
This is a repository copy of Gold-based carbon-supported bimetallic catalysts for energy 
storage and biomedical applications.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/146979/

Version: Accepted Version

Article:

Oseghale, C.I. orcid.org/0000-0002-4404-7850, Abdalla, A.H., Uddin, M.K.H. et al. (1 more
author) (2019) Gold-based carbon-supported bimetallic catalysts for energy storage and 
biomedical applications. Microchemical Journal, 149. 103917. ISSN 0026-265X 

https://doi.org/10.1016/j.microc.2019.05.018

Article available under the terms of the CC-BY-NC-ND licence 
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


1	

	

 Gold-based carbon-supported bimetallic catalysts for energy storage and biomedical 

applications 

 

C.I. Oseghale
1a, c

*, A. H. Abdalla
d
, M. K. H. Uddin

b 
and P. J. Hall

a
 

aDepartment of Chemical & Biological Engineering, University of Sheffield, Mappin Street, 
Sheffield, S1 3JD, England, UK 

bDepartment of Material Sciences and Engineering, Kroto Research Institute. University of 
Sheffield, Broad Lane Street, Sheffield, S3 7HQ, England, UK 

cDepartment of Chemical Engineering, University of Port Harcourt, East-West Road, Choba, 
Port Harcourt, Rivers State, Nigeria. 

dDepartment of Chemistry, Faculty of Arts and Science-Traghen, University Of Sebha, Libya 

 

Abstract 

 

In this study, the controlled synthesis of highly reactive gold palladium bimetallic 

nanostructured catalyst, using polyvinyl pyrrolidone stabiliser, has been proposed. In order to 

determine the morphology, biocompatibility and to explore the chemistry of the produced 

Au0.8Pd0.2-C samples, microscopic examinations, cell viability and Raman spectroscopy 

technique were performed. The XRD pattern displayed a well-defined fcc crystalline 

structure for the Au0.8Pd0.2-C and Pd-C catalysts. The presence of Au in Au0.8Pd0.2-C 

electrodes promotes a positive effect, which was confirmed by the appearance of a broad 

peak in the region of H2 adsorption/desorption, suggesting that the H2 adsorption/desorption 

processes on the surface of catalyst were favored. Standard MTT assay performed on the 

Au0.8Pd0.2-C samples displayed a decreased cellular response with respect to the control 

group; however, cell confluency throughout the tissue culture plate suggested 

biocompatibility of the given sample. Moreover, when the Au0.8Pd0.2-C catalyst was 

chemically tested by Raman spectroscopy, the presence of Au and Pd ions was confirmed. 

Keywords: Chemical synthesis, Bimetallic Nanostructure, Biomaterials, Low-cost, Batteries 
 

 

1 Introduction 

 

The growing demand for energy has seen an increase in the research and development of new 

energy technologies from renewable sources [1-3]. Electrochemical energy storage 
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technologies such as batteries require effective electrocatalytic materials to upgrade and 

improve performance. The preparation of high performance heterogeneous bimetallic 

catalysts will enhance the widespread utilisation of aqueous battery technology [4]. Gold and 

gold-based catalysts are very effective for both heterogeneous and homogenous catalysis. In 

particular, the excellent performance of gold-based catalysts is widely recognized, after the 

pioneering work of Haruta and co-workers, in the redox reaction of the low-temperature 

carbon monoxide oxidation reaction [5-10]. Progress will strongly depend on new effective 

catalysts for high energy storage applications. The environmental challenges posed by the use 

of such highly toxic materials (Pd, Ni, and Cd) in electrodes need to be avoided by 

developing poisoning-resistant and environmentally friendly materials.  

The key to effective utilisation of intermit renewable energy is the development of large-scale 

energy storage. Rechargeable batteries play a prominent role in this context. In particular, 

aqueous electrolyte rechargeable batteries, based on alkali ions, are promising candidates 

because of their inherent safety, low cost, longevity, and tolerance to over-charge or 

discharge [11, 12]. Potassium hydroxide has very good current-conducting and low internal 

resistance properties. Potassium is more naturally abundant element than sodium and lithium 

metals, which suffer low capacity issues and poor stability [4, 13]. 

The unique properties of gold at the nanoscale – for instance: low electrical resistivity, 

inertness and resistance to sulfur-based tarnishing – also render it suitable for implantation 

due to its biocompatibility, when compared with most other metals [14, 15]. Recent advances 

in synthesis techniques and biomolecular engineered gold nanoparticles have led to medical 

applications in the areas of biosensors, gene and photothermal therapy, targeted drug 

delivery, tissue engineering, and disease therapy [16-19].  

