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Abstract

Mathematical models of spatial population dynamics typically focus on the interplay

between dispersal events and birth/death processes. However, for many animal com-

munities, significant arrangement in space can occur on shorter timescales, where

births and deaths are negligible. This phenomenon is particularly prevalent in popula-

tions of larger, vertebrate animals who often reproduce only once per year or less. To

understand spatial arrangements of animal communities on such timescales, we use a

class of diffusion–taxis equations for modelling inter-population movement responses

between N ≥ 2 populations. These systems of equations incorporate the effect on ani-

mal movement of both the current presence of other populations and the memory of past

presence encoded either in the environment or in the minds of animals. We give gen-

eral criteria for the spontaneous formation of both stationary and oscillatory patterns,

via linear pattern formation analysis. For N = 2, we classify completely the pat-

tern formation properties using a combination of linear analysis and nonlinear energy

functionals. In this case, the only patterns that can occur asymptotically in time are

stationary. However, for N ≥ 3, oscillatory patterns can occur asymptotically, giving

rise to a sequence of period-doubling bifurcations leading to patterns with no obvious

regularity, a hallmark of chaos. Our study highlights the importance of understanding

between-population animal movement for understanding spatial species distributions,

something that is typically ignored in species distribution modelling, and so develops

a new paradigm for spatial population dynamics.
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1 Introduction

Mathematical modelling of spatial population dynamics has a long history of uncov-

ering the mechanisms behind a variety of observed patterns, from predator–prey

interactions (Pascual 1993; Lugo and McKane 2008; Sun et al. 2012) to biological

invasions (Petrovskii et al. 2002; Hastings et al. 2005; Lewis et al. 2016) to inter-

species competition (Hastings 1980; Durrett and Levin 1994; Girardin and Nadin

2015). These models typically start with a mathematical description of the birth and

death processes and then add spatial aspects in the form of dispersal movements. Such

movements are often assumed to be diffusive (Okubo and Levin 2013), but sometimes

incorporate elements of taxis (Kareiva and Odell 1987; Lee et al. 2009; Potts and Petro-

vskii 2017). The resulting models are often systems of reaction–advection–diffusion

(RAD) equations, which are amenable to pattern formation analysis via a number of

established mathematical techniques (Murray 2003).

An implicit assumption behind these RAD approaches is that the movement pro-

cesses (advection and diffusion) take place on the same temporal scale as the birth

and death processes (reaction). However, many organisms will undergo significant

movement over much shorter timescales. For example, many larger animals (e.g. most

birds, mammals, and reptiles) will reproduce only once per year, but may rearrange

themselves in space quite considerably in the intervening period between natal events.

These rearrangements can give rise to emergent phenomena such as the ‘landscape

of fear’ (Laundré et al. 2010), aggregations of coexistent species (Murrell and Law

2003), territoriality (Potts and Lewis 2014), home ranges (Briscoe et al. 2002; Börger

et al. 2008), and spatial segregation of interacting species (Shigesada et al. 1979).

Indeed, the study of organism movements has led, in the past decade or two, to

the emergence of a whole subfield of ecology, dubbed ‘movement ecology’ (Nathan

et al. 2008; Nathan and Giuggioli 2013). This is gaining increasing attention by both

statisticians (Hooten et al. 2017) and empirical ecologists (Kays et al. 2015; Hays et al.

2016), in part driven by recent rapid technological advances in biologging (Williams

et al., in review). Often, a stated reason for studying movement is to gain insight into

space-use patterns (Vanak et al. 2013; Avgar et al. 2015; Fleming et al. 2015; Avgar

et al. 2016). Yet despite this, we lack a good understanding of the spatial pattern

formation properties of animal movement models over timescales where birth and

death effects are minimal.

To help rectify this situation, we introduce here a class of models that focuses on

one particular type of movement: taxis of a population in response to the current or

recent presence of foreign populations. This covers several ideas within the ecologi-

cal literature. One is the movement of a species away from areas where predator or

competitor species reside, often dubbed the ‘landscape of fear’ (Laundré et al. 2010;

Gallagher et al. 2017). The opposing phenomenon is that of predators moving towards

prey, encapsulated in prey-taxis models (Kareiva and Odell 1987; Lee et al. 2009).

Many species exhibit mutual avoidance, which can be either inter-species avoidance or
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intra-species avoidance. The latter gives rise to territoriality, and there is an established

history of modelling efforts devoted to its study (Adams 2001; Lewis and Moorcroft

2006; Potts and Lewis 2014). Likewise, some species exhibit mutual attraction due to

benefits of coexistence (Murrell and Law 2003; Kneitel and Chase 2004; Vanak et al.

2013). Since some of these phenomena are inter-specific and others are intra-specific,

we use the word ‘population’ to mean a group of organisms that are all modelled using

the same equation, noting once and for all that ‘population’ may be used to mean an

entire species (for modelling inter-species interactions, e.g. the landscape of fear),

or it may refer to a group within a single species (for intra-species interactions, e.g.

territoriality).

There are various processes by which one population can sense the presence of

others. One is by directly sensing organism presence by sight or touch. However, it is

perhaps more common for the presence of others to be advertised indirectly. This could

either be due to marks left in the landscape, a process sometimes known as stigmergy

(Giuggioli et al. 2013), or due to memory of past interactions (Fagan et al. 2013;

Potts and Lewis 2016a). We show here that these three interaction processes (direct,

stigmergic, memory) can all be subsumed under a single modelling framework.

