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Abstract. This article describes a user-written Stata command, intcount, for
estimation of a number of regression models for count data which are observed in
interval form. The models available are Poisson, negative binomial and binomial,
and they can be estimated in standard or zero-inflated form. Use of the command
is illustrated with an application to analysis of data from the UK Understanding

Society survey on the demand for healthcare services.

Keywords: st0001, count data, interval data, zero-inflated, interpolation, Under-
standing Society

1 Introduction

Many survey variables are naturally non-negative integer-valued counts, for example
the number of times an action or event has occurred within a given observation period.
Count data regression models based on distributions such as the Poisson and negative
binomial are widely used for the analysis of these variables.

But complications arise when survey questions are not designed to reveal the count
exactly. Survey designers sometimes argue that questions may yield more reliable (albeit
less detailed) data if they ask the respondent to place the count within one of a number
of pre-specified intervals, rather than to report a specific figure.

Interval observation of count data causes difficulty in the estimation of count data
regressions, since most available software requires the count to be observed exactly.
There is therefore a need for estimation procedures which can take account of coarse
interval observation.1 Another aspect of the problem is that many types of descriptive
or policy analysis require exact rather than interval counts, so some form of imputation
or interpolation is required.

This article describes a new Stata command for interval estimation of a number of
count data models, and reports results from an illustrative application. Section 2 sets

1. A Stata command intreg already exists for interval estimation of the regression model for a con-
tinuous dependent variable such as income, so intcount serves to widen the range of models for
which interval estimation is possible. Note however that incount has a much wider range of pre-
diction/interpolation options than intreg.

➞ yyyy StataCorp LP st0001



2 Interval count data regression

out the estimation approach and the range of available models; section 3 details the
syntax of the estimation command and the linked predict command that can be used
for various types of post-estimation imputation. Section 4 presents an application to
healthcare data from the UK Understanding Society survey and section 5 concludes.

2 Interval-observed count data models

2.1 Basic setup

Let Yi ≥ 0 be the ith observation on a dependent variable which takes non-negative
integer values. Yi may be bounded or unbounded. However, our observations are not
on Yi itself but rather an interval within which Yi lies. Consequently, we have two
observed dependent variables, [Li, Ui] with the property that:

Li ≤ Yi ≤ Ui (1)

The numerical values of the interval bounds [Li, Ui] vary across observations but they
are assumed to be observed and strictly exogenous. The two bounds may be equal for
some observations where Yi is fully observed and, for unbounded distributions like the
Poisson and negative binomial, the upper bound Ui may be infinite for some observa-
tions.

A set of explanatory covariates appear in a vector Xi, and we assume a known
parametric form for the discrete conditional probability function f(.) and corresponding
distribution function F (.), defined for any non-negative integer y:

Pr(Yi = y∣Xi) = f(y∣Xi) (2)

Pr(Yi ≤ y∣Xi) = F (y∣Xi) (3)

The conditional probability of observing the event Li ≤ Yi ≤ Ui is:

Pr(Li ≤ Yi ≤ Ui∣Xi) = F (Ui∣Xi) − F (Li − 1∣Xi)

= Ui∑
y=Li

f(y∣Xi) (4)

where F (Li − 1∣Xi) is understood to be zero for Li = 0.
2.2 Alternative base distributions

The model is completed by a specifying a parameterized functional form for the dis-
tribution function F (.∣Xi). The command offers nine possibilities, formed from three
alternative base models and three options for zero-inflation. Leaving aside the possibility
of zero-inflation, the available models for F (.∣Xi) are as follows:

Poisson:
f(y∣Xi) = e−λiλ

y
i /y! (5)
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where λi is the conditional mean function E (Yi∣Xi), parameterised as eXiβ . The
conditional mean and variance of the count variable are both equal to λi.

Binomial:

f(y∣Xi) = ( Mi

y
)pyi (1 − pi)Mi−y (6)

where Mi is the known maximum possible value, which may vary exogenously across

observations, and pi is the binomial probability, parameterised as pi = [1 − e−Xiβ]−1.
The conditional mean function is E (Yi∣Xi) = Mipi. This specification may be appro-
priate when there is a natural upper limit to survey responses (e.g. to the question ”on
how many days last month did you use cannabis?”).

Negative binomial: is derivable as the following Poisson-gamma mixture:

y ∣ ν ∼ Poisson (λiν) ; ν ∼ gamma( 1
α
,α) (7)

where λi = eXiβ , α > 0. This gives a distribution for y with mean λi and variance
1+αλi. Note that, in the terminology of Cameron and Trivedi (2013)), this is the NB2
parameterization of the negative binomial regression model, and is consistent with the
specification implemented in the Stata zinb command. The ML estimation procedure
treats lnα as an unrestricted constant parameter.

