, as with

the other time series. We labeled the first difference of a series

such as “perceived change” as “dchange.” A positive value of

dchange means that perceived change has increased relative

to perceived change from the previous lag; a negative value of

dchange means that perceived change has decreased relative

to the previous value of perceived change.

In each case, an AR-only and an ARX model are

developed.

No new model was developed.

In essence, the results given in Tables 3 to 6 showed that

for two of the three electroacoustic sound-based pieces,

SPS contributed to the first type of model and for one of

the second model type. For the note-based piece of Webern

piano music, SPS was again useful in the first model type,

but acoustic intensity and spectral flatness supervened in

the second. It is important to understand that time series
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predictors (like the autoregression of the predicted vari-

able) are commonly effective over several lags, and the

exclusion of a lag (such as lag 4) within a set from 1–5 is

merely indicative that the size of its impact is too slight to

achieve individual statistical significance. What counts for

the model is the cumulative mathematical model and the

potentially parallel perceptual impacts. Generally, the coef-

ficients on SPS were cumulatively negative, as would be

expected for the dependence of perceived change on a

parameter that measures similarity (see below for in-

Table 3. Webern.a

Model 1. AR only
sigma2 estimated as 0.001387: log likelihood ¼ 705.89
BIC ¼ �1376.2

z-test of coefficients:

Estimate SE z value Pr(>|z|)

ar1 �0.324395 0.050634 �6.4067 1.487e�10***
ar2 �0.156721 0.052308 �2.9961 .0027343**
ar3 �0.183386 0.05197 �3.5287 .0004176***
ar4 �0.198278 0.052161 �3.8013 .0001439***
ar5 �0.191651 0.050485 �3.7962 .0001469***

Model 2. AR plus SPS: SPS is a predictor
sigma2 estimated as 0.00132: log likelihood ¼ 716.23
BIC ¼ �1385.03

z-test of coefficients:

Estimate SE z value Pr(>|z|)

ar1 �0.3239835 0.0511448 �6.3346 2.379e�10***
ar2 �0.151531 0.0525754 �2.8822 .0039495**
ar3 �0.1752106 0.0522878 �3.3509 .0008055***
ar4 �0.2002758 0.0524357 �3.8195 .0001337***
ar5 �0.164959 0.0510322 �3.2325 .0012273**
SPS �0.0248634 0.0054281 �4.5805 4.639e�06***
l1SPS 0.0232915 0.005421 4.2965 1.735e�05***

Model 3. AR plus SPS, intensity and spectral flatness: only spectral flatness and intensity are retained
sigma2 estimated as 0.0009023: log likelihood ¼ 789.71
BIC ¼ �1508.27

z-test of coefficients:

Estimate SE z value Pr(>|z|)

ar1 �0.47340498 0.05114091 �9.2569 <2.2e�16***
ar2 �0.30273212 0.05616986 �5.3896 7.062e�08***
ar3 �0.25503253 0.05596709 �4.5568 5.193e�06***
ar4 �0.2927456 0.05580055 �5.2463 1.552e�07***
ar5 �0.23588679 0.05511606 �4.2798 1.870e�05***
ar6 �0.18046883 0.05108126 �3.533 .0004109***
dintens 0.00052476 0.00021309 2.4626 .0137931*
l1dintens 0.00275012 0.00021453 12.8194 <2.2e�16***
l2dintens 0.00087193 0.00025181 3.4627 .0005348***
l2dspecf 0.00434479 0.00124611 3.4867 .0004890***
l3dintens 0.00057569 0.00023605 2.4388 .0147350*

Note. AR ¼ autoregression; sigma2 ¼ measure of the mean error between predictions and data; SPS ¼ spectral pitch similarity; BIC ¼ Bayesian
Information Criterion; dvariable¼ first-differenced form of a variable, lndvariable indicates its nth lag; ar¼ autoregressive lag; intens¼ acoustic intensity;
specf ¼ spectral flatness. For all three models:
Significance codes: 0 ‘***’ .001 ‘**’ .01 ‘*’ .05 ‘.’ .1
aThree different types of models were assessed: (a) purely autoregressive, (b) one which considers the possible impact of SPS alone, and (c) one which
considers SPS acoustic intensity, and spectral flatness. In each case, lags up to 5 are considered. Log likelihood values characterize the model in relation to
the data (higher values are better), while the BIC values summarize the efficiency of the model (lower values are better). Log likelihood and BIC values
can only be compared across models of an individual series, whereas sigma2 values should be considered in relation to the mean and SD of the series
being modeled, but then have broader comparability.
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depth analysis of the sign and magnitude of the impact of

SPS in relation to Dataset 2). For the note-based piece, the

time-based frames do not necessarily coincide with note

events, and for a parameter such as SPS, this almost cer-

tainly drastically underestimates its predictive impact.

