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PERSPECTIVE
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Abstract
Digital pathology and image analysis potentially provide greater accuracy, reproducibility and standardisation of
pathology-based trial entry criteria and endpoints, alongside extracting new insights from both existing and novel
features. Image analysis has great potential to identify, extract and quantify features in greater detail in compari-
son to pathologist assessment, which may produce improved prediction models or perform tasks beyond manual
capability. In this article, we provide an overview of the utility of such technologies in clinical trials and provide a
discussion of the potential applications, current challenges, limitations and remaining unanswered questions that
require addressing prior to routine adoption in such studies. We reiterate the value of central review of pathology
in clinical trials, and discuss inherent logistical, cost and performance advantages of using a digital approach. The
current and emerging regulatory landscape is outlined. The role of digital platforms and remote learning to
improve the training and performance of clinical trial pathologists is discussed. The impact of image analysis on
quantitative tissue morphometrics in key areas such as standardisation of immunohistochemical stain interpreta-
tion, assessment of tumour cellularity prior to molecular analytical applications and the assessment of novel histo-
logical features is described. The standardisation of digital image production, establishment of criteria for digital
pathology use in pre-clinical and clinical studies, establishment of performance criteria for image analysis algo-
rithms and liaison with regulatory bodies to facilitate incorporation of image analysis applications into clinical
practice are key issues to be addressed to improve digital pathology incorporation into clinical trials.
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Introduction

Cellular pathology facilitates diagnosis and clinical
trial treatment stratification. Genomic approaches
divide traditional entities into smaller subcategories
requiring large multicentre, often multinational, inter-
ventional studies. Such studies require high diagnostic
standards and high reporting uniformity.

Digital pathology refers to the use of computer
workstations to view digital whole slide images
(WSIs) obtained from high resolution scanning of
glass microscope slides [1]; uses include teaching,
research or primary diagnostic reporting. Digital
pathology devices or image analysis algorithms used
in diagnostic reporting usually require regulatory
approval such as FDA (USA) or CE IVD (Europe).
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Digital pathology and image analysis could ensure
greater accuracy, reproducibility and standardisation of
study inclusion criteria and outcomes. Automated image
analysis can help to extract measurements and features
that are known to be relevant. Quantification of immu-
nohistochemical staining (IHC) is one example where
automated methods are already being incorporated with
some success into clinical practice [2]. In general,
image analysis can provide a more reproducible quanti-
fication of morphology of individual cells or relevant
tissue components such as glands. Increasingly, deep
learning based approaches replace traditional image
analysis algorithms. By training complex computation
models directly from data it is often possible to build
algorithms that surpass the capabilities of traditional
image analysis methods. Examples include the scoring
of PD-L1 [3], quantification of immune infiltrates to
predict outcomes in testicular tumours [4], detecting
sentinel lymph node metastases [5] and superior predic-
tion of colorectal cancer outcome compared to standard
morphological assessment [6]. The interpretation of
human versus deep learning studies in pathology can be
affected by methodological considerations. For exam-
ple, in the Bejnordi et al study, pathologists were
required to review 129 consecutive cases in a limited
time frame which does not reproduce typical pathology
reporting (where cases are mixed and difficult cases are
not subjected to a time limit) [7].
Machine learning holds the promise of providing us

with capabilities that not only mimic but also enhance
the visual analysis pathologists perform. Beck et al [8]
used a range of features provided by a commercial
image analysis platform to identify novel stromal fea-
tures associated with survival in breast cancer. Deep
learning-based artificial intelligence (AI) has identified
novel markers of distant metastasis in colorectal cancer
[9] and novel indications of morpho-molecular associa-
tions [10]. Correlating morphological patterns with
genetic stratifiers using traditional machine learning or
deep learning demonstrates substantial promise [11,12].
Ultimately, it may be possible to overcome limitations
of existing categorical grading systems with such tools.
Image analysis is a complex task that may involve

steps such as pre-processing, accurate delineation of
objects of interest, or the measurement of certain shape
or texture features. Pre-analytical considerations such
as standardisation of immunohistochemical staining
for reproducible results must be addressed, even for
relatively simple tasks such as quantifying areas of
tumour demonstrating positive staining for a cytokera-
tin marker using a colour threshold. Overview articles
[13–15] provide an introduction to different image
analysis techniques.

