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DOUBLE YANGIAN AND THE UNIVERSAL R -MATRIX

MAXIM NAZAROV

Abstract. We describe the double Yangian of the general linear Lie algebra
glN by following a general scheme of Drinfeld. This description is based on the
construction of the universal R-matrix for the Yangian. To make exposition self
contained, we include the proofs of all necessary facts about the Yangian itself.
In particular, we describe the centre of the Yangian by using its Hopf algebra
structure, and provide a proof of the analogue of the Poincaré–Birkhoff–Witt
theorem for the Yangian based on its representation theory. This proof extends
to the double Yangian, thus giving a description of its underlying vector space.
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Introduction

The main subject of this article is a Hopf algebra that appeared in the framework
of quantum inverse scattering method introduced by L.D. Faddeev, E. K. Sklyanin
and their collaborators, see for instance [9, 15, 26, 27, 28, 30]. This algebra then
became a part of a family of examples in the theory of quantum groups created
by V.G.Drinfeld [3, 4, 5]. He gave to this family the name Yangians in honour of
C.N.Yang, the author of a seminal work [32]. The Yangian that we consider here
corresponds to the general linear Lie algebra glN . It is a canonical deformation of
the universal enveloping algebra of the polynomial current Lie algebra glN [z] .
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The general notion of a quantum double was also introduced in [5]. However
the Yangians were not discussed there in the context of this notion. Here we define
the double Yangian of the Lie algebra glN similarly to [10]. Yet many details and
proofs are also missing in the latter work. In the present article we fill these gaps.

We denote by Y(glN ) the Yangian of glN , and by DY(glN ) its quantum double.
There are several equivalent definitions of the Hopf algebra Y(glN ) available [20].
In this article we use the definition that appeared first, see for instance [16, 17, 31].
Details of this definition are given in our Sections 1,2 and 4 by closely following [21].
Sections 3,5 and 6 describe basic properties of the Yangian Y(glN ) that we will use.

We will also use an analogue of the classical Poincaré–Birkhoff–Witt theorem [2]
for the algebra Y(glN ) . The first proof of this analogue was given by V. G. Drinfeld
but not published. Other proofs were given later in [18, 24]. In Section 8 we give
yet another proof of this analogue by using the representation theory of current Lie
algebras. The fact from the theory that we use is established in Section 7. It is this
proof that will be extended to the double Yangian DY(glN ) in the present article.
This method was used in [23] to prove analogues of the Poincaré–Birkhoff–Witt
theorem for the Yangian of the queer Lie superalgebra qN and its quantum double.
For the algebra dual to the coalgebra Y(glN ) the same method was used in [7].

The structure of a Hopf algebra includes a canonical anti-automorphism relative
to both multiplication and comultiplication, called the antipodal map. In general
this map is not involutive. In Section 3 we also compute the square of this map for
the Yangian Y(glN ) , by following [22] where the Yangian of the general linear Lie
superalgebra glM |N was considered. This yields a family of central elements of the

algebra Y(glN ) , see also [6]. In Section 9 we prove that these elements generate the
whole centre. Our proof uses another general fact from the theory of current Lie
algebras, which we establish in the beginning of the section. The idea of reducing
the proof to that fact belongs to V. G. Drinfeld, as acknowledged in [21].

In Section 10 we introduce the bialgebra Y∗(glN ) dual to Y(glN ) . First we define
it in terms generators and relations similarly to Y(glN ) . However Y∗(glN ) is not a
Hopf algebra. The antipodal map is defined only on a certain completion Y◦(glN )
of Y∗(glN ) described at the end of that section. In Section 11 we define a bialgebra
pairing between Y(glN ) and Y∗(glN ) . This definition goes back to [25] where the
quantized universal enveloping algebras of simple Lie algebras were considered. In
Section 12 we prove that this pairing is non-degenerate. Details of this proof first
appeared in [23] where instead of glN , the Lie superalgebra qN was considered.