The resulting model is a system of N diffusion–taxis equations, one for each of

N populations. We analyse this system using a combination of linear pattern forma-

tion analysis (Turing 1952), energy functionals (nonlinear), and numerical bifurcation

analysis. We classify completely the pattern formation properties for N = 2, not-

ing that here only stationary patterns can form. For N = 3, we show that, as well

as there being parameter regimes where stationary patterns emerge, oscillatory pat-

terns can emerge for certain parameter values, where patterns remain transient and

never settle to a steady state. In these regimes, we observe both periodic behaviour

and behaviour where the period is much less regular. These irregular regimes emerge

through a sequence of period-doubling bifurcations, a phenomenon often associated

with the emergence of chaos.

The fact that inter-population taxis processes can give rise to perpetually changing,

possibly chaotic, spatial patterns is a key insight into the study of species distributions.

Researchers often look to explain such transient spatial patterns by examining changes

in the underlying environment. However, we show that continually changing patterns

can emerge without the need to impose any environmental effect. As such, our study

highlights the importance of understanding inter-population movement responses for

gaining a full understanding of the spatial distribution of ecological communities, and

helps link movement ecology to population dynamics in a non-speculative way.

2 TheModelling Framework

Our general modelling framework considers N populations, each of which has a fixed

overall size. For each population, the constituent individuals move in space through

a combination of a diffusive process and a tendency to move towards more attractive

areas and away from those that are less attractive. Denoting by ui (x, t) the probability

density function of population i at time t (i ∈ {1, . . . , N }), and by Ai (x, t) the attrac-
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tiveness of location x to members of population i at time t , we construct the following

movement model

∂ui

∂t
= Di∇

2ui − ci∇ · (ui∇ Ai ) , (1)

where Di > 0 is the magnitude of the diffusive movement of population i and ci ≥ 0

is the magnitude of the drift tendency towards more attractive parts of the landscape.

Here, we assume that the attractiveness of a point x on the landscape at time t is

determined by the presence of individuals from other populations. We look at three

scenarios. For some organisms, particularly very small ones such as amoeba, there may

be sufficiently many individuals constituting each population so that the probability

density function is an accurate descriptor of the number of individuals present at each

part of space. This is Scenario 1. In this case, the attractiveness of a part of space to

population i may simply be proportional to the weighted sum of the probability density

functions of all the other populations, or possibly a locally averaged probability density.

In other words

Scenario 1: Ai (x, t) =
∑

j �=i

ai j ū j (x, t), (2)

where ai j are constants, which can be either positive, if population i benefits from the

presence of population j , or negative, if population i seeks to avoid population j , and

ū j (x, t) =
1

|Cx|

∫

Cx

u j (z, t)dz, (3)

where Cx is a small neighbourhood of x and |Cx| is the Lebesgue measure of Cx. The

importance of this spatial averaging will become apparent in Sect. 3.

For larger organisms (e.g. mammals, birds, reptiles, etc.), individuals may be more

spread out on the landscape. Here, the presence may be advertised by one of two

processes (Scenarios 2 and 3). In Scenario 2, we model individuals as leaving marks

on the landscape (e.g. urine, faeces, footprints etc.) to which individuals of the other

populations respond. Denoting by pi the presence of marks that are foreign to pop-

ulation i , we can model this using the following differential equation (cf. Lewis and

Murray 1993; Lewis and Moorcroft 2006; Potts and Lewis 2016b)

∂ pi

∂t
=

∑

j �=i

αi j u j − µpi , (4)

where µ > 0 and αi j ∈ R are constants. If αi j > 0 (resp. αi j < 0), then population

i is attracted towards (resp. repelled away from), population j . In this scenario, we

model Ai (x, t) as a spatial averaging of pi (x, t) so that

Scenario 2: Ai (x, t) = p̄i (x, t), (5)

where p̄i (x, t) is defined in an analogous way to ū j (x, t) in Eq. (3).
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Finally, Scenario 3 involves individuals remembering places where they have had

recent encounters with individuals of another population, and moving in a manner

consistent with a cognitive map. We assume here that individuals within a population

are able to transmit information between themselves so that they all share common

information regarding the expected presence of other populations, which we denote by

ki (x, t) for population i . This can be modelled as follows (cf. Potts and Lewis 2016a)

∂ki

∂t
=

∑

j �=i

βi j ui u j − (ζ + νui )ki , (6)

where ν > 0, ζ ≥ 0, and βi j ∈ R are constants. Here, βi j refers to the tendency for

animals from population i to remember a spatial location, given an interaction with

an individual from population j , ζ is the rate of memory decay, and ν refers to the

tendency for animals from population i to consider a location not part of j’s range

if individuals from i visit that location without observing an individual from j there.

See Potts and Lewis (2016a) more explanation of the motivation and justification for

the functional form in Eq. (6), in the context of avoidance mechanisms.

In this scenario, we model Ai (x, t) as a spatial averaging of ki (x, t) so that

Scenario 3: Ai (x, t) = k̄i (x, t), (7)

where k̄i (x, t) is defined in an analogous way to ū j (x, t) in Eq. (3).

Note the similarity between Scenarios 2 and 3 and the idea of a “landscape of fear”,

which has become increasingly popular in the empirical literature (Laundré et al.

2010). The landscape of fear invokes the idea that there are certain parts of space that

individuals in a population tend to avoid because they perceive those areas to have

a higher risk of aggressive interactions (either due to predation or competition). The

degree to which this danger is perceived across space creates a spatial distribution of

fear, and animals may be modelled as advecting down the gradient of this distribution.

