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Abstract—Human action recognition in diverse and realistic
environments is a challenging task. Automatic classification of
action and gestures has a significant impact on human-robot
interaction and human-machine interaction technologies. Due to
the prevalence of complex real-world problems, it is non-trivial
to produce a rich representation of actions and to produce an
effective categorical distribution of large action classes. Deep
convolutional neural networks have obtained great success in this
area. Many researchers have proposed deep neural architectures
for action recognition while considering the spatial and temporal
aspects of the action. This research proposes a dual stream spatio-
temporal fusion architecture for human action classification.
The spatial and temporal data is fused using an attention
mechanism. We investigate two fusion techniques and show that
the proposed architecture achieves accurate results with much
fewer parameters as compared to the traditional deep neural
networks. We achieved 99.1 % absolute accuracy on the UCF-
101 test set.

Index Terms—Action recognition, attention networks, fusion,
deep neural networks

I. INTRODUCTION

Human activity recognition in a real-world environment is

gaining popularity for its various applications in day to day

life. It aims to classify human actions by a series of obser-

vations of human actions at a given period. There are numer-

ous applications of action recognition, such as human-robot

interaction, wearable technologies, surveillance, multimedia

content annotation and measuring similarity. The temporal,

motion and contextual aspect of a video makes it different

from standard image classification. The spatio-temporal feature

representation and generalisation are non-trivial due to the

real-world obstacles, such as jitter, lighting conditions, camera

viewpoint changes and camera motion.

More researches have been published on this problem so

far. Gaussian mixture models, SVM models and probabilis-

tic models were proposed using hand-crafted features [1–5].

However, deep neural models become very popular because

they can generate high-level features from low level features

[6–8]. Initially, the deep neural architectures do not perform

exceedingly compare to the traditional hand-crafted feature

based methods [9]. Deep convolutional neural architectures are

also introduced for vision-based action recognition problems

[10–12]. Since then different variants of convolutional neural

networks (CNN) are introduced exploring spatial and temporal

modelling [13, 14].

This huge revolution in action recognition research also

evolved the experimental data. From stationary camera and

controlled environment oriented [15] action database, the re-

search community, towards more in the wild and real-world

oriented database [16–18].

In this paper, we investigate the spatiotemporal relationship

between the sequences in a video for action recognition. We

adopt an attention mechanism [19] in our framework. Our

contribution is two-fold

i. We propose a deep neural net framework that performs

with high accuracy (state-of-the-art with UCF-101) with

relatively fewer parameters compare to the current state-

of-the-art architectures.

ii. We investigate fusion between the spatial and temporal

channels.

The paper is organised as follows. Section 2 discusses the

previous work related to this research, section 3 explains

our approach and the basic building blocks of the proposed

frameworks, section 4 describes the proposed frameworks,

section 5 describes the experimental scenarios and interprets

the results. Finally, section 5 concludes the paper and proposes

future research path.

II. RELATED WORKS

The CNN based methods, are applied for image and video

processing, require minimum pre-processing. Karpathy et al.

proposed CNN models for video classification with large

databases [11]. Moreover, the feature extraction and clas-

sification tasks can be solved simultaneously by the net-

work. These methods have provided promising results in the

field of computer vision [20], machine learning and pat-

tern recognition. Various implementations of CNN networks

have been proposed for action recognition [21, 22]. The

3D CNN features based action recognition was proposed

in [12, 13].A two stream, a spatial and a temporal stream based

approach have been proposed for action recognition in [10]. An

Attention-based Temporal Weighted CNN (ATW) combines a

visual attention model with a temporal weighted multi-stream

CNN [23].



Recurrent neural networks (RNN) have been achieved good

results in temporal modelling of sequential data [24]. A visual

action is a sequence of consecutive events happens in a period

of time. Modelling temporal context and modelling the relation

between those sequences can give a rich representation. Visual

sequence modelling has been carried out by several in the

literature [25, 26]. Veerial et al. [27] show that the salient

motion feature between the consecutive frames (derivative of

states between frames) can be used successfully with long-

short-term-memory networks (LSTMs) [24] to model time-

series action sequence modelling.