In this article, we present a gold-palladium catalyst on a carbon black support for both energy 

storage and biocompatible applications. Following the previous synthesis route by Oseghale 

et al. 2016 [20], a two-stage preparation method of AuPd on carbon black was carried out at 

room temperature. The palladium precursor was stabilised in solution with 

polyvinylpyrrolodone (PVP) using excess sodium borohydride solution as a reducing agent. 

The physical, electrochemical and biocompatibility measurements were performed, to 

determine the performance characteristics of the as-prepared catalysts. 

 

2 Experiment and methods 

 



3	

	

2.1 Synthesis of Au0.8Pd0.2-C catalysts  

 

The Au0.8Pd0.2-C catalysts were prepared by measuring 140 mg of polyvinylpyrrolidone 

(PVP, 1.30 mmol of monomeric units, mol.wt. = 40,000, 99.9% Sigma-Aldrich), 10 mL of 

fresh deionized water (18.2 M∧.cm-1, Purelab option ELGA) and 0.42 mL of 0.062 mol/L 

palladium chloride (PdCl2, 99.9% Sigma-Aldrich)). The obtained solution was purged with 

argon gas for approximately 1h in order to remove the dissolved oxygen. Then, 10 mL of 

freshly prepared 1M sodium borohydride (NaBH4, 99%, Aldrich) was added dropwise to the 

PdCl2-PVP solution, with continuous stirring, and was protected with argon gas. The reaction 

was allowed to proceed for 1h to yield PVP-stabilised Pd nanoparticles in solution. 6.3 mL of 

freshly prepared, deaerated HAuCl4.3H2O solution (0.05 mol/L, 99.9% Sigma-Aldrich) was 

added quickly to the Pd-PVP nanoparticles in solution and stirred for 1h under argon 

protection. As the redox potential of Au3+/Au (1.498V) is higher than that of Pd2+/Pd 

(0.987V), Au (III) is reduced to Au and therefore Pd (core)-Au (shell) particles were formed 

(see Figure 1).  

 

 

 

Figure 1: Diagram illustrating the use of PVP stabilised chemical reduction synthesis for the 

preparation of Au0.8Pd0.2-CPVP catalyst[20] 

Within a few minutes of sol generation, the sol was immobilised by adding Vulcan XC72 

(Cabot) under vigorous stirring for 30 min and was then allowed to settle for 30 min. The 

resulting carbon black-supported Au0.8Pd0.2 catalysts were obtained by filtering the resultant 
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solution using Whatman cellulose nitrate filter paper. The Au0.8Pd0.2-C catalysts were washed 

several times with deionized water, to remove any free PVP macromolecules not bound to 

Au0.8Pd0.2-C catalysts, and until no chloride ion (Cl-) was detected in the filtrate solution. The 

Au0.8Pd0.2-C catalysts were dried under vacuum at 80 oC overnight to obtain the final 

catalysts. Using this synthesis procedure, 20 wt.% AuPd-C catalysts with Au:Pd ratio of 

80:20 were prepared. The Au0.8Pd0.2-C catalysts were denoted as AuxPdy (x, y stand for the 

atomic ration of each element) based on the ICP-OES results.  

 

2.2 Physiochemical Characterization of Catalysts 

 

The compositional analysis was determined using a Spectro-Ciros-Vision ICP-OES for the 

metal loading in the samples and shown to be consistent with the calculated from 

preparation procedure.  X-ray diffraction (XRD) patterns of the sample were obtained using 

an X-ray diffractometer (model D2 Phaser Bruker Ltd) with CuKα1 radiation (λ = 1.5406 

Armstrong) and a graphite monochromator, maintained at a tube voltage and current of 30 

kV, 10 mA. The 2θ angular region between 15o – 90o were explored at a scan rate (1o min-1), 

with a step size of 0.1 and increment (i.e. step size between data point) of 0.02. The primary 

divergence slit of 0.6 mm was used and the Ni K-beta filter was not fitted because of the 

carbon black support. Scanning electron microscopy (SEM) was used to obtain micrographs, 

along with Phillips Inspect F.USA, with beam energy of 15kV. For further chemical 

analysis, energy dispersive x–ray (EDS) was used with EDAX Genesis software. All 

samples were prepared by dispersing 1 mg of Pd-C catalysts in 1 mL of 96% ethanol and 

sonicated for 1 minute in a water bath. 10 µL of the paste was cast on Joel 10 mm x 10 mm 

diameter plain stubs and dried at room temperature. Raman spectroscopy was used to obtain 

spectra of the gold and palladium samples, using a Thermo scientific™ DXR™ Raman 

microscope under shifted spectrum (cm-1) format, between the range of 400 – 4000 cm-1. 