3 General Results in 1D

Although our modelling framework can be defined in arbitrary dimensions, we will

focus our analysis on the following 1D version of Eq. (1)

∂ui

∂t
= Di

∂2ui

∂x2
− ci

∂

∂x

(

ui

∂ Ai

∂x

)

. (8)

We also work on a line segment, so that x ∈ [0, L] for some L > 0.

It is convenient for analysis to assume that, for Scenarios 2 and 3, the quantities

pi (x, t) and ki (x, t) equilibrate much faster than ui (x, t), so we can make the approx-

imations ∂ pi/∂t ≈ 0 and ∂ki/∂t ≈ 0. Making the further assumption that there is no

memory decay (ζ = 0 in Eq. 6), which turns out later to be convenient for unifying

the three scenarios, we have the following approximate versions of Eqs. (5) and (7)
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Scenario 2: Ai (x, t) ≈
∑

j �=i

αi j

µ
ū j (x, t), (9)

Scenario 3: Ai (x, t) ≈
∑

j �=i

βi j

ν
ū j (x, t). (10)

We non-dimensionalise our system by setting ũi = Lui , x̃ = x/L , t̃ = t D1/L2,

di = Di/D1 and

γi j =

⎧

⎪

⎨

⎪

⎩

ci ai j

L D1
, in Scenario 1,

ci αi j

µL D1
, in Scenario 2,

ci βi j

νL D1
, in Scenario 3.

(11)

Then, dropping the tildes over ũi , x̃ , and t̃ for notational convenience, we obtain the

following non-dimensional model for space use

∂ui

∂t
= di

∂2ui

∂x2
−

∂

∂x

⎛

⎝ui

∑

j �=i

γi j

∂ ū j

∂x

⎞

⎠ , (12)

where d1 = 1, by definition.

For simplicity, we assume that boundary conditions are periodic, so that

ui (0, t) = ui (1, t). (13)

With this identification in place, we can define the 1D spatial averaging kernel from

Eq. (3) to be Cx = {z ∈ [0, 1]|(x −δ)(mod 1) < z < (x +δ)(mod 1)} for 0 < δ ≪ 1.

Here, z(mod 1) is used so as to account for the periodic boundary conditions and is

defined to be the unique real number z′ ∈ [0, 1) such that z − z′ ∈ Z. Then, Eq. (3)

becomes

ū j =
1

2δ

∫ (x+δ)(mod 1)

(x−δ)(mod 1)

u j (z, t)dz. (14)

Finally, since ui (x, t) are probability density functions of x , defined on the interval

x ∈ [0, 1], we also have the integral condition

∫ 1

0

ui (x, t)dx = 1. (15)

This condition means that we have a unique spatially homogeneous steady state, given

by u∗
i (x) = 1 for all i ∈ {1, . . . , N }, x ∈ [0, 1]. Our first task for analysis is to see

whether this steady state is unstable to non-constant perturbations.
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We set w(x, t) = (u1 −1, . . . , uN −1)T = (u
(0)
1 , . . . , u

(0)
N )T exp(σ t + iκx), where

u
(0)
1 , ..., u

(0)
N and σ, κ are constants, and the superscript T denotes matrix transpose.

By neglecting nonlinear terms, Eq. (12) becomes

σw = κ2 M(κ, δ)w, (16)

where M(κ, δ) = [Mi j (κ, δ)]i, j is a matrix with

Mi j (κ, δ) =

{

−di , if i = j,

γi j sinc(κδ), otherwise,
(17)

where sinc(ξ) = sin(ξ)/ξ . Therefore, patterns form whenever there is some κ such

that there is an eigenvalue of M(κ, δ) with positive real part.

It is instructive to examine the limit case δ → 0. Here

Mi j (κ, 0) =

{

−di , if i = j

γi j , otherwise.
(18)

so Mi j (κ, 0) is, in fact, independent of κ , and so we define the constant matrix M0 =

[Mi j (κ, 0)]i, j . When δ → 0, there are two cases pertinent to pattern formation:

1. All the eigenvalues of M0 have negative real part, in which case no patterns form.

2. At least one eigenvalue of M0 has positive real part, in which case the dominant

eigenvalue of κ2 M0 is an increasing function of κ . Therefore, patterns can form

at arbitrarily high wavenumbers. In other words, the pattern formation problem is

ill-posed.

The problem posed by point (2) above can often be circumvented by using a strictly

positive δ. For example, Fig. 1 shows the dispersion relation (plotting the dominant

eigenvalue against κ) for a simple case where N = 2, di = 1, γi j = −5 for all i, j ,

and δ is varied. In this example, the dominant eigenvalue is real for all κ . We see that,

for δ → 0, the dispersion relation is monotonically increasing. However, a strictly

positive δ means the eigenvalues are κ2[−2 ± 5sinc(κδ)]/2, which is asymptotically

σ ≈ −κ2 as κ → ∞. Hence, the dominant eigenvalue is positive only for a finite

range of κ values, as long as δ > 0.

The fact that the pattern formation problem is ill-posed for δ → 0 suggests that

classical solutions may not exist in this case. This phenomenon is not new and has

been observed in very similar systems studied by Briscoe et al. (2002), Potts and Lewis

(2016a, b). More generally, there are various studies that deal with regularisation of

such ill-posed problems in slightly different contexts using other techniques, which

incorporate existence proofs (e.g. Padrón 1998, 2004). We therefore conjecture that

classical solutions do exist for the system given by Eq. (12) in the case where δ > 0,

and the numerics detailed in this paper give evidence to support this. However, we

do not prove this conjecture here, since it is a highly non-trivial question in general,

and the purpose of this paper is just to introduce the model structure and investigate

possible types of patterns that could arise. Nonetheless, it is an important subject for
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Fig. 1 Example dispersion relations. Here we give dispersion relations for the system described by Eq. (12)

with N = 2, di = 1, and γi j = −5 for all i, j . In the left-hand panel, we examine three values of δ, showing

that, for δ → 0, the dispersion relation is monotonic, but this monotonicity is tamed by setting δ > 0. In the

right-hand panel, we extend the dispersion relation plot for δ = 0.1 to a larger range of κ values, together

with the analytically derived asymptotic trend

future research. In the next two sections, we will examine specific cases where N = 2

and N = 3.