While these results revealed only modest influences of

SPS, it is to be expected (and is commonly observed) that

different spectral features are accentuated in different sonic

environments and different compositional styles (e.g.,

spectralist composition vs. noise music). For example, the

pieces Bohor (Xenakis) and soundAFFECTS (Dean) are

clearly driven largely by noise and acoustic intensity. Thus

these initial results were sufficient to encourage us to per-

form a stronger and more general test of our hypothesis that

SPS is a useful predictor of perception of musical change

and, notably, that this is so even in sound-based music that

does not emphasize the pitch and harmonic tones sounded

on acoustic instruments in note-based music.

Roles of SPS in the Diverse Pieces of Dataset 2

In the second analysis, which was more general and wide

ranging (given more extensive data), we considered

whether SPS in the context of a range of other spectral

parameters can contribute to new cross-sectional time

series predictive models of perception of change in nine

diverse pieces, both sound- and note-based, together with

hybrid work. No previous modeling of continuous percep-

tion of change in these pieces has been undertaken, rather

they have been studied in relation to continuous percep-

tion of affect (e.g., Dean & Bailes, 2016). The pieces

ranged from Australian indigenous music to Miles Davis,

electroacoustic music, and sound-text, as summarized in

Tables 1 and 2.

Before commencing the CSTSA, we considered the

possible correlation of the eight acoustic features being

studied across the music excerpt Dataset 2. Note that,

Table 4. Xenakis.a

Model 1. AR only
sigma2 estimated as 0.0004518: log likelihood ¼ 934.43
BIC ¼ �1856.95

z-test of coefficients:

Estimate SE z value Pr(>|z|)

ar1 �0.19494 0.05006 �3.894 9.86e�05***

Model 2. AR plus SPS: SPS is a predictor
sigma2 estimated as 0.0004484: log likelihood ¼ 936.9
BIC ¼ �1849.99

z-test of coefficients:

Estimate SE z value Pr(>|z|)

ar1 �0.2036898 0.0502652 �4.0523 5.072e�05***
l1SPS �0.0161424 0.0074274 �2.1733 .02975*
l2SPS 0.0164933 0.0074201 2.2228 .02623*

Model 3. AR plus SPS, intensity and spectral flatness: SPS is not retained
sigma2 estimated as 0.0004209: log likelihood ¼ 949.54
BIC ¼ �1869.32

z-test of coefficients:

Estimate SE z value Pr(>|z|)

ar1 �0.24135058 0.04992596 �4.8342 1.337e�06***
l1dintens 0.00312786 0.00068017 4.5986 4.253e�06***
l2dintens 0.00155141 0.00066573 2.3304 .019786*
l2dspecf 0.0074641 0.00251694 2.9656 .003021**

Note. AR ¼ autoregression; sigma2 ¼ measure of the mean error between predictions and data; SPS ¼ spectral pitch similarity; BIC ¼ Bayesian
Information Criterion; dvariable¼ first-differenced form of a variable, lndvariable indicates its nth lag; ar¼ autoregressive lag; intens¼ acoustic intensity;
specf ¼ spectral flatness. For all three models:
Significance codes: 0 ‘***’ .001 ‘**’ .01 ‘*’ .05 ‘.’ .1
aThree different types of models were assessed: (a) purely autoregressive, (b) one which considers the possible impact of SPS alone, and (c) one which
considers SPS acoustic intensity, and spectral flatness. In each case, lags up to 5 are considered. Log likelihood values characterize the model in relation to
the data (higher values are better), while the BIC values summarize the efficiency of the model (lower values are better). Log likelihood and BIC values
can only be compared across models of an individual series, whereas sigma2 values should be considered in relation to the mean and SD of the series
being modeled, but then have broader comparability.
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except for SPS, these were already chosen on the basis of

prior studies of their relative independence in short sounds

(Peeters et al., 2011) and their utility in studies of timbral

phrase detection (Olsen et al., 2016). Figure 1 shows the

distributions of the measures across 500 ms segments of

the whole corpus (treating each segment as an independent

sample from the whole set) and the Pearson correlations

between them. For example, Figure 1 shows a correlation

of .73 between spectral flatness and log(spectral spread),

but no other correlations exceed .45. Interestingly, for SPS

the strongest correlation with any other measure is only

�.24 with spectral flatness. As expected from the nature of

its construction (cosine similarity, see introduction) SPS

does not show a correlation with acoustic intensity,

whereas spectral flux has a much higher correlation

(.45). SPS, showing limited correlations with other ana-

lyzed features, is thus a promising predictor to consider in

models of perceived change. The more highly correlated

variables did not coexist in the selected models, as might

be expected.