2.3 Zero-inflation

In some count data applications, standard forms like the binomial, Poisson and negative
binomial are found to understate the frequency of zero counts. One way of dealing
with this is to use a double hurdle or mixture process, where some individuals have
a degenerate zero count with probability 1, while others have a count drawn from a
standard distribution such as the Poisson.

Let the conditional probability of a degenerate zero be given by the following linear
index model:

Pr(degenerate 0∣Xi) = π(Xi1γ) (8)

where Xi1 is a subvector of Xi. The distribution of Y among the non-degenerate
population is g(y∣Xi2β), where Xi2 is another subvector of Xi. Then the mixture
distribution of Y is:

f(y∣Xi) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

π(Xi1γ) + (1 − π(Xi1γ))g(0∣Xi2β) if y = 0
(1 − π(Xi1γ))g(y∣Xi2β) if y > 0 (9)

The probability of the observed interval [Li, Ui] is again given by (4).

The intcount command offers three options for zero-inflation:

standard model: π(Xi1γ) = 0
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logit: π(Xi1γ) = [1 + exp(−Xi1γ)]−1

probit: π(Xi1γ) = Φ(Xi1γ)
In practice, estimates of the logit and probit variants are usually almost identical

apart from scaling of the γ coefficients, which are larger by a factor of approximately
π/
√
3.

2.4 Estimation

Estimation is by maximum likelihood (ML), with probabilities of the form (4) used
to construct the log-likelihood function. By default, numerical optimization of the
log-likelihood is carried out using Stata’s modified Newton-Raphson optimizer; other
algorithms can be substituted in case of difficulty in obtaining convergence (see (Stat-
aCorp 2017, pp. 639-686) for details). Optimization is based on the lf0 evaluator, so
log-likelihood derivatives are approximated by finite differences.

Experience to date suggests that this works very well in most cases. Difficulties are
most likely to be encountered in connection with over-specified models involving zero-
inflation which is not required by the data, in which case one or more parameters in
the coefficient vector γ will explode. Similar convergence difficulties may be found also
in zero-inflated specifications where zero-inflation is required empirically for a group
with certain values for the variables Xi2 but not for other sample groups. Convergence
problems of these types are usually easy to spot and the required model re-specification
obvious.

Occasionally (usually in the more heavily parameterized zero-inflated specifications),
the optimizer reaches a difficult region with almost flat likelihood or discontinuous
approximate derivatives. Often these problems can be resolved by passing down as
starting values for the optimization the estimates from a simpler specification – for
example a model without zero-inflation or with constant zero-inflation, or a Poisson
model as a simpler alternative to the negative binomial.

2.5 Prediction and imputation

The estimates provided by intcount may often be useful for imputation, and the
predict command available with intcount offers a range of options. Particularly
useful are: the interval-conditional mean predictor Y ∗i = E(Yi∣Li ≤ Yi ≤ Ui,Xi); and
the interval-conditional random draw, Y +i which is a realization of the distribution of
Yi∣Li ≤ Yi ≤ Ui,Xi. Two common situations illustrate their use.

One is where we would like to use the unobserved variable Yi as a covariate in
another model – for example a regression of some dependent variable Wi on Yi and Xi.
But Yi is unobserved and we only know that it lies within an interval [Li, Ui]. Then
intcount can be used to estimate a count data model for Yi on Xi and compute the
interval-conditional mean predictor Y ∗i . The use of Y ∗i as a proxy for Yi introduces an
imputation error proportional to (Yi − Y ∗i ) into the regression residual term, but it is



S. E. Pudney 5

straightforward to show that E{(Yi−Y ∗i )∣Y ∗i ,Xi} = 0, so the residual is orthogonal to the
constructed proxy for Yi, and the regression of Wi on Yi,Xi therefore gives unbiased
coefficients under standard classical assumptions (provided the count data model for
Yi∣Xi is well specified). This is a better solution to the imputation problem than the
common practice of using interval mid-points. However, it can be improved further by
making random draws Y +i and using single or multiple imputation.2

Another common application is where exact values for Y are needed within some
complex policy simulation. Again, multiple random draws Y +i can be used in place of the
unobserved Yi, and the policy calculations averaged across replications. The healthcare
cost analysis by Davillas and Pudney (2019) is an example of this.

3 Command syntax

3.1 intcount

intcount depvar1 depvar2 [indepvars] [ if ] [ in ] [weight ] ,
[ poisson | binomial(# | varname) | negbin

inflate(varlist | cons[,offset(varname)]) noconst probit [other options] ]
Description

intcount is a user-written program which allows the estimation of a range of count
data models in cases where some or all of the observations on the dependent variable
are intervals containing the count, rather than the count itself. The models are based
on Poisson, Binomial or Negative Binomial distributions, possibly with zero-inflation.
It thus covers some of the same ground as existing Stata commands poisson, nbreg,
binreg, zip and zinbreg, but allowing for interval-form data.

depvar1 and depvar2 are variables that specify the upper and lower limits Li and Ui of
the interval containing the unobserved true count Yi. The covariates Xi1 for the core
Poisson, binomial or negative binomial model are specified in indepvars; an intercept
will automatically be included unless the noconst option is used.