Vaswani et al. [28] propose an attention mechanism based

architecture with feed-forward neural networks to show that

dependencies in between the elements in a sequence can

be learned by attention mechanism. Attention networks have

become vastly popular for modelling long term dependencies

[28–32]. Wang et. al [19] propose non-local networks to

measure positional dependency within the same sequence.

III. APPROACH

In this paper, our motivation is to investigate the dependency

between spatial and temporal data for action recognition. The

dual stream architecture [10] has been adopted for the base of

our framework. This architecture is a computational model of

the two-stream hypothesis [33, 34] which states that human

visual cortex system consists of dual channels (dorsel and

ventral) to process spatial and temporal information. We will

use RGB frames for the spatial modelling and dense optical

flow for temporal modelling.

A. Optical Flow

Fig. 1: (a) consecutive pair of images (b) and (c) horizontal and vertical
component of optical flow

Optical Flow (OF) is a visual object tracking method

that approximates the relative motion of an object and the

observer (sensor). The OF algorithm assumes constant pixel

intensity across consecutive frames and relatively small object

motion (displacement). Based on these assumptions, the OF

algorithm calculates a vector displacement field around each

pixel for 2D tracking and each voxel for 3D tracking. Various

techniques have been proposed to determine the OF such as

horn-schunck [35], lucas-kanade [36] and brox [37]. In this

paper, we have used the brox [37] method to extract OF. The

OF is a displacement vector dt between consecutive frames

t and t + 1. The vector dt(u, v) is the displacement of point

(u, v) from frame t to t + 1. The horizontal ux
t , ux

t+1 and

vertical v
y
t , v

y
t+1 are used as input channels in the CNN for

temporal modelling. A sample OF frame is shown in figure 1.

B. Convolutional Neural Network

Convolutional Neural Networks (CNN), like other neural

networks, are multi-layer neural networks. A CNN consists

of the convolution and other layers (such as sub-sampling,

pooling, ReLU, fully connected, loss) working in a deep learn-

ing framework. The initial layers detect low-level features,

and the last layers work on the high-level feature space. The

characteristics of these networks are that each feature of the

layer is connected to a local area, also called local receptive

field, of the previous layer. These areas are overlapping and,

when combined, provide an overall result for a given task. The

feature maps are convoluted with kernels f [xb, yb]. The kernels

are the local receptive field f [xa, ya]. While the kernels slide

through the image, they extract visual features (edges, corners

or more abstract features) and combine the set of outputs to

form feature maps. If the kernels of size [h×w×N ] ([height

× width × depth], and n = 1, 2, · · · , N ) are used, the nth

convolutional feature map would be:

yn = f





∑

j

gn ∗ xj



 , (1)

where gn is the nth kernel and xj (j = 1, 2, · · · , J) is

the jth input feature map of size [A × B] and f(·) is a

nonlinear activation function. The kernel size is significant for

preserving locality in the whole network as well as controlling

representations [38].

In this research, we use a smaller kernel size (2-5) to

preserve locality by considering a small neighbourhood at a

time. Smaller kernel sizes can increase non linearity in the

network and enable feature fusion [39, 40]. According to

some research, stacking more than one CNN layer results

in increased non-linearity and richer representations [41].

Generally, the CNN layer is followed by a pooling layer.

The pooling layer improves the discriminability power of the

network and robustness to shift and distortions [42]. This

means, pooling brings invariance to the network. However,

it is crucial to control the kernel size in pooling to keep

it from losing information. The network learns faster with

decorrelated network parameters have zero means and unit

variances [42]. Loffee et al. [43] proposed batch normalisation

for approaching this issue with reducing internal covariance

shift in a batch. We adapted these methods in our proposed

framework.