It is possible to utilise both commercially avail-
able dedicated image analysis programmes designed
for digital pathology applications [Visiopharm,
Definiens Tissue Studio, Indica Labs HALO (Cor-
rales, New Mexico, USA)], or alternatively an open
source software programme such as QuPath Open
Source Software for Quantitative Pathology or Ima-
geJ (Image Process and Analysis in Java) [16–18].
Deep learning methods are increasingly incorporated
into commercial and open-source image analysis
applications. Radiological imaging applications used
to assess lung and liver nodules already have FDA
clearance for clinical use [19]; additionally, equiva-
lent performance to human experts has been demon-
strated in the interpretation of optical coherence
tomography scans [20].
Image analysis has the potential to identify, extract

and quantify features in greater detail in comparison to
pathologist assessment, which may produce improved
prediction models [6] or perform tasks beyond manual
capability such as generating tumour-infiltrating lym-
phocyte (TIL) maps [21] and glandular maps [22].
There is now much interest in using these technologies
in clinical trials [23,24].
An NCRI CM-Path Quality Assurance in Clinical

Trials Workshop was held on 21 March 2017 with
representation from key members of industry, regula-
tion and pathology. Regulation, training, oversight,
laboratory processes and scoring/reporting were divid-
ed up into subgroup teams, which were presented for
discussion by the QA panel. These topics are covered
in separate articles [25,26]. The scoring/reporting dis-
cussions included the use and validation of digital
pathology and image analysis technologies in clinical
trials. Currently there are limited published examples
of their use in clinical trial practice, and methodologi-
cal standardisation with minimal standards for publica-
tion requires further development.
In this article, we provide an overview of the utility

of these technologies in clinical trials and discuss
potential applications, current challenges, limitations
and remaining unanswered questions that require
addressing prior to routine study adoption (Table 1).

Central review of pathology in clinical trials

The value of central review
The negative impact of inter-observer variation in
pathologists assessing lymphoma prompted the adop-
tion of central case review in the 1960s [27]. Wide-
spread central pathology case review occurs in clinical

82 R Pell et al

© 2019 The Authors. The Journal of Pathology: Clinical Research published by The Pathological
Society of Great Britain and Ireland and John Wiley & Sons Ltd.

J Pathol Clin Res; April 2019; 5: 81–90



trials; and is particularly valuable where rare and mor-
phologically challenging diagnostic entities occur.
Here, reporting pathologist experience can substan-
tially influence reporting [28].
Currently, most central reviews occur after imple-

menting patient management decisions for quality
control prior to publication, rather than in ‘real time’
for trial entry. Central review requires additional
slides to be produced from tissue blocks, which risks
exhausting tissue required for direct patient care. In
the event of review slide loss, it may not be possible
to produce facsimile slides from limited remaining
tissue.
Shortage of skilled trials pathologists is becoming

a key issue in the conduct of clinical trials within the
UK [29] and digital pathology has the potential to
ameliorate this issue by linking distant sites and
expanding access to expert pathologists. Rapid dis-
semination of identical images to multiple centres
allows simultaneous case review, reducing turnaround
times and ensuring consensus opinion before thera-
peutic allocation. Case reclassification at the end of a
study could indicate suboptimal patient treatment and
negate the significance of investigational findings.
Duplicate tissue sections have allowed simultaneous
peripheral and central review reporting in a multina-
tional interventional trial in nephroblastoma [30] to
address reporting variance before therapeutic alloca-
tion. In the study conducted by Vujani�c et al, 9 of
248 simultaneously reported cases underwent diag-
nostic change resulting in alternative post-operative
therapy. Even minor error in diagnostic accuracy can
affect the statistical significance of trial outcomes.
Poor biomarker validation and positive publication
bias can lead to expensive negative randomised con-
trol trials [31].

The central review of 552 radical prostatectomy
specimens submitted for EORTC trial 22 911 [32]
showed low concordance between local assessment
and central review for certain key parameters (evalua-
tion of extra-prostatic extension and surgical margin
status). Central review can facilitate identification of
discordant diagnostic parameters, but this may occur
after recruitment of numerous patients.