Output

intcount returns maximum likelihood estimates of the parameters of a count data
model, allowing for the possibility that some or all of the observations on the dependent
variable have the form of an interval containing the count, rather than the count itself.

Main options

noconst is used to suppress the intercept term in the linear index Xi1β

poisson specifies the Poisson base model defined by equation (5).

2. See Manski and Tamer (2002) for a much fuller and more general discussion of inference from
interval data.
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binomial(#—varname) specifies the binomial model (6). If the count limit Mi is con-
stant across observations, # gives that fixed positive number; otherwise varname
specifies a variable containing Mi.

negbin specifies the negative binomial model.

At most one of the three options poisson, binomial(varname) and negbin may appear.
If all three are omitted, poisson is used as the default.

inflate(varlist[, noconst]) specifies the variables Xi2 used as covariates in the zero-
inflation model (if any). An intercept is included in the zero-inflation model unless
the noconst modifier is used. If inflate is omitted, zero-inflation is not used and
a standard count data specification is estimated. If it appears as inflate( cons),
the zero-inflation probability is estimated as a constant. If covariates are specified
in varlist, an intercept will also be included unless the [, noconst] sub-option is
used.

probit specifies the zero-inflation model to be of probit form. If omitted, the default
is logit. The probit option may only be used if inflate also appears.

Other options

offset(varname) includes varname in the model with coefficient constrained to 1

exposure(varname) includes ln(varname) in the model with coefficient fixed at 1

Standard options for controlling the ML optimization procedure can be included, most
usefully:

from(matrixname), specifying the name of a single-row matrix containing user-supplied
initial parameter values for the optimization. The column names should take the
form model:variablename and model: cons for the coefficients and intercept in the
linear index Xiβ; inflate:variablename and inflate: cons for those in the index
Xi2γ of the zero-inflation mechanism. The column name for the ln(α) parameter
of the negative binomial model should be given as /:lnalpha if running with Stata
version 15, or lnalpha: cons for version 14 or earlier.3 The vector may contain
irrelevant elements, since the vector is passed onto the ML optimizer with the ,

skip modifier.

difficult may very occasionally help overcome convergence difficulties

3.2 predict

predict outputvarname [ if ] [ in ] , [ predicttype ]
Description

3. This is for consistency with nbreg and zinb – the column labelling of the ln(α) parameter in the
return vector e(b) from the nbreg and zinb changed between Stata versions 14 and 15. If a starting
value for ln(α) is supplied with the wrong labelling, it will be ignored by intcount.
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Following intcount, the predict command can be used to construct several measures
conditional on covariate values, including: the expected count; the probability of the
count falling in a specified interval; and the expected value of the count, conditional on
it lying in a specified interval. It is also possible to generate a random draw the interval-
specific conditional count distribution. These predict options are particularly useful for
interpolation purposes. The specified type of prediction is returned in outputvarname
as a double precision variable.

Options and output

pr(#|var #|var) is the predicted probability (conditional on covariate values) that the
count lies in the interval defined by lower and upper limits that may each be a fixed
number or a variable.

ce(#|var #|var) is the expectation of the count conditional on the covariates and the
event that it lies in the interval defined by the two limits which may be variable or
constant.

mc(#|var #|var [, uniformvar]) generates a single random draw from the distribu-
tion of y conditional on the event that it lies in the interval defined by the two
specified limits. If the [, uniformvar] option is not used, intcount will generate the
required pseudo-random numbers itself, without resetting the random number seed.
Optionally, the simulation can be controlled completely by passing a variable con-
taining uniform pseudo-random numbers. The mc option is useful for Monte Carlo
simulation or imputation applications where distributional characteristics beyond
the conditional mean are required.

n gives a prediction of the count conditional only on the covariates. If no predicttype
option is declared, this is the default.

nooffset By default, any offset or exposure adjustment used for estimation will also be
incorporated in the predictions of type pr, ce or n; the option nooffset will cause
offset or exposure adjustments to be ignored.

4 An application to healthcare demand

We apply the intcount command to data from wave 7 of the Understanding Society
UK panel on the use of health care services. The questions distinguish three types
of service: consultations with a general practitioner (GP), attendance at a hospital
out-patient (OP) clinic, and hospital in-patient (IP) stays.4 The first two dependent
variables come from the following survey questions:

“In the last 12 months, approximately how many times have you talked to, or visited
a GP or family doctor about your own health? Please do not include any visits to a
hospital.”

4. The data and a more comprehensive application are discussed in detail in Davillas and Pudney
(2019).
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“And in the last 12 months, approximately how many times have you attended a hospital
or clinic as an out-patient or day patient?”