The individual spectrum was obtained using 532 nm lasers and the data analysis of the 

obtained spectra was carried out using OMNIC® software. 

 

2.3 Working Electrode Preparation 

 

The working electrode was polished to a mirror finish using 0.5 and 0.05 µm alumina 

suspensions sequentially before use. An appropriate dilution ratio of catalysts, analytical 
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grade ethanol (96%, Aldrich) and 5wt.% Nafion solution (99.99%, Aldrich) were mixed for 

1h. On the surface of the glassy carbon electrode (GCE) (OD: 6 mm ID: 3.0 mm), 9µL slurry 

was spread and dried overnight at 80 oC to obtain the working electrodes. The apparent 

surface area of the GCE was 0.07 cm2. The 20wt.% Au0.8Pd0.2-C and Pd-C loading of the 

electrode was 7 g/m2. 

 

2.4 Cyclic Voltammetry (CV) Experiment 

 

All electrochemical experiments were carried out at room temperature, using a conventional 

three-electrode cell configuration, with a Solartron Analytical Instrument, model 

1400/1470E. The working electrode was a modified inert GCE (internal diameter: 3.0 mm), a 

Pt wire (0.5 mm diameter) was the counter electrode and an Ag/AgClsat.KCl, standard 

electrode (0.256V/NHE or 0.197V/SHE) was used as the reference electrode. CV 

experiments were performed in 1 M KOH, in the potential range -1 V to +0.4 V versus 

reference electrode (Ag/AgCl, KClstd), at a scan rate of 50 mVs-1, to establish a correlation 

between electrochemical behaviour and catalytic performance in the oxidation of potassium 

hydroxide. All experimental data were analysed using the MultiStat Data software for 

evaluations and calculations.  

Chronoamperometry (CA) is an electroanalytical technique typically used to investigate the 

catalyst stability, kinetics, mechanism and the determination of diffusion coefficients of the 

electrochemical system.  It involves potential voltage excitation of -0.3 V for 1000 seconds 

and gives a resulting current density. This method requires semi-infinite linear diffusion (i.e. 

an unstirred solution, linear diffusion to the electrode surface, a planar electrode and a 

supporting electrolyte to insure the absence of ion migration) and no other reactions. 

 

2.5 In vitro cell viability analysis 

 

Biocompatibility of the Au0.8Pd0.2-C sample produced was evaluated using cultured human 

oral fibroblasts (Passage 4) and the cellular response was analyzed using the standard 3-(4,5-

Dimethylthiazol-2-YI)-2,5-Diphenyltetrazolium Bromide (MTT) assay protocol [21]. The 

prepared specimen was sterilised in an autoclave (15 min at 121°C/ 15 psi).  The cells were 

cultured in DMEM media, supplemented with 10% FCS, 1% glutamine and 1% 

penicillin/streptomycin (Sigma-Aldrich UK). Then, cells were allowed to confluent (100%) 
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over the surface of the tissue culture plate and were detached using EDTA trypsin (Sigma-

Aldrich, UK). A 24-well plate was used for cell seeding, containing the test and control 

samples with a seeding density of 1.25 × 104 cells/ml. A non-material and material control 

(negative) and (positive) were introduced for the direct correlation. Material and cells were 

both incubated at 37°C in a 5% CO2 atmosphere for 24 h [21]. 

For the quantitative measurement, an MTT assay was carried out individually on the 

respective prepared specimen. A MTT solution of 0.1ml was added aseptically to each well 

and left for incubation at 37 °C for 4 hrs. Similarly, cells were then lysed with isopropanol 

and the intensity of the colored solution was measured using a photo spectrometer at a 

wavelength of 570 nm [21, 22]. 