Digital pathology and central pathology review
Digital pathology can permit simultaneous case review
and allow rapid access to international experts in enti-
ties of interest. Reduction or removal of the need to
physically transfer slides and tissue blocks, avoiding
damage or loss, is a defining logistical advantage of
the digital approach [33]. Although multinational com-
mercial platform providers can overcome technical
limitations provided by trials carried out in separate
countries, differing requirements between nations
regarding appropriate data governance could impede
disseminated review of digital material. The European
General Data Protection Regulations (GDPR) which
came into force on 25 May 2018, replacing the Data
Protection Act (1998), have strengthened and unified
data protection for individuals within the European
Union (EU), whilst addressing the export of personal
data outside the EU [34].
The requirement to physically transfer slides may be

retained by centralised genomic analysis and biobank-
ing requirements, or by participating units lacking
appropriate infrastructure to transfer slides for digitisa-
tion. Slide hosting repositories that can accommodate
large slide images (typically 0.5-4Gb), satisfy data pro-
tection legislation, meet trial protocol requirements
and ensure that patient-identifiable image-associated
metadata have been removed, provide a considerable
resource burden. A variety of proprietary file formats
and platforms pose interoperability challenges. Clinical
trial protocol specification of image formats is a
requirement in the absence of widespread vendor-
agnostic file formats.

Cost implications
Pathologists who have not transferred to digital pathol-
ogy need to be trained in line with RCPath guidelines
[35], and costing of appropriate pathologists and their
training should be factored into the trial business plan.
Additionally, construction of standardised operating
procedures (SOPs) covering scanning equipment, data-
base construction, anonymisation of images (where
appropriate) and their transfer is required: potentially

Table 1. Key issues that require consensus for the adoption of
digital pathology and image analysis
• Standardisation of operating procedures and training in digital image

production
• Adoption of digital pathology infrastructure for trials
• Resource allocation for digital central review
• Data governance and research approval
• Criteria for standards in digital pathology in pre-clinical, clinical and

interventional studies
• Evidence base and performance criteria for image analysis algorithms
• In the UK, development of liaison between the Medicines and

Healthcare products Regulatory Agency (MHRA), the British Standards
Institution (BSI), the National Institute for Health and Care Excellence
(NICE) and other regulatory bodies

• Clinical trial adoption of this technology is in its infancy, and
although the potential applications are exciting to all stakeholders
involved, a structured and integrative approach to effectively and
safely incorporate developments into practice is required.
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with input from a pathology working group. Appropri-
ate training for digital image reporting and slide scan-
ning is required, which should include appropriate
information governance. SOPs for equipment should
define acceptable scanning platforms, required file for-
mats and required scanning resolution. If scanning and
reporting for the trial can be done by laboratories oper-
ating under ISO 15189: 2012 or working to good clini-
cal practice (GCP) standards, this is preferable. Should
scanners with appropriate regulatory approval
(CE IVD or FDA) be available, these should be used
in preference to those without such quality marks.
Digital images can form image libraries allowing

streamlined research as new innovations become available.
H&E stained slides and notably immunofluorescence-
labelled slides degrade over time and require additional
preparation (potentially including further slide production
from tissue blocks).
Maintenance and sustainability of data storage are

thus key requirements. Ensuring strict adherence to
data governance frameworks and undertaking docu-
mentation that exceeds current regulatory requirements
will hopefully ensure the availability of valuable mate-
rial to future research projects.

Training
Pathologist training for participation in clinical trials
often involves face-to-face training. Digital pathology
can facilitate flexible distance learning incorporating a
wider audience than traditional face-to-face learning.
Digital training programmes potentially reduce the
requirement for expert pathologists leading the study
to deliver face-to-face guidance. The requirement of
training may be to improve standardisation of a feature
routinely evaluated in diagnostic work, or alternatively
to evaluate a novel feature not routinely reported: this
may require a more comprehensive educational
program.
Investigators can be trained by remote use of anno-

tated digital material, either as part of an interactive
web seminar or as an online training programme
undertaken at the convenience of the participating
pathologist. Sample images for reporting can be incor-
porated as an additional quality assurance measure.
This is particularly valuable where pathologists are
required to report a novel parameter in relatively few
patients recruited from a single centre. The advantage
of using direct visual feedback guided software for a
novel parameter has been demonstrated in the assess-
ment of percentage of TILs in breast cancer, which
predicts response to neoadjuvant therapy [36]. This is
not a standard parameter for reporting in routine

practice, and participating pathologists require training
to report to an agreed standard. Improved concordance
between pathologists reporting percentage of TILs was
demonstrated after the use of training software utilis-
ing digital images of breast tumour tissue microarrays
(TMAs) [37].
Digital pathology training software allows direct

demonstration of compliance with clinical trial regula-
tory requirements and training logs, which can addi-
tionally be used by pathologists for revalidation and
appraisal purposes. Clinical trials training applications
can be reformatted to drive quality improvement in
routine practice.