Table 5. Wishart.a

Model 1. AR only
sigma2 estimated as 0.002995: log likelihood ¼ 576.63
BIC ¼ �1129.42

z-test of coefficients:

Estimate SE z value Pr(>|z|)

ar1 �0.260323 0.050176 �5.1882 2.124e�07***
ar2 �0.259981 0.051233 �5.0745 3.886e�07***
ar3 �0.170745 0.051326 �3.3267 .0008789***

Model 2. AR plus SPS: SPS is a predictor
sigma2 estimated as 0.002699: log likelihood ¼ 598.34
BIC ¼ �1154.97

z-test of coefficients:

Estimate SE z value Pr(>|z|)

ar1 �0.263242 0.050438 �5.2191 1.798e�07***
ar2 �0.263588 0.051425 �5.1256 2.965e�07***
ar3 �0.144483 0.051865 �2.7858 .0053401**
SPS �0.021819 0.010642 �2.0503 .0403399*
l1SPS �0.048921 0.012824 �3.8148 .0001363***
l2SPS 0.068664 0.010586 6.4864 8.792e�11***

Model 3. AR plus SPS, intensity and spectral flatness: SPS is retained with overall negative coefficients
sigma2 estimated as 0.001956: log likelihood ¼ 661.6
BIC ¼ �1269.57

z-test of coefficients:

Estimate SE z value Pr(>|z|)

ar1 �0.38131115 0.05045923 �7.5568 4.131e�14***
ar2 �0.30306758 0.05317348 �5.6996 1.201e�08***
ar3 �0.15657423 0.05244912 �2.9853 .002833**
l1dintens 0.00488669 0.00042017 11.6303 < 2.2e�16***
l1SPS �0.0255348 0.00955123 �2.6735 .007507**
l2dintens 0.00185735 0.00042486 4.3717 1.233e�05***
l2SPS 0.04730942 0.01179092 4.0124 6.011e�05***
l3SPS �0.0244897 0.00958829 �2.5541 .010645*

Note. AR ¼ autoregression; sigma2 ¼ measure of the mean error between predictions and data; SPS ¼ spectral pitch similarity; BIC ¼ Bayesian
Information Criterion; dvariable¼ first differenced form of a variable, lndvariable indicates its nth lag; ar¼ autoregressive lag; intens¼ acoustic intensity;
specf ¼ spectral flatness. For all three models:
Significance codes: 0 ‘***’ .001 ‘**’ .01 ‘*’ .05 ‘.’ .1
aThree different types of models were assessed: (a) purely autoregressive, (b) one which considers the possible impact of SPS alone, and (c) one which
considers SPS acoustic intensity, and spectral flatness. In each case, lags up to 5 are considered. Log likelihood values characterize the model in relation to
the data (higher values are better), while the BIC values summarize the efficiency of the model (lower values are better). Log likelihood and BIC values
can only be compared across models of an individual series, whereas sigma2 values should be considered in relation to the mean and SD of the series
being modeled, but then have broader comparability.
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A preliminary CSTSA model of perceived change,

using the native (undifferenced) continuous perception

series, suggested SPS was a predictor, but provided

unsatisfactory residuals, retaining significant partial

autocorrelations. Correspondingly only 27 of the 188

perceived change time series were stationary, thus it was

necessary to model the differenced series (which statio-

narized the remaining series). The acoustic predictors

were also differenced, accordingly (with the exception

of flux and SPS, which are already measures that reflect

the difference between adjacent frames of the time

series). The data and predictors were then standardized,

given the very different scales on which some of them

are expressed (i.e., each was expressed in terms of a

mean of zero and a standard deviation of 1). The opti-

mized model of the standardized differenced series set is

shown in Table 7.