 

3 Results and discussion 

3.1 Crystallography of Au0.8Pd0.2-C and Pd-C catalysts 

 

The crystal phases of the Au0.8Pd0.2-C catalysts were characterised using XRD. The 

diffraction peaks are given in Figure 2. The diffraction patterns presented five peaks for 

Au0.8Pd0.2-C (at 2theta: 38.29o, 44.58o, 64.75o, 77.84o, and 82.11o) and four peaks for the Pd-

C catalysts (40.06o, 45.76o, 67.89o, and 80.16o) corresponding to the (111), (200), (220), 

(311), and (222) planes [23]. These peaks confirm Au is present in the face-centered cubic 

(fcc) lattice structure in the Au0.8Pd0.2-C catalysts [24, 25]. It is observed that the higher d 

space for Au0.8Pd0.2-C (d111 = 2.3234 Å) could be due to the lower (111) peak of Au (d111 = 

2.3503 Å) because of the incorporation of Pd atoms, indicating the bimetallic structure is on 

the carbon support [24, 26]. The 2theta values of the reflection peaks of the Au0.8Pd0.2-C 

catalyst (Figure 2a) show a shift to lower angles for all peaks related to Pd-C catalysts 

(Figure 2b). This indicates that the Pd atoms in the Au0.8Pd0.2-C catalysts did not disperse into 

the Au lattice, forming an alloy structure [25, 27, 28] or a simple aggregate of metal 

nanoparticles [28]. This is in agreement with the analysis of the extent of alloying for 

Au0.8Pd0.2-C catalysts, showing a low value of the extent of alloying ca. 0.14 (see Table 1).  
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Table 1: Crystallographic parameters for the Pd and Au0.8Pd0.2-C catalysts 

Catalysts		 2Thet
a	
(Degr
ee)	

d-
spacing	
(Å)	

Lattice	
paramete
r	(Å)	

Atomic	
radius	
(Å)	

Intensit
y	 ratio	
[111]	 to	
[200]	

Extent	 of	
alloying	

Pd-C	 45.76	 1.981	 3.962	 1.401	 2.732	 	

Au0.8Pd0.2-C	 44.58	 2.031	 4.062	 1.436	 2.888	 0.14	

Pd	(46-1043)	 46.66	 1.945	 3.89	 1.375	 	 	

Au	(4-0784)	 44.39	 2.039	 4.078	 1.442	 	 	

 

The lattice contraction is due to the difference in lattice spacing between two metals in 

solution and is ascribed to Vegard’s law [29]. The very low extent of alloying could be 

ascribed to the low-temperature synthesis route and suggests a bimetallic structure. The d-

spacing value corresponding to the (200) plane is 2.031, which is a 0.39% deviation from the 

bulk Au reflection value. This indicates that the Pd nanoparticles in Au0.8Pd0.2-C catalyst 

were completely covered by the Au surface and shows exact crystal properties of the Au bulk 

(see Table 1). 

 

Figure. 2. The XRD patterns of Au0.8Pd0.2-C and Pd-C catalysts.  
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The marked decrease in the mean d-spacing could be attributed to the shift in the lattice 

contraction between the metals (Au, Pd) because of their difference in lattice spacing [29]. 

The data of the average crystallite sizes, lattice parameters, relative crystallinities and the 

interplanar distance (d-spacing) of the Pd and Au0.8Pd0.2-C catalysts are listed in Table 1. 

 

3.2 Surface Morphology and Structure 

 

The morphology and structure of the catalysts was studied using scanning electron 

microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), and Raman spectroscopy. 

As shown in Figure 3a, the SEM micrograph with corresponding EDS (Figure 3b) analysis of 

the Au0.8Pd0.2-C catalyst electrode is presented in Figure 3. The surface morphology of the 

Au0.8Pd0.2-C catalyst consists of spherical lumped nanoparticles with an average particle size 

of ca. 2.9 nm. The result of the EDS spectrum strongly verifies the co-existence of Au and Pd 

along with the presence of carbon black support. However, Pd traces are observed to be 

stronger than Au as illustrated in Figure 3 (b). 
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Figure 3: Images of the as-synthesised Au0.8Pd0.2-C: (a) SEM micrographs 300µm, (b) EDS 

trace indicating presence of Au0.8Pd0.2-C sample, (c) Raman spectroscopy. 

For further chemical analysis, Raman spectroscopy was used. Raman spectroscopy is a 

powerful tool for identifying defective and disordered crystal structures. Figure 3c depicts the 

Raman spectrum collected between the ranges of 400 cm
-1 

- 3600 cm
-1

 for the Au0.8Pd0.2-C 

catalyst. The peaks at 1341 cm
-1 

and 1591 cm
-1 

are attributed to Au/C and Pd/C, 

respectively. The peaks between 400 to 800 cm-1 appeared due to CO stretching. The C-H 

and OH regions of stretching were also observed between 2000 – 2500 cm-1 and 3000 – 

3600 cm-1.
 