Image analysis

Analysis of IHC
There is substantial interest in the use of image analy-
sis programmes to assist standardisation of reporting
and introduction of novel parameters where accurate
assessment by pathologists is unfeasible. Standardisa-
tion of ER and PR staining interpretation in breast can-
cer has received considerable interest as inter-observer
variation can directly impact patient care. Although
expert pathologist concordance in stain interpretation
was greater in comparison to machine assessment in a
large study of pooled TMA cores [38], equivalent con-
cordance was seen for HER-2 assessment. Interest-
ingly, a small number of extreme discrepancies were
identified by digital image analysis: digital image anal-
ysis screening could be initially used to highlight iso-
lated reporting discrepancies.
Automated image analysis also allows simultaneous

scoring of ER and PR restricted to tumour-rich areas
only, as reported in [39] and additional studies demon-
strate non-inferiority to manual HER-2 scoring in
breast cancer [40].
FDA and CE IVD-cleared algorithms exist for the

assessment of a small number of pathological features,
such as ER, PR, HER-2 and Ki-67 expression in breast
cancer. Where image analysis algorithms are used in
clinical trials, an appropriate evidence base for the
algorithms must be available. A separately published
validation dataset describing the performance of the
algorithm in measuring the variable assessed would be
regarded as a minimum requirement.

Pre-analytical features
Pre-analytical staining variation and background stain-
ing are key problems in image analysis development.
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Considerable variation in immunohistochemical stain-
ing and standard H&E staining can exist between labo-
ratories (although image analysis can control for
variation in staining intensity) [41]. When constructing
image analysis applications, demonstrating reproduc-
ibility in comparison to standard histopathological
assessment is an important requirement. Algorithm –

pathologist correlation is the most commonly used
method: the use of multiple pathologists is always
preferable to reflect routine practice. Clear descriptions
must be provided of quality control measures and vali-
dation steps for every trial where image analysis is
used. This should include a careful description of algo-
rithm validation. Measures of reproducibility should
be provided in publications such as pathologist-
algorithm correlation and measures of inter-pathologist
variability.
Regions of interest (ROI) selection methodology

should be transparently described (if applicable) and
whether analysis was on ROI, hot spots, WSI or was
based on a pre-selected sample (e.g. TMA spot) in
order for it to be reliable and reproducible. Selection
of ROI or hot spots can be completely automated,
completely manual, or a combination of both. The
approaches are subject to alternative potential errors,
which can impact on the study design. For example,
acquiring data or applying scoring systems optimised
for visual interpretation and performing an AI protocol
without appropriate validation is inappropriate.

Assessing tumour percentage content
There is considerable inter-observer variability
between pathologist assessment of percentage tumour
cells within lung [42] and colorectal [43] cancer biop-
sies. Inaccurate estimations of tumour cellularity have
the potential to result in inaccurate reporting of key
actionable variants in genes such as EGFR, RAS and
BRAF. Utilisation of the TissueMark™ (Philips
Pathology, The Philips Centre, Guildford, Surrey, UK)
platform to automatically annotate tumour boundaries
with assessment of percentage tumour cells indicated
superior performance compared to manual assessment
[44]. Standardisation of tumour sampling allows more
refined molecular categorisation of tumours and facili-
tates stratified therapeutic approaches.

Assessing novel features
The use of digital pathology to provide novel informa-
tion from histological samples is an exciting area of
development. Rapid quantification and high reproduc-
ibility can be achieved by using digital image analysis,

such as with localisation and quantification of immune
cell infiltrates. The quantity and localisation of T cells
is the underlying basis for the Immunoscore™ (Labo-
ratory of Integrative Cancer Immunology INSERM,
Paris, France) technique in colorectal adenocarcinoma:
patients with a low CD3+ and CD8+ T cell density in
the tumour centre and invasive margin are at an
increased risk for disease relapse [45,46]. This marker
could be used to stratify adjuvant therapy in prospec-
tive randomised control trials in Stage II disease,
where the absolute benefit of adjuvant cytotoxic ther-
apy is small [47]. Novel digital morphometric signa-
tures previously not established in the pathology
community can also be mined and linked to clinical
outcome, as shown recently in the case of breast can-
cer [8] and stage II colorectal adenocarcinoma [9].