4 The Case of Two Interacting Populations (N = 2)

When N = 2, the system given by Eqs. (12, 14, 15) is simple enough to categorise its

linear pattern formation properties in full. Here

M(κ, δ) =

(

−1 γ12sinc(κδ)

γ21sinc(κδ) −d2

)

. (19)

The eigenvalues of M(κ, δ) are therefore

σ(κ) =
−(1 + d2) ±

√

(1 + d2)2 + 4[γ12γ21sinc2(κδ) − d2]

2
. (20)

Notice first that if σ(κ) is not real, then the real part is Re[σ(κ)] = −(1 + d2)/2,

which is always negative, since d2 > 0. Hence, patterns can only form when σ(κ) ∈ R,

meaning that the discriminant, ∆ = (1 + d2)
2 + 4[γ12γ21sinc2(κδ) − d2], must be

positive. In addition, σ(κ) > 0 only when ∆ > (1 + d2)
2. This occurs whenever

γ12γ21sinc2(κδ) > d2. Since the maximum value of sinc2(κδ) is 1, which is achieved

at κ = 0, we arrive at the following necessary criterion for pattern formation, which

is also sufficient if we either drop the boundary conditions or take the δ → 0 limit
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γ12γ21 > d2. (21)

Furthermore, any patterns that do form are stationary patterns, since the eigenvalues

are always real if their real part is positive.

There are three distinct biologically relevant situations, which correspond to dif-

ferent values of γ12 and γ21, as follows

1. Mutual avoidance: γ12, γ21 < 0

2. Mutual attraction: γ12, γ21 > 0

3. Pursue-and-avoid: γ12 < 0 < γ21 or γ21 < 0 < γ12

There are also the edge cases where γ12 = 0 or γ21 = 0, which we will not focus

on. Notice that the ‘pursue-and-avoid’ case cannot lead to the emergence of patterns

(Fig. 2e), as it is inconsistent with the inequality in (21). However, the other two

situations can.

Mutual avoidance leads to spatial segregation if Inequality (21) is satisfied (Fig. 2c).

Some previous models of territory formation in animal populations by the present

authors have a very similar form to the mutual avoidance model here, so we refer

to Potts and Lewis (2016a, b) for details of this situation. Mutual attraction leads to

aggregation of both populations in a particular part of space, whose width roughly

corresponds to the width of the spatial averaging kernel, (x − δ, x + δ) (Fig. 2a), as

long as Inequality (21) is satisfied.

The characterisation of between-population movement responses into ‘mutual

avoidance’, ‘mutual attraction’, and ‘pursue-and-avoid’ enables us to categorise exam-

ples of the system in Eqs. (12, 14, 15) by means of a simple schematic diagram. We

construct one node for each population, ensuring that no three distinct nodes are in a

straight line. Then, an arrow is added from node i to node j if γi j > 0. If γi j < 0,

an arrow is added from node i in the direction anti-parallel to the line from node i to

node j . These diagrams allow us to see quickly the qualitative relationship between

the populations (see Fig. 2b,d,f for the N = 2 case and Fig. 4b for some examples in

the N = 3 case).

4.1 An Energy Functional Approach to Analysing Patterns

We can gain qualitative understanding of the patterns observed in Fig. 2a–d via use of an

energy functional approach, by assuming γ1,2 = γ2,1 = γ , and d2 = 1. In particular,

this approach gives a mathematical explanation for the appearance of aggregation

patterns when γ > 0 and segregation patterns when γ < 0. The results rely on the

assumption that, for all i , ui (x, 0) > 0 implies ui (x, t) > 0 for all t , which can be

shown by the application of a comparison theorem to Eqs. (8, 13), assuming ∂ Ai (x)/∂x

is bounded. Throughout this section, our spatial coordinates will be defined on the

quotient space [0, 1]/{0, 1}, which is consistent with our use of periodic boundary

conditions.
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Fig. 2 Dynamics for a two-species system. Here, there are three cases: mutual attraction, mutual avoidance,

and pursue-and-avoid. a The steady state of a model of mutual attraction, with γ12 = γ21 = 2, and δ = 0.1,

with a schematic of this situation in b. c The steady state of a mutual avoidance model with γ12 = γ21 = −2,

and δ = 0.1, with corresponding schematic in d. e The steady state of a pursue-and-avoid model (where

patterns never form) with γ12 = 2, γ21 = −2 and δ = 0.1, with corresponding schematic in f

Our method makes use of the following formulation of Eq. (12)

∂ui

∂t
=

∂

∂x

⎡

⎣ui

∂

∂x

⎛

⎝di ln(ui ) −
∑

j �=i

γi jK ∗ u j

⎞

⎠

⎤

⎦ , (22)

and also the energy functional

E(u1, u2) =

∫ 1

0

{u1[2 ln(u1) − γK ∗ u2] + u2[2 ln(u2) − γK ∗ u1]}dx, (23)
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where K(x) is a bounded function (i.e. ‖K‖∞ < ∞), symmetric about x = 0 on the

domain [0, 1]/{0, 1}, with ‖K‖1 = 1, and ∗ denotes the following spatial convolution

K ∗ ui (x, t) =

∫ 1

0

K(x − y)ui (y, t)dy. (24)

In our situation, Eq. (14) implies that K(x) = 1/(2δ) for −δ < x < δ(mod 1) and

K(x) = 0 for δ ≤ x ≤ 1 − δ. We consider solutions u1(x, t) and u2(x, t) that are

continuous functions of x and t .