In Section 13 we define the universal R-matrix for Y(glN ). This is the canonical
element of a suitable completion of the tensor product Y∗(glN ) ⊗ Y(glN ) , which
corresponds to the bialgebra pairing. There we also describe the basic properties of
this element relative to the Hopf algebra structures on both Y(glN ) and Y◦(glN ) .

In Section 14 we define the double Yangian DY(glN ) as a bialgebra generated by
Y(glN ) and Y∗(glN ) . Following [5, 25] the cross relations between the elements of
Y(glN ) and Y∗(glN ) are introduced by means of the universal R-matrix. Then we
provide a more explicit description of the algebra DY(glN ) . Using this description
one can define a central extension of DY(glN ) , see for instance [8, 11].

Finally, in Section 15 we introduce a filtration on the algebra DY(glN ) and show
that the corresponding graded algebra is isomorphic to the universal enveloping
algebra of the current Lie algebra glN [z, z−1] . This implies our analogue of the
Poincaré–Birkhoff–Witt theorem for DY(glN ) . This also implies that the defining
homomorphisms of the algebras Y(glN ) and Y∗(glN ) to DY(glN ) are embeddings.
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The purpose of the present article is to provide the basic facts about the double
Yangian DY(glN ) with their detailed proofs. We do not not aim to review all works
which involve this remarkable object. Still let us mention here the pioneering works
[1, 19, 29] where the double Yangian of the special linear Lie algebra sl2 was studied.
The double Yangians of all simple Lie algebras were studied in [13, 14] by using the
definition of the underlying Yangians from [4]. This approach to double Yangians
is different from ours. Recently some of the results on DY(glN ) presented here have
been extended to the double Yangians of the other classical Lie algebras [12].

1. Definition of the Yangian

The Yangian of the general linear Lie algebra glN is a unital associative algebra
Y(glN ) over the complex field C with countably many generators

T
(1)
ij , T

(2)
ij , . . . where i, j = 1, . . . , N .

The defining relations of the algebra Y(glN ) are

(1.1) [T
(r+1)
ij , T

(s)
kl ]− [T

(r)
ij , T

(s+1)
kl ] = T

(r)
kj T

(s)
il − T

(s)
kj T

(r)
il

where r, s = 0, 1, . . . and T
(0)
ij = δij . By introducing the formal generating series

(1.2) Tij(u) = δij + T
(1)
ij u−1 + T

(2)
ij u−2 + . . . ∈ Y(glN )[[u−1]]

we can write (1.1) in the form

(1.3) (u− v) [Tij(u), Tkl(v) ] = Tkj(u)Til(v)− Tkj(v)Til(u) .

Here the indeterminates u and v are considered to be commuting with each other
and with the elements of the Yangian. The following is an equivalent form of (1.1).

Proposition 1.1. The system of relations (1.1) is equivalent to the system

(1.4) [T
(r)
ij , T

(s)
kl ] =

min(r,s)∑

a=1

(
T

(a−1)
kj T

(r+s−a)
il − T

(r+s−a)
kj T

(a−1)
il

)
.

Proof. Observe that the multiplication of both sides of (1.3) by the formal series∑∞
p=0 u

−p−1vp yields an equivalent relation

[Tij(u), Tkl(v) ] =
(
Tkj(u)Til(v)− Tkj(v)Til(u)

) ∞∑

p=0

u−p−1vp.

Taking the coefficients of u−rv−s on both sides gives

[T
(r)
ij , T

(s)
kl ] =

r∑

a=1

(
T

(a−1)
kj T

(r+s−a)
il − T

(r+s−a)
kj T

(a−1)
il

)
.