The model quality was acceptable, in that residuals from

most individual series showed no partial autocorrelations in

their PACF, the few positive PACFs were all small, and

most were at longer lags than those modeled. As men-

tioned, occasional positive PACF coefficients can be

expected by chance. The residual SD was 0.864, and the

correlation between the model predictions and the data was

.51. The model obtained involved the same predictors as

those selected in the preliminary model of the undiffer-

enced and unstandardized data. Here the random effects

were developed first by considering intercepts, which given

the differencing were, as expected, found to be 0. Then we

considered possible random effects on the strongest predic-

tors, which were the autoregressive components, and all

lags were found valuable to the model in relation to parti-

cipants, but not in relation to items (that is, the different

musical pieces).

SPS had overall a slight negative coefficient, as

expected. A direct test was made of whether the removal

of all the SPS components worsened the model; both the

residual standard deviation and the likelihood ratio test

showed that the full model was much better than that omit-

ting SPS (p < .00001 that they were indistinguishable).

Figure 2 shows the modeled response of the system to a

unit increase in SPS, flux, or intensity, where a unit

increase is that of 1 SD of the predictor in question and the

dchange response parameter is measured in the same terms.

This is termed the “impulse response” and, in the case of

CSTSA, describes fixed (population-wide) effects. The

Table 6. Dean (no new model 2 was developed as SPS alone was not effective).a

Model 1. AR only
sigma2 estimated as 0.002068: log likelihood ¼ 596.49
BIC ¼ �1169.48

z-test of coefficients:

Estimate SE z value Pr(>|z|)

ar1 �0.277874 0.052765 �5.2662 1.393e�07***
ar2 �0.254453 0.05302 �4.7992 1.593e�06***
ar3 �0.094169 0.052638 �1.789 .07362 .

Model 3. AR plus SPS, intensity and spectral flatness: only intensity and spectral flatness contribute
sigma2 estimated as 0.001837: log likelihood ¼ 619.61
BIC ¼ �1192.22

z-test of coefficients:

Estimate SE z value Pr(>|z|)

ar1 �0.3253713 0.0527134 �6.1725 6.724e�10***
ar2 �0.3044947 0.0553486 �5.5014 3.768e�08***
ar3 �0.1635912 0.0567499 �2.8827 .003943**
ar4 �0.1273129 0.0552345 �2.305 .021169*
ar5 �0.134626 0.0538809 �2.4986 .012469*
l1dintens 0.0078543 0.0015452 5.083 3.715e�07***
l4dspecf 0.0259613 0.0088532 2.9324 .003363**

Note. AR ¼ autoregression; sigma2 ¼ measure of the mean error between predictions and data; SPS ¼ spectral pitch similarity; BIC ¼ Bayesian
Information Criterion; dvariable¼ first differenced form of a variable, lndvariable indicates its nth lag; ar¼ autoregressive lag; intens¼ acoustic intensity;
specf ¼ spectral flatness. For all three models:
Significance codes: 0 ‘***’ .001 ‘**’ .01 ‘*’ .05 ‘.’ .1
aThree different types of models were assessed: (a) purely autoregressive, (b) one which considers the possible impact of SPS alone, and (c) one which
considers SPS acoustic intensity, and spectral flatness. In each case, lags up to 5 are considered. Log likelihood values characterize the model in relation to
the data (higher values are better), while the BIC values summarize the efficiency of the model (lower values are better). Log likelihood and BIC values
can only be compared across models of an individual series, whereas sigma2 values should be considered in relation to the mean and SD of the series
being modeled, but then have broader comparability.
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impulse response is computed by repeatedly applying the

terms and coefficients of the models given a 1 SD increase

in the specified predictor to predict the consequent changes

at each successive lag. As often observed, putting aside

autoregression, changes in acoustic intensity are the domi-

nant predictor for perceived change: the sum of the 11

sequential impulse responses values, being closely related

to the integral under the response curve, was 0.295. Increas-

ing SPS had a small net negative effect (sum of response

values¼ –0.003), as predicted. This indicates that the more

spectral pitch cosine similarity decreases, the stronger the

positive impact on perceptions of musical change. Again,

Table 7. Cross sectional time series analysis of Dataset 2. Linear mixed-model fit by restricted maximum likelihood. Model: dchange *0
þ dintensþ SPSþ fluxþ dinharmþ l1dchangeþ l1dintensþ l1dspecfþ l1fluxþ l1dspreadþ l2dchangeþ l2dintensþ l2dspecfþ l2flux
þ l2dspread þ l3dchange þ l3dintens þ l3dspecf þ l3dcentroid þ l3dspread þ l4dchange þ l4dintens þ l4dspecf þ l4SPS þ l4flux þ
l4dinharmþ l4dspreadþ l5dchangeþ l5dintens þ l5dspecfþ l5fluxþ l5dspreadþ (l1dchangeþ l2dchangeþ l3dchangeþ l4dchangeþ
l5dchange þ 0 | pid).