We show that the energy functional from Eq. (23) decreases over time to a minimum,

which represents the steady-state solution of the system. The monotonic decrease of

E over time is shown as follows

∂ E

∂t
=

∫ 1

0

{

∂u1

∂t
[2 ln(u1) − γK ∗ u2] +

∂u2

∂t
[2 ln(u2) − γK ∗ u1]

}

dx

+

∫ 1

0

[

2
∂u1

∂t
+ 2

∂u2

∂t
− γ u1K ∗

∂u2

∂t
− γ u2K ∗

∂u1

∂t

]

dx

=

∫ 1

0

{

2
∂u1

∂t
+ 2

∂u2

∂t
+

∂u1

∂t
[2 ln(u1) − 2γK ∗ u2] +

∂u2

∂t
[2 ln(u2) − 2γK ∗ u1]

}

dx

= 2

∫ 1

0

{

∂

∂x

[

u1
∂

∂x
(ln(u1) − γK ∗ u2)

]

[1 + ln(u1) − γK ∗ u2]

+
∂

∂x

[

u2
∂

∂x
(ln(u2) − γK ∗ u1)

]

[1 + ln(u2) − γK ∗ u1]

}

dx

= 2

[

u1
∂

∂x
(ln(u1) − γK ∗ u2)(1 + ln(u1) − γK ∗ u2)

+ u2
∂

∂x
(ln(u2) − γK ∗ u1)(1 + ln(u2) − γK ∗ u1)

]1

0

− 2

∫ 1

0

{[

u1
∂

∂x
(ln(u1) − γK ∗ u2)

]

∂

∂x
(ln(u1) − γK ∗ u2)

+

[

u2
∂

∂x
(ln(u2) − γK ∗ u1)

]

∂

∂x
(ln(u2) − γK ∗ u1)

}

dx

= −2

∫ 1

0

{[

u1
∂

∂x
(ln(u1) − γK ∗ u2)

]

∂

∂x
(ln(u1) − γK ∗ u2)

+

[

u2
∂

∂x
(ln(u2) − γK ∗ u1)

]

∂

∂x
(ln(u2) − γK ∗ u1)

}

dx

= −2

∫ 1

0

{

u1

[

∂

∂x
(ln(u1) − γK ∗ u2)

]2

+ u2

[

∂

∂x
(ln(u2) − γK ∗ u1)

]2
}

dx

≤ 0. (25)

Here, the first equality uses Eq. (23), the second uses the fact that
∫ 1

0 f (x)K∗h(x)dx =
∫ 1

0 h(x)K ∗ f (x)dx as long as K(x) is symmetric about 0 in [0, 1]/{0, 1}, and also

requires that γ1,2 = γ2,1 = γ , the third uses Eq. (22), the fourth is integration by parts,
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the fifth uses the fact that ui (0) = ui (1) and K ∗ ui (0) = K ∗ ui (1) for i ∈ {1, 2}

(i.e. periodic boundary conditions, Eq. 13), the sixth is just a rearrangement, and the

inequality at the end uses the fact that ui (x, t) > 0 for all i, x, t . In all, Eq. (25) shows

that E(u1, u2) is decreasing over time. The following shows that E(u1, u2) is bounded

below

E(u1, u2) = 2

∫ 1

0

[u1 ln(u1) + u2 ln(u2)]dx −

∫ 1

0

[u1K ∗ u1 + u2K ∗ u2]dx

≥ −4e−1 −

∫ 1

0

[u1K ∗ u1 + u2K ∗ u2]dx

≥ −4e−1 − ‖u1‖1 ‖K ∗ u1‖∞ − ‖u2‖1 ‖K ∗ u2‖∞

≥ −4e−1 − ‖u1‖1 ‖K‖∞ ‖u1‖1 − ‖u2‖1 ‖K‖∞ ‖u2‖1

≥ −4e−1 − 2 ‖K‖∞ . (26)

Here, the first inequality uses the fact that infui ≥0{ui ln(ui )} = −e−1, the second

uses Hölder’s inequality, the third uses Young’s inequality, and the fourth uses the

fact that ‖u1‖1 = 1 (Eq. 15). For the absence of doubt, the definition ‖ f ‖p =
(

∫ 1
0 | f (x, t)|pdx

)1/p

, for p ∈ [1,∞], is used throughout (26). Again, note that the

inequality u(x, t) > 0 is required for the sequence of inequalities in (26) to hold.

The inequalities in (25) and (26) together demonstrate that E(u1, u2) moves towards

a minimum as t → ∞, which is given at the point where ∂ E
∂t

= 0. The latter equation

is satisfied when the following two conditions hold

ln(u1) − γK ∗ u2 = η1, (27)

ln(u2) − γK ∗ u1 = η2, (28)

where η1 and η2 are constants.