Responses to these questions are reported as one of five intervals: 0, [1-2], [3-5],
[6-10], 11 or more. Figure 1 shows the two empirical distributions.
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Figure 1: Distributions of the number of GP and OP consultations in the preceding 12
months (UKHLS wave 7; n = 6,822)

The third question is:

“In the last 12 months, in all, how many days have you spent in a hospital or clinic as
an in-patient?” Answers are given as “exact” integers.

The distribution of responses, shown in the first panel of Figure 2 (here plotted over
0-10 days), is typical of count data for rare events. There is a very large mode at zero
and a highly skewed and dispersed distribution of positive values – the sample maximum
is 182 days in this case. This sort of distribution can pose challenging modelling and
computational problems. The second panel of Figure 2 shows the distribution after
we artificially group the responses to conform with the reporting intervals used in the
GP and OP questions. Note that ex post grouping should not be assumed to coincide
automatically with the answer that would have been provided by the respondent given
an interval response scale – respondent behaviour may be influenced by question design.
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Figure 2: Distribution of the number of days as hospital inpatient in the preceding 12
months, as observed and after grouping (UKHLS wave 7; n = 6,824)

4.1 Hospital in-patient days: the effect of grouping

First consider the choice of distributional form, using the original exact data. The
intcount command can accommodate exact count data by setting the upper and lower
limit variables equal to the exact count. The resulting estimates reproduce exactly those
produced by poisson or zip for the Poisson model, binreg for the binomial model5, and
nbreg or zinb for the negative binomial model. The covariates used in these models are
simple demographics: a cubic in age a (measured in decades from an origin of 50 years),
membership of any ethnic minority nonw, an indicator for the absence of any educational
qualification noed and another for degree-level education degree. The following code
produced alternative gender-specific models, whose sample fit is summarised in Table 1
using the Akaike (AIC) and Bayesian (BIC) information criteria.

. global Xvars "a a2 a3 nonw noed degree"

. // No zero-inflation

. forvalues i=0/1 {
2. intcount IP IP $Xvars if male== `i´, poisson vce(robust)
3. estat ic

. intcount IP IP $Xvars if male== `i´, binomial(365) vce(robust)
4. estat ic

. intcount IP IP $Xvars if male== `i´, negbin vce(robust)
5. estat ic
6. }

. // With zero-inflation

. forvalues i=0/1 {
2. intcount IP IP $Xvars if male== `i´, inflate($Xvars) poisson vce(robust)
3. estat ic

. intcount IP IP $Xvars if male== `i´, inflate($Xvars) binomial(365) vce(robust)
4. estat ic

. intcount IP IP $Xvars if male== `i´, inflate($Xvars) negbin vce(robust)
5. estat ic

5. There appears to be no available Stata command for estimating the zero-inflated binomial model,
and intcount now fills that gap.
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6. }

It is clear from Table 1 that the negative binomial model is far superior in terms
of sample fit to the Poisson and binomial models, and also that zero-inflation improves
the fit substantially.

Table 1: Akaike and Bayesian information criteria for zero-inflated versions of Poisson,
binomial and negative binomial count data models, estimated separately by gender from
exact data on days spent in hospital.

Distributional Women Men
form AIC BIC AIC BIC

Without zero-inflation
Poisson 91295 91350 71859 71913
Binomial 93874 93929 73634 73687
Negative binomial 21536 21599 13586 13647

With zero-inflation
Poisson 43165 43274 30237 30343
Binomial 45494 45604 31743 31850
Negative binomial 21456 21573 13443 13557

We now investigate the effect of data grouping by re-estimating the model using the
artificially grouped form of the variable whose distribution is shown in Figure 2. The
code is as follows:

. forvalues i=0/1 {
2. intcount IP IP $Xvars1 if male== `i´, inflate($Xvars1) negbin vce(robust)
3. estimates store exact`i´
4. intcount lo_IP hi_IP $Xvars1 if male== `i´, inflate($Xvars1) negbin vce(robust)
5. estimates store grouped`i´
6. }

. estout exact0 grouped0 exact1 grouped1, cells(b(star fmt(%7.3f)) ///
> se(par)) starlevels(* .1 ** .05 *** .01) style(tex)

Table 2 compares the parameter estimates. There are substantial parameter differ-
ences, particularly for the age and education effects in the female sample.
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Table 2: Estimates of zero-inflated negative binomial model estimated from exact and
artificially grouped data.