Machine learning methods
Machine learning methods can facilitate accurate quan-
titative assessment of digital images at a performance
level potentially exceeding that of human observers.
The identification of cancer cells, stromal tissue or
inflammatory cells [48] typically requires accurate
ground-truth training datasets and large numbers of
cases to provide optimal automated assessment. Large
openly available pooled digital datasets and the estab-
lishment of Grand Challenges for computational biolo-
gists provide a means to benchmark and evaluate
image analysis algorithms. The CAMELYON chal-
lenge to identify lymph node metastases demonstrates
the advantage of this approach [5,7]. Large-scale inter-
ventional studies provide a relatively accessible source
of suitable cases for retrospective analysis, with clear
management and outcome data. This allows assess-
ment of multiple image features by multiple image
analysis programmes with subsequent univariate and
multivariate analysis to identify the most relevant
novel predictive and prognostic parameters or correla-
tion with molecular markers.
Retrospective analysis of 768 pre-treatment biopsies

taken as part of a large RCT investigating neo-
adjuvant therapeutic approaches in breast cancer (neo-
tAnGo) identified median lymphocyte density as being
independently predictive of complete pathological
response to therapy on multivariate analysis [36]. This
study employed machine learning methods to classify
cells as carcinoma, stroma or lymphocytes, with clear
description of how quality metrics involved in analysis
were determined, such as the use of automated ROI.
Notably, the study was able to quickly evaluate ini-
tially promising parameters and demonstrate lack of a
predictive utility in an adequately powered study. The
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adherence to good scientific practice by providing
detailed description of techniques used and making the
source code and images utilised available allowed
transparency and facilitated reproducibility. Establish-
ing such clear and transparent standards in image
research practice is to be commended: maintaining
algorithms and source images open to scientific scru-
tiny as opposed to keeping methodology closed to
safeguard commercial interests can be anticipated as a
key issue for the developing Digital Image Analysis
community.
The discussion of applying advanced data analysis

technologies to clinical trial data is by no means lim-
ited to image analysis tasks. Scott Gottlieb, Commis-
sioner of Food and Drugs, remarks [49] that ‘AI holds
enormous promise for the future of medicine, and
we’re actively developing a new regulatory framework
to promote innovation in this space and support the
use of AI-based technologies’. He clearly recognises
the need for including advanced digital health tools
into the drug development pipeline. The Precertifica-
tion Pilot Programme (Pre-Cert) provides new regula-
tory guidelines for permitting the use of digital
technologies that include machine learning.

Centralised image analysis
Central laboratory image analysis should be consid-
ered in study design due to advantages in standardisa-
tion of results. Although image analysis provides
inherent reproducibility, inter-platform variation
between individual centres is a potential source of
bias. Construction of SOPs with designated acceptable
platforms, image analysis algorithms and validation
steps ensuring inter-site reproducibility would address
this issue. Where companion diagnostic techniques
reliant on specific staining platforms and accompany-
ing image analysis platforms are required, adherence
to manufacturer guidance would require clear docu-
mentation. Provision of unstained slides for immuno-
histochemical analysis and concurrent image analysis
may be required as an additional quality assurance
measure to account for inter-laboratory staining varia-
tion. Ensuring both reproducible staining quality and
image analysis between multiple laboratories could
prevent centres participating in studies. Although cen-
tralised image analysis overcomes these issues, logisti-
cal constraints inherent to traditional studies
undertaking centralised review remain. If many sites
are conducting image analysis, repeatability analysis
should be undertaken because of potential inter-
laboratory reproducibility concerns [50].

Regulation and guidelines
Slide scanners and image analysis algorithms when
intended for medical use (including diagnosis) are
classed as medical devices [51]. The regulatory require-
ments for clinical performance studies of in vitro diag-
nostics (IVDs)/use of IVDs in clinical trials of
medicinal products remains a subject of much debate
and are fast evolving. The US FDA is testing a new
Pre-Cert model [52] with the intention of demonstrating
by premarket review and excellence appraisal the same
quality of information as a traditional approach to
ensure safety and effectiveness standards are met. This
novel model for the pre-market review of digital health
tools as medical devices includes implementing a new
approach to the review of AI tools.
In the UK, the Medicines and Healthcare products