C. Self Attention Networks

Self-attention networks have the flexibility of modelling

long-term inter-sequence dependencies. In this research, we

use self-attention as non-local networks [19, 44] to model the

relationships between the regions in the feature maps from

previous layers. The mechanism is shown in figure 2. The

features from previous CNN layers y are transformed into three

feature spaces j, k and l, where

j (y) = Wjy k (y) = Wky l (y) = Wly (2)
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Fig. 2: Convolutional self-attention mechanism.

Here Wj , Wk and Wl are network weights learned through

back-propagation. The number of channels in Wj , Wk is less

than the number of channels in the features. However, Wk has

the same number of channels as input feature y. Dot product

is used to calculate the relationship between j and k. Then we

normalize it using the softmax function.

eij = softmax
(

j (yi)
T
k (yj)

)

(3)

The attention map is calculated by doing matrix multiplication

between e and l(y). A scaling factor is multiplied with the

attention map and the result is added with the input feature

map.

attention output = γ(el(y)) + y (4)

In this work, γ is randomly initialized. This layer learns the

non-local dependencies as well as the local neighbourhood.

IV. THE PROPOSED FRAMEWORK

Our contribution is two-fold for the proposed architecture.

We propose two models based on two different fusion tech-

niques. The first model shows late fusion and the second

model shows early fusion. The frameworks are shown in figure

3. Each video V is divided into N frames {f1, f2, ..., fN}.

Consecutive frames are highly redundant, we choose frames

sequentially but having small time distance with each other.

1) Late Fusion: We take inspiration from VGGNET [45]

for the late fusion model. The spatial stream operates on a

sequence of RGB video frames. The frames are stacked and

fused by interpreting each of the frames as an individual

channel. The model consists of 5 different CNN layer blocks.

Block A has two convolution layers with kernel size 3, fol-

lowed by a maxpooling layer with kernel size 2. Block B has

three convolution layers with kernel size 3, 3, 4 respectively,

followed by a maxpooling layer with kernel size 2. Block D

has three convolution layers with kernel size 3. This followed

by a convolutional attention layer. The attention layer (III-C)

fuses the spatial feature maps from block D of channels

sized 128.The convolution layers in the attention layer have

a kernel size of 1. Block C has three fully connected layers.

We have used dropout for regularisation. The temporal stream

has a similar architecture as shown in figure 3. The output

or of spatial os and temporal streams ot are fused using

concatenation

or = os ⊕ ot, (5)

(where ⊕ denotes concatenation). Then or is fed to fully

connected layers and dropout is used for regularization.

2) Early Fusion: The proposed early fusion model has a

simplistic approach. Both the spatial and temporal stream have

a smaller feature extraction layer compared to the previous

model. The input channels are fed to a convolution layer with

kernel size 3 followed by a batch normalisation layer. The

number of output channels is 128. The feature maps are slowly

down-sampled and then up-sampled in the following layers.

Maxpooling has been used to introduce sparsity in the network

parameters. After each series of convolution process, we use

batch normalisation extensively to reduce correlation among

the parameters at the same layer within the network. Both

spatial and temporal stream produce 128 channels of feature

maps. These feature maps are fused using a self-attention layer.

The network weights Wj , Wk, Wl, mentioned in III-C, are

three convolutional layers with kernel size 1. The number of

output channels for Wj and Wk is one-eighth of the input

channels (256) in the self-attention layer. The output channels

are decreased to reduce the computation time. The number

of output channels for Wl is the same as the input channels

in the self-attention layer. The scaling factor γ is randomly

initialised. The kernel size in the attention layer is set to 1 to

perform feature level fusion. The output feature maps from the

attention layer are fed in an adaptive pooling layer to produce

fixed sized output feature maps. These feature maps are given
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Fig. 3: Early and late fusion with attention network

as input to three fully connected layers. Similar to the previous

model, dropout has been used as a regularizer.

V. PERFORMANCE EVALUATION

A. Dataset

In this paper, the UCF-101 dataset [46] is used for evaluating

the performance of the proposed method. This dataset consists

of 101 actions annotated for 13320 Youtube video clips. This

dataset is among the biggest (in terms of the number of

classes and videos) publicly available and annotated datasets

to date. The videos have been uploaded by non-professionals

which include additional challenges such as shaking cameras,

inconsistent viewpoints and changing resolutions. Moreover,

there are groups of classes which are quite similar to each

other such as violin and cello playing.