Parameter Women Men
(std. err.) Exact Grouped Exact Grouped

Base model parameters
age➜ 0.042 0.102* 0.078 0.177**

(0.117) (0.061) (0.096) (0.076)
age2 0.057** 0.030** 0.024 0.006

(0.027) (0.015) (0.028) (0.020)
age3 -0.001 0.006 0.005 0.001

(0.014) (0.008) (0.011) (0.008)
Non-white 0.155 0.067 -0.350 -0.260

(0.192) (0.101) (0.232) (0.180)
No education 0.092 0.027 0.203 0.114

(0.173) (0.112) (0.209) (0.173)
Degree 0.018 -0.229** -0.753*** -0.660***

(0.204) (0.107) (0.223) (0.171)
Intercept -0.426** 0.769*** 0.713** 1.219***

(0.206) (0.186) (0.299) (0.273)
lnalpha 3.072*** 1.267*** 2.856*** 1.601***

(0.114) (0.276) (0.146) (0.355)
Zero-inflation parameters

age➜ 0.899*** 0.258*** -0.320*** -0.216***
(0.169) (0.054) (0.094) (0.051)

age2 -0.539 -0.022** -0.094*** -0.041***
(0.627) (0.010) (0.031) (0.013)

age3 -0.263 -0.027*** -0.016 -0.003
(0.170) (0.007) (0.010) (0.006)

Non-white -0.056 -0.052 -0.120 -0.015
(0.276) (0.079) (0.166) (0.110)

No education -0.710* -0.202** -0.132 -0.106
(0.393) (0.086) (0.171) (0.107)

Degree 0.337 -0.011 0.034 0.051
(0.279) (0.081) (0.178) (0.114)

Intercept -0.341 1.494*** 0.695*** 1.735***
(0.377) (0.214) (0.248) (0.272)

➜ Age measured in decades from an origin of 50.

Statistical significance: * = 10%, ** = 5%, *** = 1%

Figure 3 shows the implications of parameter differences for the estimated age pro-
files, plotting the probability of hospitalization Pr(y > 0∣age) against age in the range
16-85, with other covariates set to modal zero values. The relevant code is as follows:
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. preserve

. replace age=.
(42,210 real changes made, 42,210 to missing)

. replace age=_n+15 if _n<=70
(70 real changes made)

. replace a=(age-50)/10
(42,210 real changes made, 42,140 to missing)

. replace a2=a^2
(42,209 real changes made, 42,140 to missing)

. replace a3=a*a2
(42,210 real changes made, 42,140 to missing)

. replace nonw=0
(30,402 real changes made)

. replace noed=0
(14,694 real changes made)

. replace degree=0
(18,067 real changes made)

. gen ll=0 if age<.
(42,147 missing values generated)

. gen uu=0 if age<.
(42,147 missing values generated)

. forvalues i=0/1 {
2. foreach d in exact grouped {
3. estimates restore `d´`i´
4. predict p`d´`i´ if age<=85,pr(1 .)
5. }
6. }

(results exact0 are active now)
(results grouped0 are active now)
(results exact1 are active now)
(results grouped1 are active now)

. sort age

. twoway line pexact0 pgrouped0 age if age<=85 , lpattern(solid dash) ///
> graphregion(fcolor(white) ilcolor(white) icolor(white) lcolor(white) ) ///
> lcolor(black) name(p0, replace) xlabel(20(10)80) ylabel(0(0.05)0.2) ///
> xscale(titlegap(3)) yscale(titlegap(3)) xtitle("Woman´s age") ///
> legend(col(1) pos(5) ring(0) label(1 "exact") ///
> label(2 "grouped")) ytitle("Pr(hospitalization)")

. twoway line pexact0 pgrouped0 age if age<=85 , lpattern(solid dash) ///
> graphregion(fcolor(white) ilcolor(white) icolor(white) lcolor(white) ) ///
> lcolor(black) name(p1, replace) xlabel(20(10)80) ylabel(0(0.05)0.2) ///
> xscale(titlegap(3)) yscale(titlegap(3)) xtitle("Man´s age") ///
> legend(col(1) pos(5) ring(0)label(1 "exact") ///
> label(2 "grouped")) ytitle("Pr(hospitalization)")

. graph combine p0 p1

The estimated age profiles remain broadly similar after grouping but they display
more variability for the estimates based on exact data, so coarsening the counts to
interval form has a mild smoothing effect in this example.
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Figure 3: Predicted age profile of zero count probability by age for ethnic majority
woman and man with mid-level education

It is also striking in this application that grouping has a perverse effect on the
standard errors. It is clear theoretically that recoding count data to coarser interval
form must reduce statistical precision of the parameter estimator for a well-specified
count data model (this is easily confirmed empirically using Monte Carlo simulation
by applying intcount to simulated counts in exact and grouped form). However, the
anticipated loss of precision may not occur for computed standard errors when the count
data model is misspecified. A poor model may do quite well in fitting the distribution
of responses within broad intervals, but much worse in fitting the distribution of exact
counts within those intervals. Parameter estimates may be (asymptotically) biased
in different ways for grouped and exact data, and the computed confidence intervals
(which are not statistically valid for misspecified models) need not be wider for the
interval estimates. This is what we find in Table 2, where the interval estimates have
robust standard errors that are always smaller, very much so in many cases.