Regulatory Agency (MHRA) regulates medicines,
medical devices and blood components for transfusion
in the UK. To ensure GCP compliance, the MHRA
carries out inspections of trial sites (including laborato-
ries) mostly based on a risk assessment score [53].
How oversight of clinical trials utilising these technol-
ogies as medical devices will be regulated or inspected
is a subject of debate. Constantly evolving AI applica-
tions pose additional challenges, but there are regula-
tory cleared AI algorithms in clinical practice.
To the best of our knowledge, there are no guide-

lines covering the use of digital pathology or image
analysis in clinical trials. The low yield of clinically
actionable biomarkers from a large volume of research
studies with considerable resource outlay led to the
construction of the REMARK recommendations for
biomarker studies in 2005 [54,55]. Studies that fail to
meet these consensus requirements for a reputable bio-
marker study are increasingly excluded from system-
atic reviews of the evidence base for diagnostic
approaches. A recent systematic review evaluating
prognostic biomarker use in oesophageal adenocarci-
noma demonstrated the effect of applying REMARK
guidelines as inclusion criteria [56]. Only 36 out of
214 eligible studies (17%) were included.
Constructing similar robust recommendations for

digital pathology applications would minimise the
extensive waste of resources encountered in prior bio-
marker studies. Failure of reproducibility driven by a
lack of reporting of experimental detail has been
described as a major factor in the inefficient develop-
ment and adoption of clinically relevant biomarkers
[57]. Diligent reporting of the processes by which dig-
ital pathology applications were validated is essential
to avoid repeating similar research practice failures.
Direct adoption of existing biomarker guidelines could
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be considered: parameters assessed by digital pathol-
ogy certainly meet the criteria of a biomarker as a
‘defined characteristic that is measured as an indicator
of normal biological processes, pathogenic processes
or responses to an exposure or intervention, including
therapeutic interventions’ [58].
However, the application of guidelines intended for

use in biospecimen-derived biomarkers has been consid-
ered unsatisfactory when applied to imaging techniques,
leading to the construction of separate guidelines for
‘imaging biomarkers’ [59]. Synthesis of the most appro-
priate approaches from both biospecimen-derived and
imaging biomarkers would be logical for digital pathol-
ogy applications.
The Health Research Authority (HRA) have recently

updated their guidance on approval of new medical
devices including software applications. The use of diag-
nostic platforms would require dedicated medical device
clinical evaluation studies to obtain HRA approval, which
would entail using systems in parallel with standard prac-
tice using light microscopy. Establishing the equivalence/-
non-inferiority of a digital workstream for standard
diagnostic practice is being undertaken in several UK cen-
tres with supporting guidance from the Royal College of
Pathologists. The adoption of clinical studies using digital
platforms would require the use of flagged research ethics
committees to provide expertise in digital pathology. Lack
of appropriate specialist availability to participate in the
ethical approval process could hinder digital pathology
development. Once standard diagnostic practice in clinical
trials can be facilitated by digital platforms, approval of
digital image analysis applications would be feasible. It is
anticipated from joint HRA/MHRA guidance on software
development that IVD performance evaluations would be
undertaken in line with existing biochemical biomarker
assays. Both industry and academic sponsors may find
provision for clinical trial insurance to indemnify against
diagnostic error induced by digital image analysis plat-
forms challenging. It is uncertain whether actuarial assess-
ment can be based on digital image use in a healthcare
system where digital image analysis is more widely
adopted, such as the USA. Combined assessment
approaches of Pathologist plus machine may provide
complex indemnity and regulatory challenges: appropriate
mentoring from radiologists and industry specialists
involved in digital radiology would be recommended to
overcome these issues.

Conclusions

In this paper, we describe the use and potential future
applications of digital pathology and image analysis

technologies in clinical trials. The technologies can
play a role in central review, training and image analy-
sis and can be used to improve assessment of standard
pathological features or extract novel insights. The
current landscape sees the technologies most com-
monly being used where feasibility is already demon-
strated such as central review or quality/efficiency
benefits are obvious such as quantification of immune
infiltrates in immune-oncology trials.
In order to realise the potential of these technologies

and dramatically improve the quality of the pathology
input to clinical trials, the digital pathology community
together with regulators and industry must establish
practice standards for clinical trial use. Linking with
international centres of excellence and involvement of
other specialists such as software engineers, informa-
tion network specialists is vital.
Table 1 lists the key issues that require consensus

for the adoption of digital pathology and image analy-
sis in clinical trials, and CM-Path proposes to address
these issues in a future multidisciplinary workshop.
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