Furthermore, it has been observed that there are more consistent peaks appearing 

at 1341 cm-1 and 1591 cm-1, which may confirm the presence of both palladium (Pd) and gold 

(Au) ions in association with carbon (C) atoms [28, 30-35]. 
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3.3 Electrocatalytic performance of Au0.8Pd0.2-C for formic acid oxidation 

 

Figure 4 shows cyclic voltammograms and the catalytic activity of Pd-C and Au0.8Pd0.2-C 

catalysts in 1.0M KOH solution, at a scan rate of 20 mV s-1. In the Pd-C catalyst, three 

potential peaks were observed (-0.79, -0.45, and 0.177 V), which were attributed to the 

reduction of Pd oxides generated during the positive scans [28]. The CV of Pd-C catalyst 

does not show the hydrogen adsorption/desorption peaks attributed to the formation of Pd 

oxides or adsorption of OH- species on the Pd surface [36]. In the negative scan, there are 

three reduction peaks (-0.859, -0.556, and -0.283 V), which are attributed to the reduction of 

Pd oxides generated during the positive scan. In Pd-C catalysts, the shape and position of the 

reduction peaks depends on the reduction of nano-structured of the Pd (II) species (support 

from XRD, SEM). The electrochemically active surface area (ECSA) of the catalysts were 

estimated from the hydrogen adsorption/desorption peaks (coulombic charge) after 

subtraction of the double layer capacitance charge representing the number of active sites on 

the catalysts [20]. The evaluated ECSA’s and other physicochemical properties of Pd-C and 

Au0.8Pd0.2-C are summarised in Table 2.  It shows that Au0.8Pd0.2-C have larger ECSA 

compared to Pd-C, this is attributed to the synergetic property of the Au and Pd in the 

Au0.8Pd0.2-C electronic structure as Au loses valence electrons to Pd. This perturbation 

positively affects surface energy of Au to achieve improved electrochemical performance. 

Another reason for the higher electrochemically active surface area for Au0.8Pd0.2-C could be 

the enhanced metal surface site available for electrochemical reaction, which improve the 

catalytic properties [22]. The addition of a second metal creates active sites for the 

productions of reactive species (edges, corners, dendritic morphology) for enhance 

performance [37]. However, the chemical surface area (CSA) of the Pd-C (1.5 nm, 333.3 

m2g-1) were higher than the Au0.8Pd0.2-C (2.9 nm, 172.4 m2g-1) catalysts due the the smaller 

particle size, which improve their electrochemical performance and stability in alkaline 

media.  

Table	2:		Physicochemical	property	of	the	catalysts	

Catalysts  Particle size, nm ECSA, m
2
g

-1
 CSA, m

2
g

-1
 Metal surface site, 

gcat (x10
19

) 

Pd-C 1.5 1.2 333.3 1.73 

Au0.8Pd0.2-C 2.9 5.6 172.4 7.1 
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For the Au0.8Pd0.2-C catalysts, the peaks and shapes are dependent on the reduction of Au 

oxide. The main oxidation peaks for Au0.8Pd0.2-C catalyst are located at -0.841 and -0.059 V. 

At potentials above 0.3 V, this peak is associated with a process that has not been fully 

explained. It is widely accepted that OH- is first chemisorbed in the initial stage of oxide 

formation and then transformed at higher potentials into a higher valence oxide [31, 36]. In 

the negative scan, there are two reduction peaks at -0.978 and -0.309 V, showing higher 

current density. The degree of enhancement towards KOH with the Au0.8Pd0.2-C catalyst was 

better than the Pd-C catalysts. The increase in the backward scan could be due to the 

modification of the electronic properties (bimetallic architecture) or the crystallographic 

orientation of Au0.8Pd0.2-C catalysts. A slight difference in the Pd-C voltammogram (Figure 

4a) compared to Au0.8Pd0.2-C (Figure 4b) was observed. This is related to different Pd 

crystallite size; also, the addition of carbon can have an effect on the CV shape associated 

with hydrogen adsorption/desorption. 
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Figure 4: Cyclic voltammogram curves of Pd-C and Au0.8Pd0.2-C catalysts in 1.0M KOH 

solution at 25 
o
C, scan rate 20 mVs

-1
. 