Equations (27–28) can be used to give qualitative properties of the long-term dis-

tribution of the system in Eqs. (12, 14, 15) for N = 2 and γ1,2 = γ2,1 = γ . First, by

differentiating Eqs. (27–28) with respect to x , we find that

∂u1

∂x

1

u1
= γ

∂

∂x
(K ∗ u2), (29)

∂u2

∂x

1

u2
= γ

∂

∂x
(K ∗ u1). (30)

Thus, γ > 0 implies that ∂u1
∂x

has the same sign as ∂
∂x

(K ∗ u2) so any patterns that

may form will be aggregation patterns (Fig. 2a, b). Furthermore, γ < 0 implies that
∂u1
∂x

has the opposite sign to ∂
∂x

(K ∗ u2) so any patterns that form will be segregation

patterns (Fig. 2c, d).

Second, by making the following moment closure approximation

K ∗ ui ≈ ui + σ 2 ∂2ui

∂x2
, (31)

123



Spatial Memory and Taxis-Driven Pattern Formation in Model…

where σ 2 is the variance of K(x), we can gain insight by examining the plot of ∂2ui

∂x2

against ui in particular cases. To give an example in the case of aggregation, if u1 ≈ u2

(as in Fig. 2a), then we have γ > 0 by Eqs. (29–30). Equation (28) implies

σ 2 ∂2u1

∂x2
≈

1

γ
[ln(u1) − η2] − u1. (32)

The right-hand side of Eq. (32) has a unique maximum, which is above the horizontal

axis as long as η2 < −1 − ln(γ ) (Fig. 3a). In this case, there are two numbers

a, b ∈ R>0 such that ∂2ui

∂x2 > 0 when a < ui < b and ∂2ui

∂x2 < 0 for ui < a or ui > b. A

(a) (b)

(c) (d)

Fig. 3 Understanding the patterns from Fig. 2 using energy functionals. a An example of
∂2ui

∂x2 as a function

of ui (Eq. 32) when the energy is minimised (Eqs. 27–28) and the moment closure approximation from

Eq. (31) is applied, for the aggregation case, u1 ≈ u2. We see that
∂2ui

∂x2 is positive for a < ui < b and

negative when ui < a or ui > b. There are various possible smooth solutions, ui (x, ∞), that satisfy this

property. b An example corresponding qualitatively to Fig. 2a. c, d Are analogous to a and b, respectively,

but for the situation where we have segregation, so u1 ≈ 2−u2. Note that d qualitatively resembles Fig. 2c
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possible curve that satisfies this property is given in Fig. 3b and qualitatively resembles

Fig. 2a.

To give an example in the case of segregation (γ < 0), suppose that u1 ≈ 2 − u2.

Then, by a similar argument to the u1 ≈ u2 case, ∂2ui

∂x2 has a unique minimum as long

as η2 < −1 − ln(−γ ) − 2γ . In this case, there are two numbers a, b ∈ R such that
∂2ui

∂x2 < 0 when a < ui < b and ∂2ui

∂x2 > 0 for ui < a or ui > b. A possible curve that

satisfies this property is given in Fig. 3d and qualitatively resembles Fig. 2c.

5 The Case of Three Interacting Populations (N = 3)

Although the N = 2 case only allows for stationary pattern formation [often called a

Turing instability after Turing (1952)], for N > 2 we can observe both stationary and

oscillating patterns. The latter arise from what is sometimes known as a wave instabil-

ity, where the dominant eigenvalue of M(κ, δ) is not real but has positive real part, for

some κ . For N > 2, the situation becomes too complicated for analytic expressions of

the eigenvalues to give any meaningful insight [and indeed, these expressions cannot

be found for N > 4 by a classical result of Galois Theory; see Stewart (2015)], so

we begin by examining the eigenvalues for certain example cases in the limit δ → 0.

This involves finding eigenvalues of the matrix M0 given in Eq. (18).

Figure 4 gives an example of how (i) stationary patterns, (ii) oscillatory patterns,

and (iii) no patterns can emerge in different regions of parameter space when N = 3.

Here, we have fixed all the γi j except γ12 and γ23. Specifically, d2 = d3 = γ21 = γ31 =

γ32 = 1, and γ13 = −1. When γ12 < 0 < γ23, this corresponds to a mutual attraction

between populations 2 and 3 with both 2 and 3 pursuing 1 in a pursue-and-avoid

Fig. 4 Dynamics for example three-species systems. a The pattern formation regions, as predicted by linear

analysis, for the system in Eqs. (12, 14, 15) in the case N = 3, where d2 = d3 = γ21 = γ31 = γ32 = 1,

γ13 = −1, and γ12, γ23 are varied. b The schematic diagrams of the systems, corresponding to the four

quadrants of (γ12, γ23)-space
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situation (Fig. 4b, top-left). When γ12, γ23 > 0, 3 is pursuing 1 in a pursue-and-avoid,

whilst 2 is mutually attracted to both 1 and 3 (Fig. 4b, top-right). If γ23 < 0 < γ12, 3

is pursuing both 1 and 2 in a pursue-and-avoid, whilst 1 and 2 are mutually attracting

(Fig. 4b, bottom right). Finally, if γ12, γ23 < 0, then 3 is pursuing both 1 and 2 in a

pursue-and-avoid and 2 is pursuing 1 in a pursue-and-avoid (Fig. 4b, bottom left).

We solved the system in Eqs. (12–15) for various examples from both the stationary

and oscillatory pattern regimes shown in Fig. 4. For this, we used periodic boundary

conditions as in Eq. (13). We used a finite difference method, coded in Python, with

a spatial granularity of h = 10−2 and a temporal granularity of τ = 10−5. Initial

conditions were set to be small random fluctuations from the spatially homogeneous

steady state.