This agrees with (1.4) in the case r 6 s. Finally, if r > s observe that
r∑

a=s+1

(
T

(a−1)
kj T

(r+s−a)
il − T

(r+s−a)
kj T

(a−1)
il

)
= 0 . �

We shall be often using formal series to define or describe maps between various
algebras. If A(u) and B(u) are formal series in u with coefficients in certain algebras
then assignments of the type A(u) 7→ B(u) are understood in the sense that every
coefficient of A(u) is mapped to the corresponding coefficient of B(u).
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Many applications of Y(glN ) are based on the following observation. Let Eij be
the standard generators of the Lie algebra glN so that

(1.5) [Eij , Ekl ] = δjk Eil − δli Ekj .

Proposition 1.2. The assignment

(1.6) Tij(u) 7→ δij + Eiju
−1

defines a surjective homomorphism Y(glN ) → U(glN ) . The assignment

(1.7) Eij 7→ T
(1)
ij

defines an embedding U(glN ) → Y(glN ).

Proof. By the definition (1.3) we need to verify the equality

(u− v) [Eij , Ekl ]u
−1v−1 =

(δkj + Ekju
−1)(δil + Eilv

−1)− (δkj + Ekjv
−1)(δil + Eilu

−1) .

But this clearly holds by the commutation relations (1.5) in glN , which proves the
first part of the proposition. In order to prove the second part, put r = s = 1 in
(1.4). This gives

[T
(1)
ij , T

(1)
kl ] = δkjT

(1)
il − δilT

(1)
kj .

Thus (1.7) is an algebra homomorphism. Its injectivity follows from the observation
that by applying (1.7) and then (1.6), we get the identity map on U(glN ) . �

The homomorphism (1.6) is called the evaluation homomorphism. By its virtue
any representation of the Lie algebra glN can be regarded as representation of the
Y(glN ) . Any irreducible representation of glN remains irreducible over Y(glN ) due
to surjectivity of this homomorphism. We will also be using its composition with
the automorphism Eij 7→ −Eji of the algebra U(glN ) . The composition maps

(1.8) Tij(u) 7→ δij − Ejiu
−1 .

The reason for using it rather than (1.6) will be explained in Section 6.

2. Matrix form of the definition

Introduce the N × N matrix T (u) whose ij-th entry is the series Tij(u) . One
can regard T (u) as an element of the algebra EndCN ⊗Y(glN )[[u−1]] . Then

(2.1) T (u) =

N∑

i,j=1

eij ⊗ Tij(u)

where eij ∈ EndCN are the standard matrix units. If e1, . . . , eN are the standard
basis vectors of CN , then T (u) ej is interpreted as the linear combination

T (u) ej =

N∑

i=1

ei ⊗ Tij(u) ∈ C
N ⊗Y(glN )[[u−1]] .

For any positive integer m we shall be using algebras of the form

(2.2) (EndCN )⊗m ⊗Y(glN ) .
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For any a = 1, . . . ,m we denote by Ta(u) the matrix T (u) which corresponds to
the a-th copy of the algebra EndCN in the tensor product (2.2). That is, Ta(u) is
a formal power series in u−1 with the coefficients from the algebra (2.2),

Ta(u) =

N∑

i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(m−a) ⊗ Tij(u)

where eij belongs to the a-th copy of EndCN and 1 is the identity matrix. If C is an
element of the tensor square (EndCN )⊗2 then for a, b = 1, . . . ,m with a < b we will
denote by Cab the image of C under this embedding (EndCN )⊗2 → (EndCN )⊗m :

eij ⊗ ekl 7→ 1⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ ekl ⊗ 1⊗(m−b).

Here the tensor factors eij and ekl belong to the a-th and b-th copies of EndCN

respectively. The element Cab can be identified with the element Cab⊗1 of (2.2). If

t : EndCN → EndCN : eij 7→ eji

is the matrix transposition, then for any a = 1, . . . ,m we shall denote by ta the
corresponding partial transposition on the algebra (2.2). It acts as t on the a-th
copy of EndCN and as the identity map on all the other tensor factors.

Consider now the permutation operator

(2.3) P =

N∑

i,j=1

eij ⊗ eji ∈ EndCN ⊗ EndCN .