4.2 Interpolated healthcare measures

The intcount command has been designed to be usable as a basis for interpolation of the
underlying count from coarse interval data. We now turn attention to the GP and OP
variables, again taking the negative binomial as our basic model, but considering both
standard and zero-inflated (probit) variants. As covariates, we use dummy variables
to allow for gender and ethnicity effects, a cubic in age, and a 4-level categorization of
educational attainment. Table 3 gives results and also includes estimates of the logit
variant for the OP data. Comparison of the fourth and fifth columns of Table 3 confirms
that the choice between probit and logit specifications makes virtually no difference to
the estimates, except for scaling of the zero-inflation coefficients (which are larger for

the logit model by approximately
√
π2/3 = 1.814).
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Table 3: Estimates of negative binomial models for counts of GP and hospital OP
consultations, estimated from grouped data.

GP consultations Hospital OP consultations
Parameter no zero Probit no zero Probit Logit
(std. err.) inflation inflation inflation inflation inflation

Base model parameters
age➜ 0.094*** 0.068*** 0.168*** 0.065*** 0.064***

(0.009) (0.009) (0.014) (0.016) (0.016)
age2 0.001 0.001 0.006* 0.003 0.003

(0.002) (0.002) (0.003) (0.004) (0.004)
age3 0.001 0.002** 0.001 0.006*** 0.007***

(0.001) (0.001) (0.002) (0.002) (0.002)
Male -0.368*** -0.280*** -0.321*** -0.137*** -0.139***

(0.015) (0.016) (0.023) (0.027) (0.027)
Minority -0.139*** -0.130*** 0.046* 0.012 0.016

(0.017) (0.018) (0.027) (0.031) (0.031)
GCSE -0.148*** -0.147*** -0.052 -0.085** -0.084**

(0.021) (0.021) (0.033) (0.035) (0.035)
A-level -0.268*** -0.271*** -0.183*** -0.159*** -0.158***

(0.024) (0.025) (0.039) (0.042) (0.042)
Degree -0.350*** -0.373*** -0.158*** -0.203*** -0.201***

(0.020) (0.021) (0.032) (0.035) (0.034)
Intercept 1.525*** 1.512*** 0.616*** 0.704*** 0.702***

(0.022) (0.022) (0.036) (0.040) (0.040)
ln(α) 0.153*** 0.085*** 1.146*** 0.973*** 0.973***

(0.012) (0.014) (0.013) (0.021) (0.021)
Zero-inflation parameters

age➜ -0.621*** -0.731*** -1.424***
(0.108) (0.130) (0.261)

age2 -0.220** -0.350*** -0.694***
(0.086) (0.096) (0.182)

age3 -0.024 -0.051** -0.102***
(0.021) (0.021) (0.038)

Male 4.645 0.730*** 1.291***
(79.355) (0.080) (0.154)

Minority 0.163* -0.107 -0.161
(0.096) (0.067) (0.114)

GCSE -0.045 -0.218** -0.367**
(0.106) (0.091) (0.156)

A-level -0.131 -0.005 0.008
(0.128) (0.095) (0.161)

Degree -0.421*** -0.254*** -0.435***
(0.133) (0.091) (0.154)

Intercept -6.221 -1.397*** -2.470***
(79.355) (0.131) (0.256)

AIC 94783 94639 75310 75054 75055
BIC 94867 94799 75394 75214 75215
➜ Age measured in decades from an origin of 50. Statistical significance: * = 10%, ** = 5%, *** = 1%
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We now compare two interpolation methods. If the observed interval is [Li, Ui],
the conditional expectation predictor of the unobserved true count is E(y∣Xi, Li, Ui),
and this is specified by the ce option of the predict command.6 The alternative is
to generate a random draw from the conditional distribution f(y∣Xi, Li, Ui) using the
mc option. The following code generates the interpolations and plots their distributions
(for the example of the OP count):

. quietly intcount lo_OP hi_OP $Xvars, negbin inflate($Xvars) probit

. predict OP_ce if e(sample),ce(lo_OP hi_OP)

. predict OP_mc if e(sample),mc(lo_OP hi_OP)

. histogram OP_ce if OP_ce<=30,width(1) ///
> graphregion(fcolor(white) ilcolor(white) icolor(white) lcolor(white) ) ///
> name(OPce, replace) xlabel(0(5)30) ytitle("Density)") ///
> xscale(titlegap(3) range(0 30)) yscale(titlegap(3)) ///
> xtitle("Conditional mean count")
(bin=22, start=0, width=1)

. histogram OP_mc if OP_mc<=30,width(1) ///
> graphregion(fcolor(white) ilcolor(white) icolor(white) lcolor(white) ) ///
> name(OPmc, replace) xlabel(0(5)30) ytitle("Density)") ///
> xscale(titlegap(3) range(0 30)) yscale(titlegap(3)) xtitle("Conditional Monte Carlo count")
(bin=30, start=0, width=1)