B. Experiment

The experiments have been conducted using the PyTorch

[47] deep learning framework. We used 10 motion frames with

interval for the RGB stream training. In the training phase,

the frame sequences are change in every 100th epoch. For

example, if we use f5, f15, f25, f35, ..., f95 frames in the the

first 100 epochs, we change the sequence to f8, f18, f28, ..., f98
frames for 100 to 200th epoch. One Nvidia GTX 1080ti GPU

has been used for executing the experiments.

1) Learning: The adam optimiser [48] was applied to mini-

batch of 25 videos with categorical cross-entropy loss. The

momentum and weight decay are set to 0.9 and 0 respectively.

Throughout the network, the learning rate was set to 0.0001.

To prevent the network from over-fitting dropout layers were

used with the fully connected layers. In the late fusion model,

figure 3, the dropout rate in block C was set to 0.5 but after

the fusion, the dropout was set to 0.85 in the classifier section.

2) Data Augmentation: Random horizontal flipping and

random cropping were applied to the frames for data augmen-

tation to increase the diversity of the training samples. The

frames are normalised and re-sized to [224× 224] images.

TABLE I: Comparison of the proposed methods with other state-of-the-art
methods in terms of accuracy (%)

Method Accuracy (%)

Two Stream [10] 88.0

C3D (3 nets) [12] 85.2

Two stream + LSTM [49] 88.6

Two stream VGGNet-16 90.9

Long Term Temporal Convolution [50] 91.7

KVMF [51] 93.1

TSN 3 Modaliites [14] 94.2

Proposed Network I(late fusion) 98.8

Proposed Network II(early fusion) 99.1



Fig. 4: Training vs Testing accuracy (%) during early fusion model training

Fig. 5: Training vs Testing accuracy (%) during late fusion model training

C. Results

This section presents the results and their comparison with

the state-of-the-art. The proposed frameworks have been eval-

uated on UCF-101 dataset with the split I . The accuracy com-

parisons with the state-of-the-art systems are shown in table

I. It can be clearly seen that both the proposed frameworks

achieved state-of-the art results in UCF-101 test dataset. We

demonstrated two types of model late fusion attention model

and early fusion attention model. With the late fusion attention

model, we explored very deep neural architecture, and it has

280314599 parameters. The early fusion model has 4956442
parameters, which is around 98% smaller than the late fusion

network. The training vs testing accuracy is shown for both of

the models in figure 4 and figure 5.

D. Discussion

Two points can be clearly drawn from figure 4 and figure

5. Firstly, the representation learning on training data is truly

generalized for the test data. Secondly, from the initial training

stage, both the networks do not over-fit. Furthermore, in this

research, we used the training videos in such a way that most

of the frames are utilised. As mentioned in section IV, every

100 th epoch we changed the frame sequences but we kept

the frame order intact. This allows us to use the maximum

training data as well as provide good data augmentation.

We can clearly say that the early fusion attention model

converges faster than the late fusion attention model. Despite

having 98% smaller size than the late fusion attention model,

the early fusion attention model performs exceptionally well.

Also, the early-fusion-attention model has fewer parameters

than the popular deep neural networks, such as VGGNet,

AlexNet, ResNet.

VI. CONCLUSION

We presented two dual-stream attention fusion frameworks.

The dual-stream learning is to model the dorsal and ventral

stream learning hypotheses for human cognition. We investi-

gated two stages of fusion in between those streams. Also,

a reduction of the computational cost with the early fusion

attention model is seen which has a smaller network size

without compromising the performance. This research brought

the state-of-the-art to a different level as explained in section

V-D. Finally, this work has tried to bring together good

practices for designing CNN and deep networks. The future

research path will be examining the proposed models with

bigger databases with more diverse and complex categories.
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