The rational function

(2.4) R(u) = 1− P u−1

with values in EndCN ⊗ EndCN is called the Yang R-matrix . Here and below we
write 1 instead of 1⊗ 1, for brevity. We will be frequently using the identity

R(u)R(−u) = 1− u−2.

We will also work with the rational function

R t(u) = 1−Qu−1

where

Q =
N∑

i,j=1

eij ⊗ eij = P t1 = P t2 .

We should write either R t1(u) or R t2(u) instead of R t(u) but we will not do so.
Note that Q is a one-dimensional operator on C

N⊗C
N such that Q2 = N Q . Hence

(2.5) R t(u)−1 = 1 +Q (u−N)−1.

Proposition 2.1. In the algebra (EndCN )⊗3(u, v) we have the identity

(2.6) R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u).

Proof. Multiplying both sides of the relation (2.6) by uv(u+ v) we come to verify

(2.7) (u+ P12)(u+ v + P13)(v + P23) = (v + P23)(u+ v + P13)(u+ P12).

Each operator Pij is the image of the corresponding transposition (ij) ∈ S3 under
the natural action of the symmetric group S3 on (CN )⊗3 by permutations of the
tensor factors. So (2.7) follows from the relations in the group algebra C[S3]. �
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The relation (2.6) is known as the Yang–Baxter equation. The Yang R-matrix is
its simplest nontrivial solution. Below we regard T1(u) and T2(v) as formal power
series with the coefficients from the algebra (2.2) where m = 2 . We also identify
R(u− v) with the rational function R(u− v)⊗ 1 taking values in this algebra.

Proposition 2.2. The defining relations of the algebra Y(glN ) can be written as

(2.8) R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v).

Proof. Let us apply both sides of (2.8) to an any basis vector ej ⊗ el ∈ C
N ⊗ C

N

as explained in the beginning of this section. For the left hand side we get
∑

i,k

Tij(u)Tkl(v)⊗ ei ⊗ ek −
1

u− v

∑

i,k

Tij(u)Tkl(v)⊗ ek ⊗ ei ,

while the right hand side gives
∑

i,k

Tkl(v)Tij(u)⊗ ei ⊗ ek −
1

u− v

∑

i,k

Tkj(v)Til(u)⊗ ei ⊗ ek .

Multiplying by u− v and equating the coefficients of ei ⊗ ek we recover (1.3). �

3. Automorphisms and anti-automorphisms

In this section, we will use the N×N matrix T (u) to define several distinguished
automorphisms and anti-automorphisms of the associative unital algebra Y(glN ) .
For each of them, we will describe the N ×N matrix whose ij-entry is the formal
power series in u−1 with the coefficients being the images of the corresponding
coefficients of the series Tij(u). For example, the assignment (3.2) below means
that for all indices r = 1, 2, . . . and i, j = 1, . . . , N

T
(r)
ij 7→ (−1)r T

(r)
ij .

Proposition 3.1. For any c ∈ C an automorphism of Y(glN ) can be defined by

(3.1) T (u) 7→ T (u− c) .

Proof. The image of T (u) relative to (3.1) clearly satisfies the defining relation (2.8).
Further, the mapping (3.1) is obviously invertible which completes the proof. �

We may regard the element T (u) defined by (2.1) as a formal power series in u−1

whose coefficients are matrices with the entries from the algebra Y(glN ). Since the
leading term of this series is the identity matrix, the element T (u) is invertible. We
denote by T−1(u) the inverse element. Further, denote by T t(u) the transposed
matrix for T (u). Then

T t(u) =

N∑

i,j=1

eij ⊗ Tji(u) .

Proposition 3.2. Each of the assignments

T (u) 7→ T (−u) ,(3.2)

T (u) 7→ T t(u) ,(3.3)

S : T (u) 7→ T−1(u)(3.4)

defines an anti-automorphism of Y(glN ) .
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Proof. The images T ′
ij(u) of the series Tij(u) under any anti-automorphism of the

algebra Y(glN ) must satisfy the relations (1.3) with the opposite multiplication:

(u− v) [T ′
ij(u), T

′
kl(v) ] = T ′

il(u)T
′
kj(v)− T ′

il(v)T
′
kj(u).