Stationary patterns can give rise to space partitioned into different areas for use by

different populations (Fig. 5, Supplementary Video SV1), with differing amounts of

(a) (b)

(c) (d)

Fig. 5 Example three-species systems with stationary distributions. a, b Two stable steady-state distributions

for the system in (12, 14, 15) in the case N = 3, where d2 = d3 = γ21 = γ31 = γ32 = 1, γ13 = −1,

γ12 = γ23 = −4, and δ = 0.1. c [resp. (d)] The initial condition that led to the stationary distribution in a

[resp. (b)]
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overlap. Interestingly, the precise location of the segregated regions depends upon the

initial conditions (compare panels (a) and (b) in Fig. 5), but the rough size of the regions

appears to be independent of the initial condition (at least for the parameter values

we tested). Considering the abundance of individuals as a whole (i.e. u1 + u2 + u3),

notice that certain regions of space emerge that contain more animals than others. This

is despite the fact that there is no environmental heterogeneity in the model.

The extent to which populations use the same parts of space depends upon the

strength of attraction or repulsion. In Fig. 5a, b, the demarcation between populations

1 and 2 is quite stark, owing to the strong avoidance of population 2 by population 1

(γ12 = −4) and a relatively small attraction of population 2 to population 1 (γ21 = 1),

whereas, although population 1 seeks to avoid 3, the strength of avoidance is smaller

(γ13 = −1), but the attraction of population 3 to population 1 is of a similar magnitude

(γ31 = 1). Therefore, populations 1 and 3 overlap considerably.

Oscillatory patterns can be quite complex (Supplementary Video SV2), varying

from situations where there appear to be periodic oscillations (Fig. 6a) to those where

the periodicity is much less clear (Fig. 6b). To understand their behaviour, we use

a method of numerical bifurcation analysis adapted from Painter and Hillen (2011).

This method begins with a set of parameters in the region of no pattern formation but

close to the region of oscillatory patterns. In particular, we choose parameter values

(a)

(b)

Fig. 6 Example three-species systems with oscillatory distributions. Here, we show the change in u1(x, t)

over space and time for two sets of parameter values. Both panels have parameter values identical to the

fixed parameters from Fig. 4a, additionally fixing γ23 = −4 and δ = 0.1. In a, we have γ12 = 3.3 and b has

γ12 = 4. We started with random initial conditions and then ran the system to (dimensionless) time t = 20.

The plots display values of u1(x, t) for x ∈ [0, 1] and t ∈ [18, 20]. Plots for t ∈ [14, 16] and t ∈ [16, 18]

(not shown) are very similar, indicating that the system has reached its attractor (color figure online)
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identical to the fixed values for Fig. 4a (i.e. d2 = d3 = γ21 = γ31 = γ32 = 1,

γ13 = −1) and also γ23 = −2.5 and γ12 = 3. We then perform the following iterative

procedure:

1. Solve the system numerically until t = 10, by which time the attractor has been

reached,

2. Increment γ12 by a small value (we used 0.005) and set the initial conditions for

the next iteration to be the final values of u1(x, t), u2(x, t), and u3(x, t) from the

present numerical solution.

This method is intended to approximate a continuous bifurcation analysis. To analyse

the resulting patterns, we focus on the value of the system for a fixed point x = 0.5

and examine how attractor of the system (u1(0.5, t), u2(0.5, t), u3(0.5, t)) changes

as increase γ12 into the region of oscillatory patterns.

Figure 7 shows these attractors for various γ12 values. First, we observe a small loop

appearing just after the system goes through the bifurcation point (Fig. 7a). This loop

then grows (Fig. 7b, c) and, when γ12 ≈ 4.1, undergoes a period-doubling bifurcation

(Fig. 7d). The attractor remains as a double-period loop (Fig. 7e, f) until γ12 ≈ 5.77

where it doubles again (Fig. 7g, h). Such a sequence of period doubling is a hallmark

of a chaotic system. Indeed, as γ12 is increased further, the patterns cease to have

obvious period patterns (Fig. 7i) and gain a rather more irregular look, suggestive of

chaos.

6 Discussion

We have used a class of diffusion–taxis systems for analysing the effect of between-

population movement responses on spatial distributions of these populations. Our

models are sufficient for incorporating taxis effects due to both direct and indirect

animal interactions, so are of general use for a wide range of ecological communities.

We have shown that spatial patterns in species distributions can emerge spontaneously

as a result of these interactions. What is more, these patterns may not be fixed in time,

but could be in constant flux. This brings into question the implicit assumption behind

many species distribution models that the spatial distribution of a species in a fixed

environment is roughly stationary over time.

Mathematically, our approach builds upon recent diffusion–taxis models of territory

formation (Potts and Lewis 2016a, b). However, these latter models only consider two

populations, and only in the case where there is mutual avoidance (i.e. Fig. 2c, d).

We have shown that, when there is just one more population in the mix (N = 3), the

possible patterns that emerge can be extremely rich, incorporating stationary patterns,

periodic oscillations, and irregular patterns that may be chaotic. Although irregular and

chaotic spatio-temporal patterns have been observed in spatial predator–prey systems

(Sherratt et al. 1995, 1997), this is one of the few times they have been discovered

as arising from inter-population avoidance models (but see White et al. 1996, Section

8.2). These possibilities will extend to the situation of N > 3, which is typical of most

real-life ecosystems (e.g. Vanak et al. 2013).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7 Numerical bifurcation analysis. This sequence of plots shows the attractors just after the system passes

through a bifurcation point from a region of no patterns to one of oscillatory patterns. Each panel shows the

locus of the point (u1(0.5, t), u2(0.5, t), u3(0.5, t)) as time changes for a particular set of parameter values.