 

This showed clearly that the synthesised bimetallic Au0.8Pd0.2-C catalyst shows higher 

attraction for hydroxyl group adsorption compared to the Pd-C catalyst. The presence of Au 

promotes a positive effect, which was confirmed by the appearance of a broad peak in the 

region of H2 adsorption/desorption, suggesting that the H2 adsorption/desorption processes on 
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the surface of catalyst were favored. The proposed enhanced properties are due to the 

electronic coupling between the bimetallic (Au and Pd), as well as the high catalytic activity 

of Au0.8Pd0.2-C catalysts. This performance depends on the lattice contraction associated with 

higher surface area and the formation of the Au and Pd bimetallic structure. 

 

To investigate the stability of the catalysts, chronoamperometric analysis was performed at 

0.3 V (vs. Ag/AgClsat.KCl [0.197 V vs. NHE]). The stability experiments show that the Pd-C 

catalyst demonstrated superior catalytic stability in an alkaline medium compared to the 

Au0.8Pd0.2-C catalyst under similar conditions for all potentials (see Figure 5a). From Table 2, 

Pd-C catalysts show higher CSA (333 m3g-1) and particle size (1.5 nm) compared to 

Au0.8Pd0.2-C catalyst.  

 

Figure 5: a) Chronoamperometric curve of the AuPd-C vs. Pd-C electrodes in a 1.0 M KOH 

solution at 0.3 V (vs. Ag/AgClsat.KCl [0.197 V vs. NHE]) and room temperature. b) 

Biocompatibility analysis of AuPd-C sample with control group (without catalyst)  
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As can be seen, the Pd-C electrode displays a higher current density than the Au0.8Pd0.2-C 

electrode. This can be attributed to the smaller particle size and larger surface area of Pd-C 

(1.5 nm) compared to Au0.8Pd0.2-C (2.9 nm). The larger surface area of Pd-C confirms the 

very high electrochemical activity, which is consistent with the CV and XRD measurements. 

 

3.4 Biocompatibility in physiological environment  

 

Cell viability of the Au0.8Pd0.2-C sample was studied quantitatively with a standard MTT 

assay protocol. However, compared to the control group, a similar cellular response was 

observed (100% for the control group and 94% for the Au0.8Pd0.2-C specimen), as indicated in 

Figure 5b. In general, all results obtained are consistent with decreased solubility; therefore, 

it is thought that decreased ion release into cell medium occurred. This could create a 

favorable environment over the normal growth of cells. Moreover, orthopedically, the release 

of Au0.8Pd0.2-C ions with different concentrations encourages the process of osteo-integration, 

by depressing bone re-sorption, and also promotes further bone formation. Various 

researchers working on metal ions have proposed different formulations of gold and 

palladium in certain biomaterials, used in biomedical applications, which has demonstrated 

positive biocompatible behavior of both aforementioned metal ions. Liu et al., proposed an 

immune-sensor based on N-(aminobutyl)-N-(ethylisoluminol) (ABEI), crowned with Au and 

Pd bimetallic nanoparticles, which exhibited a favorable biocompatibility. This immune-

sensor was designed to root out human collagen type IV i.e. a biomarker related to diabetic 

nephropathy [34].  

 

4 Conclusion  

 

In the present study, Au0.8Pd0.2-C nanostructured catalyst has been investigated in order to 

determine its synergistic effects, bimetallic architecture and biocompatibility. Morphological 

examinations of the synthesized Au0.8Pd0.2-C catalyst, using SEM and XRD techniques, 

suggested that the produced catalyst is crystalline in nature, with spherical lumps of ca. 

10.4 nm. Moreover, electrocatalytic performance analysis unveils that the Au0.8Pd0.2-C 

catalyst possesses greater attraction for OH groups increasing the positive potential, which 

could be due to the lattice contractions seen. However, Pd-C catalysts were found to be more 

chemically stable than Au0.8Pd0.2-C catalysts. The proposed nanostructured catalysts did not 
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affect the cellular growth when cultured for MTT assay, rendering it biocompatible to be 

used in medical applications. These findings can provide useful guidance for a simple design 

protocol for KOH oxidation and a promising tool for Au0.8Pd0.2-based materials for 

biocompatible applications. However, to reach the full potential of these catalysts in practical 

applications, a clear fundamental understanding on the effect of particle size on the 

electrochemical properties are required.	
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