Exactly as in the proof of Proposition 2.2, one can show that these relations can
be equivalently written in the following matrix form

R(u− v)T ′
2 (v)T

′
1 (u) = T ′

1 (u)T
′
2 (v)R(u− v)

where T ′(u) is the N ×N matrix whose ij-th entry is T ′
ij(u). But the relation

R(u− v)T2(−v)T1(−u) = T1(−u)T2(−v)R(u− v)

follows from (2.8) if we conjugate both sides by P and replace (u, v) by (−v,−u) .
This shows that (3.2) defines an anti-homomorphism. Furthermore, the application
of the partial transposition t1 to both sides of the relation (2.8) yields

(3.5) T t
1 (u)R

t(u− v)T2(v) = T2(v)R
t(u− v)T t

1 (u).

Since R(u− v) is fixed by the composition of t1 with t2 , applying t2 to (3.5) yields

T t
1 (u)T

t
2 (v)R(u− v) = R(u− v)T t

2 (v)T
t
1 (u).

Hence (3.3) is an anti-homomorphism. Finally, for (3.4) observe that the relation

R(u− v)T−1
2 (v)T−1

1 (u) = T−1
1 (u)T−1

2 (v)R(u− v)

is equivalent to (2.8). Note now that the mappings (3.2) and (3.3) are involutive
and so these two anti-homomorphisms are bijective.

The bijectivity of the anti-homomorphism S of Y(glN ) defined by (3.4) follows
from the bijectivity of its square S2 which is computed at the end of this section. �

The anti-automorphisms (3.2) and (3.3) are involutive and commute with each
other. Their composition is an involutive automorphism of Y(glN ) such that

(3.6) T (u) 7→ T t(−u) .

This automorphism of the algebra Y(glN ) will play an important role in Section 6.
However, the anti-automorphism (3.4) is not involutive unless N = 1 . This is the
antipodal map S of the Hopf algebra Y(glN ), see Section 4 below.

To compute the square of the anti-homomorphism (3.4) consider N ×N matrix
obtained from T−1(u) by transposition. Let us denote this new matrix by T ♯(u) .

Accordingly, the ij-th entry of this matrix will be denoted by T ♯
ij(u) . This entry is a

formal power series in u−1 with coefficients from the algebra Y(glN ) . By definition,

(3.7) S : Tij(u) 7→ T ♯
ji(u) .

Our computation of the image of Tij(u) relative to S2 is based on the next lemma.

Lemma 3.3. There is a formal power series Z(u) in u−1 with the coefficients from

the centre of the algebra Y(glN ) and with the leading term 1 such that for all i and j

(3.8)

N∑

k=1

Tki(u+N)T ♯
kj(u) = δij Z(u) .
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Proof. Let us multiply both sides of the relation (2.8) by T−1
2 (v) on the left and

right and then apply transposition relative to the second copy of EndCN . We get

R t(u− v)T ♯
2 (v)T1(u) = T1(u)T

♯
2 (v)R

t(u− v) .

Multiplying both sides of this result on the left and right R t(u− v)−1 we get

(3.9) R t(u− v)−1 T1(u)T
♯
2 (v) = T ♯

2 (v)T1(u)R
t(u− v)−1 .

Multiplying the latter equality by u− v −N and then setting u = v +N we get

(3.10) QT1(v +N)T ♯
2 (v) = T ♯

2 (v)T1(v +N)Q ,

see (2.5). Because the operator Q is one-dimensional, either side of (3.10) must be
equal to Q times a certain power series in v−1 with the coefficients from Y(glN ) .
Denote this series by Z(v) . By applying the left hand side of (3.10) to the basis
vector ei ⊗ ej we obtain the required equality (3.8).