. graph combine OPce OPmc

The distributions for the interpolated GP and OP counts are shown in Figures 4
and 5; the ce interpolator gives a much lumpier distribution than the mc interpolator,
since it averages out random variation within intervals.
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Figure 4: Distributions of GP consultation count with conditional expectation and
Monte Carlo interpolation

6. Note that we allow predict to generate the required random numbers; we could instead have passed
down a variable containing uniform pseudo-random numbers.
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Figure 5: Distributions of OP consultation count with conditional expectation and
Monte Carlo interpolation

Use of the ce interpolator understates variance, so if other distributional features
besides the conditional mean are of interest, the mc interpolator is usually preferable.
The following code produces the means and standard deviations shown in Table 4.
Within education/gender groups, the mean counts produced by ce and mc are similar
(they would be essentially identical if we average a large number of mc interpolations, or
if there were a very large sample within each education group). In contrast, cell-specific
sample dispersion clearly confirms the downward bias in variance for the ce interpolator.

. matrix mGP=J(8,4,.)

. matrix mOP=mGP

. foreach y in GP OP {
2. forvalues m=0/1 {
3. forvalues e=0/3 {
4. qui summ `y´_ce if e(sample)&educ==`e´&male==`m´
5. local r=2*`e´+1
6. local c=2*`m´+1
7. mat m`y´[`r´,`c´]=r(mean)
8. local ++r
9. mat m`y´[`r´,`c´]=r(sd)

10. qui summ `y´_mc if e(sample)&educ==`e´&male==`m´
11. local r=2*`e´+1
12. local c=2*`m´+2
13. mat m`y´[`r´,`c´]=r(mean)
14. local ++r
15. mat m`y´[`r´,`c´]=r(sd)
16. }
17. }
18. }

. mat m=mGP\mOP

. estout matrix(m, fmt(%5.2f)), style(tex)
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Table 4: Means and standard deviations of GP and hospital OP consultations interpo-
lated by alternative methods.

Education Women Men
level CE MC CE MC

GP consultations
None 4.28 4.31 3.36 3.34

[4.98] [5.53] [4.25] [4.39]
GCSE 3.38 3.41 2.41 2.42

[4.13] [4.51] [3.42] [3.59]
A-level 3.06 3.08 1.90 1.91

[3.64] [3.88] [2.77] [2.96]
Degree 2.80 2.82 1.99 2.01

[3.44] [3.65] [2.73] [2.88]
OP consultations

r1 2.04 2.00 1.91 1.86
r2 [3.79] [3.94] [3.67] [3.83]
r3 1.70 1.63 1.36 1.27
r4 [3.31] [3.22] [2.91] [2.91]
r5 1.54 1.49 1.03 0.94
r6 [3.07] [3.08] [2.42] [2.34]
r7 1.56 1.51 1.16 1.07
r8 [2.99] [2.95] [2.55] [2.45]

Group-specific standard deviations in square brackets.

4.3 Determinants of future healthcare demand

The UKHLS is a perpetual panel and, in addition to healthcare use in wave 7, we
can also observe a range of health measures and other characteristics at the wave 2
baseline. We use this rather than wave 1 as the baseline because a range of objective
measurements was made by nurse interviewers at wave 2.

Our analysis dataset covers demographic covariates (age, gender); indicators of socio-
economic status (SES) (homeownership, log equivalised household income, education);
and biometrics (waist-height ratio, grip strength, resting heart rate, lung function, HDL
“good” cholesterol, hypertension). We estimate standard negative binomial models
from the interval data on GP and OP consultations. The following code produces three
variants of the model for each dependent variable, and the parameter estimates are
shown in Table 5:

. global Xdem "male a a2"

. global Xses "h_own ln_income noed degree"

. global Xbio "whr grip pulse htfvc hdl hyper"
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. qui reg lo_GP lo_OP $Xdem $Xses $Xbio

. cap drop insamp

. gen byte insamp=e(sample)

. qui intcount lo_GP hi_GP $Xdem $Xses if insamp, negbin

. estimates store GP1

. qui intcount lo_GP hi_GP $Xdem $Xbio if insamp, negbin

. estimates store GP2

. qui intcount lo_GP hi_GP $Xdem $Xses $Xbio if insamp, negbin

. estimates store GP3

. qui intcount lo_OP hi_OP $Xdem $Xses if insamp, negbin

. estimates store OP1

. qui intcount lo_OP hi_OP $Xdem $Xbio if insamp, negbin

. estimates store OP2

. qui intcount lo_OP hi_OP $Xdem $Xses $Xbio if insamp, negbin

. estimates store OP3

. estout GP1 GP2 GP3 OP1 OP2 OP3, cells(b(star fmt(%7.3f)) ///
> se(par)) starlevels(* .1 ** .05 *** .01) style(tex) ///
> stats( aic bic, fmt(%7.0f) )

There is little evidence of a predictive role for SES variables when the biometrics
are included in the model, so we adopt variant (2) which uses only demographic and
biometric covariates. Among the biometrics, only waist-height ratio and grip strength
have a consistently significant impact and the following code uses the n predict option
to quantify those impacts by computing the mean predicted effect of adding 1 standard
deviation to each in turn. The effects are substantial in terms of the potential cost to
the public health care system: a uniform 1 standard deviation increase in weight-height
ratio increases the consultation workload by 15% for GPs and 12% for hospital out-
patient clinics. A similar increase in the grip strength measure is predicted to produce
an 11% reduction in GP workloads and a 10% reduction for out-patient clinics.