Random effects

Groups Name Variance SE Correlations

pid l1dchange 0.021999 0.1483
l2dchange 0.1217 0.89
l3dchange 0.0999 0.73 .91
l4dchange 0.0559 0.61 .78 .88
l5dchange 0.0478 �0.03 .31 .53 .68

Residual 0.745745 0.8636

No. of observations: 41,847,
groups: pid, 21

Fixed effects

Estimate SE t value

dintens 0.015263 0.004756 3.209
SPS 0.010843 0.004479 2.421
flux 0.010198 0.00509 2.004
dinharm �0.011404 0.004265 �2.674
l1dchange �0.570922 0.034099 �16.743
l1dintens 0.07792 0.006104 12.765
l1dspecf 0.048955 0.005444 8.993
l1flux 0.018742 0.005349 3.504
l1dspread 0.031344 0.006356 4.931
l2dchange �0.40343 0.028594 �14.109
l2dintens 0.079247 0.006571 12.06
l2dspecf 0.053364 0.006246 8.544
l2flux 0.014457 0.005036 2.871
l2dspread 0.039117 0.007819 5.003
l3dchange �0.26827 0.024081 �11.14
l3dintens 0.051275 0.006527 7.856
l3dspecf 0.045363 0.006426 7.059
l3dcentroid �0.009122 0.004423 �2.063
l3dspread 0.037341 0.008123 4.597
l4dchange �0.198462 0.014582 �13.61
l4dintens 0.03818 0.006451 5.919
l4dspecf 0.033279 0.006309 5.275
l4SPS �0.014154 0.004488 �3.154
l4flux �0.014381 0.005256 �2.736
l4dinharm �0.010997 0.004349 �2.528
l4dspread 0.023169 0.007615 3.043
l5dchange �0.093829 0.012669 �7.406
l5dintens 0.031912 0.005881 5.426
l5dspecf 0.014547 0.005507 2.642
l5flux �0.026714 0.005264 �5.075
l5dspread 0.019727 0.006228 3.168

Note. dvariable ¼ first differenced form of a variable, lndvariable indicates its nth lag; change ¼ perceived change; intens ¼ acoustic intensity; SPS ¼
spectral pitch similarity; flux ¼ spectral flux; inharm ¼ inharmonicity; specf ¼ spectral flatness; spread ¼ spectral spread; centroid ¼ spectral centroid;
pid ¼ participant ID.
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consistent with predictions, increasing flux had a small

positive effect (sum ¼ þ0.004).

The model and the results of Figure 2 are consistent with

our hypothesis. Thus, as often observed, changes in inten-

sity have large impacts on perceived change (the two rise

together), while the influences of spectral parameters are

much smaller. And as spectral flux increases, or SPS

decreases (becomes more dissimilar), so perception of

change increases. However, we should note that the spec-

tral impulse response functions are slightly unrealistic, in

that it is hard to alter SPS without influencing flux

(although it is easier to alter flux without influencing SPS:

e.g., by changing the intensity of either sound in the pair

being compared). So, the impulsing variables in Figure 2

are not entirely orthogonal, and the interpretation of the

figure must be taken cautiously. It is also important to

recollect that Figure 2 describes the fixed effects compo-

nent of the CSTSA model (that shared by the population of

participants) but, given the random effects, the precise

quantitative relationship between the predictors and the

perceived change differs and thus impulse response func-

tions (IRFs) vary quantitatively between individual partici-

pants; and the model specifies this through its random

effects.

The model, in addition to roles for flux, intensity, and

SPS, shows influences of centroid, flatness, inharmoni-

city, spread, but not of roughness (termed dissonance by

the Essentia package). Crucially for our present core

purpose, the data from the CSTSA continue to demon-

strate a distinctive role for SPS in models of perceived

change.