It is immediate from (1.2) and (3.8) that the leading term of series Z(v) is 1 .
Let us prove that all the coefficients of this series are central in Y(glN ) . We will
work with the algebra (2.2) where m = 3 . By using the relations (2.8) and (3.9),

R t
13(u− v)−1 R12(u− v −N)T1(u)T2(v +N)T ♯

3 (v) =

R t
13(u− v)−1 T2(v +N)T1(u)T

♯
3 (v)R12(u− v −N) =

T2(v +N)T ♯
3 (v)T1(u)R

t
13(u− v)−1 R12(u− v −N) .

Note that by using the expressions (2.4) and (2.5) we obtain the equality

Q23 R
t
13(u− v)−1 R12(u− v −N) = Q23 ( 1− (u− v −N)−2 ).

So multiplying the first and third lines of previous display by Q23 on the left gives

( 1− (u− v −N)−2 )T1(u)Z(v)Q23 = Q23 Z(v)T1(u) ( 1− (u− v −N)−2 )

where we also used (3.10). The last display shows that any generator T
(r)
ij commutes

with every coefficient of the series Z(v) . �

It follows from (1.2) and (3.8) that the coefficient of the series Z(u) at u−1 is
zero. In Section 9 we will show that the coefficients of Z(u) at u−2, u−3, . . . are free
generators of the centre of the algebra Y(glN ) . Hence we will again use Lemma 3.3.

Proposition 3.4. The square of the map S is the automorphism of Y(glN ) given by

S2 : T (u) 7→ Z(u)−1 T (u+N) .

Proof. Let us apply the anti-homomorphism S to both sides of the identity

N∑

k=1

Tjk(u)T
♯
ik(u) = δij .

Using (3.7) we get
N∑

k=1

S2(Tki(u))T
♯
kj(u) = δij .

Comparing this with (3.8) we conclude that S2(Tki(u)) = Z(u)−1 Tki(u+N) . �
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4. Hopf algebra structure

A coalgebra over the field C is a complex vector space A equipped with a linear
map ∆ : A → A⊗A called the comultiplication, and another linear map ε : A → C

called the counit , such that the following three diagrams are commutative:

A
∆

−−−−→ A⊗A

∆

y
y∆⊗id

A⊗A −−−−→
id⊗∆

A⊗A⊗A

which gives the coassociativity axiom of the comultiplication ∆ , and

A
∆

−−−−→ A⊗A

id

y
yε⊗id

A −−−−→
∼=

C⊗A

A
∆

−−−−→ A⊗A

id

y
yid⊗ε

A −−−−→
∼=

A⊗ C

A bialgebra over C is a complex associative unital algebra A equipped with a
coalgebra structure, such that ∆ and ε are algebra homomorphisms. In particular,
then ∆(1) = 1 ⊗ 1 and ε(1) = 1. A bialgebra A is called a Hopf algebra, if it is
also equiped with an anti-automorphism S : A → A called the antipode, such that
another two diagrams are commutative:

A
δ ε

−−−−→ A

∆

y
xµ

A⊗A −−−−→
S⊗id

A⊗A

A
δ ε

−−−−→ A

∆

y
xµ

A⊗A −−−−→
id⊗S

A⊗A

Here µ : A⊗A → A is the algebra multiplication and δ : C → A is the unit map of
the algebra A, that is δ(c) = c · 1 for any c ∈ C.

Proposition 4.1. The Yangian Y(glN ) is a Hopf algebra with comultiplication

(4.1) ∆ : Tij(u) 7→

N∑

k=1

Tik(u)⊗ Tkj(u),

the antipode (3.4) and the counit ε : T (u) 7→ 1.

Proof. We start by verifying the axiom that ∆ : Y(glN ) → Y(glN ) ⊗ Y(glN ) is an
algebra homomorphism. We shall slightly generalize the notation used in Section 2.
Let m and n be positive integers. Introduce the algebra

(4.2) (EndCN )⊗m ⊗Y(glN )⊗n.