In all panels, d2 = d3 = γ21 = γ31 = γ32 = 1, γ13 = −1, and γ23 = −2.5. The value of γ12 increases

from a to i and is given in the panel title. As γ12 increases, we observe a sequence of period-doubling

bifurcations leading to irregular patterns, suggestive of a chaotic system

The models studied here are closely related to aggregation models, which are well

studied, often with applications to cell biology in mind (Alt 1985; Mogilner and

Edelstein-Keshet 1999; Topaz et al. 2006; Painter et al. 2015). In these models, pop-

ulations exhibit self-attraction alongside diffusion and are usually framed with just a

single population in mind [although some incorporate more, e.g. Painter et al. (2015),

Burger et al. (2018)]. In contrast to our situation, this self-attraction process can enable

spontaneous aggregation to occur in a single population. Similar to our situation, in
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these self-attraction models it is typical to observe ill-posed problems unless some form

of regularisation is in place, either through non-local terms (Mogilner and Edelstein-

Keshet 1999; Briscoe et al. 2002; Topaz et al. 2006) or other means such as mixed

spatio-temporal derivatives (Padrón 1998).

We have decided not to incorporate self-attraction into our framework. This is both

for simplicity of analysis and because the animal populations we have in mind will

tend to spread on the landscape in the absence of interactions, so are well described

using diffusion as a base model (Okubo and Levin 2013; Lewis et al. 2016). However,

in principle it is a simple extension to incorporate self-interaction into out framework,

simply by dropping the j �= i restriction in Eq. (12). Indeed, for N = 2, very sim-

ilar models have been studied for aggregation/segregation properties (Burger et al.

2018) and pattern formation (Painter et al. 2015). In those studies, a combination of

self-attraction and pursue-and-avoid can, contrary to the pure pursue-and-avoid case

studied here, lead to moving spatial patterns where one aggregated population (the

avoiders) leads the other one (the pursuers) in a ‘chase’ across the landscape (Painter

2009), a phenomenon observed in certain cell populations (Theveneau et al. 2013). For

N > 2, however, we have shown that the story regarding spatial patterns can already

be very rich and complicated without self-attraction, so understanding the effect of

this extra complication would be a formidable exercise.

Another natural extension of our work, from a mathematical perspective, would be

to add reaction terms (a.k.a. kinetics) into our model, accounting for deaths (e.g. due to

predation or as a result of competition) and births, by adding a function fi (u1, . . . , uN )

to Eq. (12) for each i . Biologically, this would change the timescale over which our

model is valid, since in the present study we have explicitly set out to model timescales

over which where births and deaths are negligible. Nonetheless, this extension is

worthy of discussion since the addition of such terms leads to a class of so-called

cross-diffusion models, which are well studied (Shigesada et al. 1979; Gambino et al.

2009; Shi et al. 2011; Tania et al. 2012; Potts and Petrovskii 2017). The term ‘cross-

diffusion’ has been used in various guises, but the general form can incorporate both

taxis terms of the type described here, as well as other terms that model various

movement responses between populations. These cross-diffusion terms can combine

with the reaction terms to drive pattern formation (Shi et al. 2011; Tania et al. 2012), as

well as altering spreading speeds (Gambino et al. 2009; Girardin and Nadin 2015), and

the outcome of competitive dynamics (Potts and Petrovskii 2017). The key difference

between our work and traditional studies of cross-diffusion is that rich patterns form

in our model despite the lack of kinetics. As such, we separate out the effect of taxis

on pattern formation from any interaction with the reaction terms.

Our mathematical insights suggest that there is an urgent need to understand the

extent to which the underlying movement processes in our model are prevalent in

empirical ecosystems. Much effort is spent in understanding species distributions

(Manly et al. 2002; Araujo and Guisan 2006; Jiménez-Valverde et al. 2008), often

motivated by highly applied questions such as understanding the effect of climate

change on biodiversity loss (Gotelli and Stanton-Geddes 2015), planning conserva-

tion efforts (Rodríguez et al. 2007; Evans et al. 2015), and mitigating negative effects

of disease spread (Fatima et al. 2016) and biological invasions (Mainali et al. 2015).

Species distribution models typically seek to link the distribution of species with envi-
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ronmental covariates, whereas the effect of between-population movement responses

is essentially ignored. Presumably, this is because it is considered as ‘noise’ that likely

averages out over time. In contrast, this study suggests that the patterns emerging

from between-population movements may be fundamental drivers of both transient

and asymptotic species distributions.

Fortuitously, recent years have seen the development of techniques for measuring

the effects of foreign populations on animal movement. Animal biologging technology

has become increasingly smaller, cheaper, and able to gather data at much higher fre-

quencies than ever before (Wilmers et al. 2015; Williams et al., in review). Furthermore,

statistical techniques have become increasingly refined to uncover the behavioural

mechanisms behind animals’ movement paths (Albertsen et al. 2015; Avgar et al.

2016; Michelot et al. 2016; Potts et al. 2018). In particular, these include inferring

interactions between wild animals, both direct (Vanak et al. 2013) and mediated by

environmental markers (Latombe et al. 2014; Potts et al. 2014).

Consequently, the community of movement ecologists is in a prime position to mea-

sure between-population movement responses and seek to understand the prevalence

of movement-induced spatial distribution patterns reported here. Our hope is that the

theoretical results presented here will serve as a motivating study for understanding

the effect of between-population movement responses on spatial population dynamics

in empirical systems, as well as highlighting the need for such studies if we are to

understand accurately the drivers behind observed species distributions.
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