Discussion

SPS measures have been developed as an explanatory tool

for the perception of tonal and microtonal note and chord

stability or fit. In such situations, the indications are that

many observations in the literature can be explained as well

or better by models using SPS (or spectral pitch class simi-

larity, which treats all pitches an octave apart as identical

[Milne et al., 2015; Milne & Holland, 2016]), than they can

by models based on familiarity (i.e., estimated exposure

statistics when such data are available, which they cannot

be for musical styles novel to a participant). Data on pitch-

based melodies whose spectra were experimentally

manipulated are consistent with independent impacts of

SPS and inharmonicity on perceptions of fit (Milne et al.,

2016). The present article extends these observations sub-

stantially, by applying SPS to pieces that include strong

noise components or are, essentially, sound-based rather

than note-based works (Landy, 2009). The utility of the

feature as a predictor in models of perceived change indi-

cates that its influence is likely to be general, rather than

solely applicable to harmonic complex tones and their close

relatives in note-based music. Inharmonicity again has a

modest role to play (Table 7). Given that our previous work

showed considerable commonalities in perceptions of

musical change between different musical expertise

groups, we would expect the results shown here for non-

musicians to be applicable also to musicians.

Furthermore, although spectral pitch (class) similarity

between temporally adjacent harmonic chords is not

designed to provide an unmediated explanation of musical

structure, it still plays a weak but significant role in char-

acterizing patterns of chord sequences commonly found in

classical, pop, and jazz musical styles, particularly the first

(Harrison & Pearce, 2018). We suspect that, to better

reflect the impact of spectral pitch (class) similarity on the

structure of musical harmony, it will be necessary to extend

this work also to consider relationships between non-

adjacent chords. For example it is suggested that common

cadential forms—ii-V-I, IV-V-I, iv-V-i, etc.—are charac-

terized by a specific configuration of all three pairwise

spectral similarities between the three cadential chords

(Milne, 2010). Thus, the relevance of SPS to a wide range

of genres within both note- and sound-based music is indi-

cated. Taken together with the evidence in the present arti-

cle on SPS in both note- and sound-based music, we can

suggest that a bottom-up contribution of SPS is likely to be

widespread, both in familiar and unfamiliar music or music

genres.

The values of the key Gaussian smoothing width para-

meter used to calculate SPS has been taken from prior work

(as described above); the value of the noiseFactor para-

meter, which determines the noise/signal threshold across

all the pieces, was obtained by simple assessments of the

effectiveness with which the spectral pattern of individual

sound chunks is represented. In contrast, in earlier studies,

Figure 2. Impulse response functions for a 1 SD increase in first
differenced intensity, flux and spectral pitch similarity change
(SPS). Dotted, black line ¼ dIntensity; dash, green ¼ flux; solid,
red ¼ SPS; dvariable indicates the first differenced form of a vari-
able. The response units are also SD of dchange. A positive value
of dchange means that perceived change has increased relative to
perceived change from the previous lag; a negative value of
dchange means that perceived change has decreased relative to
the previous value of perceived change.

12 Music & Science



while the noise-floor parameter was not required, the Gaus-

sian smoothing parameter was optimized for its strongest

predictive capacity in relation to individual datasets. In

future work, optimizing both parameters of SPS in relation

to novel datasets may be appropriate.

It will also be interesting to assess whether SPS is not

only effective as a predictor of perceived “change in the

music,” which might be considered a very basic, untrained

capacity, but also in perception of affect (where appraisal,

exposure, and expertise may have a little more impact, even

though qualitative features generally remain the same

between expert and inexpert listeners). For example, in

pitch-based contexts, spectral pitch (class) similarity is an

effective predictor of musical “fit” (Milne et al., 2015,

2016; Milne & Holland, 2016), which is a more abstract

and musically informed appraisal than is “perceived

change.” It seems natural to see if this predictive capacity

extends to sound-based contexts, and to other affective

appraisals such as valence and arousal. More generally, it

is apparent that SPS may be a useful acoustic parameter in

future studies of a wide range of music in music informa-

tion retrieval (MIR) and music perception. The present

correlative study will need to be extended by future work

in which SPS is systematically transformed in some stimuli

for causal analysis of its perceptual impact.

Conclusion

SPS, measured on denoised inharmonic and noise-bearing

music, is a significant predictor of listeners’ perceptions of

musical change therein. It is distinct from other major con-

ventional spectral parameters in that it cooperates with

them in the selected models of change perception. Thus,

SPS has relevance to perceptions of musical change and of

timbral relationships in a wide range of music, not just for

instrumental music using complex harmonic tones.
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