For all a ∈ {1, . . . ,m} and b ∈ {1, . . . , n} consider the formal power series in u−1

with the coefficients in this algebra,

Ta[b](u) =
N∑

i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(m−a) ⊗ 1⊗(b−1) ⊗ Tij(u)⊗ 1⊗(n−b).
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The definition of ∆ can now be written in a matrix form,

(4.3) ∆ : T (u) 7→ T[1](u)T[2](u)

where T[b](u) is an abbreviation for the series T1[b](u) with the coefficients from the
algebra (4.2) where m = 1 and n = 2. We need to show that ∆(T (u)) obeys (2.8):

R(u− v)T1[1](u)T1[2](u)T2[1](v)T2[2](v) =

T2[1](v)T2[2](v)T1[1](u)T1[2](u)R(u− v).

Here m = n = 2, and R(u− v) is identified with R(u− v)⊗ 1⊗ 1. But this relation
is implied by the relation (2.8), and by the observation that the elements T1[2](u)
and T2[1](v) commute, as well as the elements T1[1](u) and T2[2](v) do.

Our S is an anti-automorphism relative to multiplication due to Proposition 3.2.
Since ∆ is a homomorphism of algebras, the definition (4.3) implies that

∆ : T−1(u) 7→ T−1
[2] (u)T

−1
[1] (u) .

Therefore S is also an anti-automorphism relative to comultiplication. The other two
axioms involving S are readily verified since

(S⊗ id)∆ : T (u) 7→ T−1
[1] (u)T[2](u)

and

(id⊗ S)∆ : T (u) 7→ T[1](u)T
−1
[2] (u)

so that subsequent application of µ yields the identity matrix in both the cases. �

We have ε
(
T

(r)
ij

)
= 0 for r > 1 . By expanding the formal power series in u−1 in

(4.1) we obtain a more explicit definition of the comultiplication ∆ on Y(glN ) ,

(4.4) ∆
(
T

(r)
ij

)
= T

(r)
ij ⊗ 1 + 1⊗ T

(r)
ij +

N∑

k=1

r−1∑

s=1

T
(s)
ik ⊗ T

(r−s)
kj .

Hence this comultiplication is not cocommutative unless N = 1 .

Proposition 4.2. For the series Z(u) defined above we have

∆ : Z(u) 7→ Z(u)⊗ Z(u) .

Proof. The square S2 of of the antipodal map is a coalgebra automorphism. Hence
the images of T (u) relative to the compositions ∆S2 and (S2⊗S2)∆ are the same.
By Proposition 3.4 these images are respectively equal to

∆ (Z(u)−1 T (u+N)) = ∆ (Z(u)−1) (T (u+N)⊗ T (u+N))

and

(S2 ⊗ S2)(T (u)⊗ T (u)) = (Z(u)−1 T (u+N))⊗ (Z(u)−1 T (u+N)) .

Here we identify Z(u)−1 with the series 1⊗Z(u)−1 which takes its coefficients from
EndCN ⊗Y(glN ) and use the homomorphism property of ∆ . By dividing the right
hand sides of above two equalities by T (u+N)⊗T (u+N) and equating the results

∆ : Z(u)−1 7→ Z(u)−1 ⊗ Z(u)−1 . �
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5. Two filtrations on the Yangian

There are two natural ascending filtrations on the associative algebra Y(glN ) .
The first one is defined by

deg T
(r)
ij = r .

For any r > 1 we will denote by T̂
(r)
ij the image of the generator T

(r)
ij in the degree

r component of the corresponding graded algebra grY(glN ) . It is immediate from
the defining relations (1.4) that all these images pairwise commute. In Section 8
we will prove that these images are also algebraically independent.

Now introduce another filtration on Y(glN ) by setting for r > 1

(5.1) deg ′T
(r)
ij = r − 1 .

Let gr ′ Y(glN ) be the corresponding graded algebra. Let T̃
(r)
ij be the image of T

(r)
ij

in the component of gr ′ Y(glN ) of the degree r − 1 .
The graded algebra gr ′ Y(glN ) inherits from Y(glN ) the Hopf algebra structure.