. foreach c in GP OP {
2. foreach x in whr grip {
3. cap drop pred*
4. estimates restore `c´2
5. cap drop tmp
6. qui gen double tmp=`x´
7. qui predict pred0 if insamp,n
8. qui summ pred0,meanonly
9. scalar t0=r(mean)

10. qui replace `x´=`x´+1
11. qui predict pred1 if insamp,n
12. qui summ pred1,meanonly
13. scalar t1=r(mean)
14. di in gr "`c´: Impact of 1 sd increase in `x´: " %7.3f (t1-t0)
15. di in gr "Proportionate increase: " %5.1f 100*(t1-t0)/t0 "%"
15. qui replace `x´=tmp
16. }
17. }

(results GP2 are active now)
GP: Impact of 1 sd increase in whr: 0.344 ( 15.4%)
(results GP2 are active now)
GP: Impact of 1 sd increase in grip: -0.246 (-11.0%)
(results OP2 are active now)
OP: Impact of 1 sd increase in whr: 0.156 ( 11.8%)
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(results OP2 are active now)
OP: Impact of 1 sd increase in grip: -0.126 ( -9.5%)

Table 5: 5-year ahead predictive models of healthcare use

GP consultations OP consultations
Coefficient (1) (2) (3) (1) (2) (3)
Male -0.287*** -0.170** -0.176** -0.278*** -0.197* -0.194

(0.044) (0.075) (0.075) (0.072) (0.119) (0.119)
Age➜ 0.090*** 0.032* 0.035* 0.166*** 0.144*** 0.146***

(0.015) (0.018) (0.019) (0.025) (0.030) (0.032)
Age squared➜ 0.022*** 0.026*** 0.022** 0.034** 0.036** 0.036**

(0.008) (0.008) (0.009) (0.014) (0.014) (0.015)
Homeowner -0.138** -0.095 -0.071 -0.023

(0.062) (0.062) (0.101) (0.103)
ln(income) -0.103** -0.051 0.083 0.117*

(0.041) (0.042) (0.068) (0.069)
No qualification 0.122 0.097 0.069 0.065

(0.080) (0.080) (0.134) (0.133)
Degree -0.015 0.006 -0.114 -0.113

(0.047) (0.047) (0.077) (0.077)
Waist-height ratio 0.143*** 0.132*** 0.111** 0.114**

(0.027) (0.027) (0.045) (0.045)
Grip strength -0.117*** -0.109*** -0.100* -0.111**

(0.036) (0.036) (0.055) (0.055)
Pulse rate -0.010 -0.012 0.028 0.028

(0.022) (0.022) (0.036) (0.037)
Lung function -0.039 -0.032 0.034 0.039

(0.037) (0.037) (0.060) (0.061)
HDL cholesterol -0.060** -0.060** 0.016 0.010

(0.025) (0.025) (0.041) (0.041)
Hypertension 0.096* 0.096* -0.054 -0.057

(0.053) (0.053) (0.088) (0.088)
Intercept 1.714*** 0.745*** 1.205*** -0.241 0.241*** -0.560

(0.298) (0.042) (0.304) (0.491) (0.068) (0.503)
ln(α) -0.053 -0.084* -0.087** 1.073*** 1.068*** 1.065***

(0.043) (0.043) (0.043) (0.044) (0.044) (0.044)
AIC 8866 8811 8811 7279 7276 7280
BIC 8921 8878 8903 7334 7343 7371
➜ Age measured in decades from an origin of 50. Statistical significance: * = 10%, ** = 5%, *** = 1%
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5 Conclusions

Survey count data often come in interval form rather than exact counts. It is com-
mon for ad hoc methods to be used for modelling such data – for example, regression
applied to mid-point interpolations, or ordered probit regression that does not exploit
the known interval limits or the count nature of the data. This article documents a
new Stata command, intcount, which allows the estimation of a range of count data
regression models from interval data without making arbitrary approximations. The
post-estimation predict command allows the use of the estimated model for a vari-
ety of prediction purposes, including interpolation of the unobserved underlying exact
count.

The use of the command is illustrated with applications to data from the UK Un-
derstanding Society panel on the health service use. These applications demonstrate
that interval observation need not be a barrier to econometric analysis.
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