Namely, by using (4.4) for any r > 1 we get

∆
(
T̃

(r)
ij

)
= T̃

(r)
ij ⊗ 1 + 1⊗ T̃

(r)
ij ,(5.2)

ε
(
T̃

(r)
ij

)
= 0 and S

(
T̃

(r)
ij

)
= − T̃

(r)
ij .(5.3)

For any Lie algebra g over the field C consider the universal enveloping algebra
U(g). There is a natural Hopf algebra structure on U(g). The comultiplication ∆,
the counit ε and the antipode S on U(g) are defined by setting for X ∈ g

∆(X) = X ⊗ 1 + 1⊗X ,(5.4)

ε(X) = 0 and S(X) = −X .(5.5)

In the next proposition g is the polynomial current Lie algebra glN [z] ∼= glN ⊗C[z] .
The latter Lie algebra is naturally graded by degrees of the indeterminate z .

Proposition 5.1. The graded Hopf algebra gr ′ Y(glN ) is isomorphic to U(glN [z]).

Proof. Using the defining relations (1.4) we get

[ T̃
(r)
ij , T̃

(s)
kl ] = δkj T̃

(r+s−1)
il − δil T̃

(r+s−1)
kj .

Hence the assignments

(5.6) Eij z
r−1 7→ T̃

(r)
ij for r > 1

define a surjective homomorphism

(5.7) U(glN [z]) → gr ′ Y(glN )

of graded associative algebras. At the end of Section 8 we will show that the kernel
of this homomorphism is trivial. Hence comparing the definitions (5.2),(5.3) with
the general definitions (5.4),(5.5) completes the proof of Proposition 5.1. �
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6. Vector and covector representations

We shall often use the matrix T (u) to describe homomorphisms from Y(glN ) to
other algebras. Namely, let A be any unital associative algebra over the field C . Let
X(u) be the N ×N matrix whose ij-entry is any formal power series Xij(u) in u−1

with the leading term δij and all coefficients from the algebra A . If α : Y(glN ) → A
is any homomorphism, then the assignment

(6.1) α : T (u) 7→ X(u)

means that every coefficient of the series Tij(u) gets mapped to the corresponding
coefficient of the series Xij(u) for all indices i, j = 1, . . . , N . If we regard T (u) as
a series in u with the coefficients from the algebra EndCN ⊗ Y(glN ) then, more
formally, we may write

id⊗ α : T (u) 7→ X(u)

instead of (6.1). Here

X(u) =

N∑

i,j=1

eij ⊗Xij(u),

is regarded as a series in u with coefficients from the algebra EndCN ⊗A; cf. (2.1).
Setting A = EndCN and X(u) = R(u) above, we can define a homomorphism

Y(glN ) → EndCN by the assignment T (u) 7→ R(u). To prove the homomorphism
property by using the matrix form (2.8) of the defining relations of the algebra
Y(glN ) , we have to check the equality of rational functions in u and v with values
in the algebra (EndCN )⊗3,

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v) .

But this equality is just another form of (2.6). In other words, the assignment
T (u) 7→ R(u) defines a representation of Y(glN ) on the vector space C

N . Here

Tij(u) 7→ δij − eji u
−1

by (2.3) and (2.4). Note that this representation of the algebra Y(glN ) can also be
obtained by pulling the defining representation Eij 7→ eij of the Lie algebra glN
back through the homomorphism (1.8). This remark justifies the definition (1.8).

By pulling the defining representation Eij 7→ eij of the Lie algebra glN back
through the homomorphism (1.6), we get the representation of Y(glN ) such that

Tij(u) 7→ δij + eij u
−1 .

Hence this representation can be described by the assignment T (u) 7→ R t(−u) .
Observe that the representations T (u) 7→ R(u) and T (u) 7→ R t(−u) differ by the
involutive automorphism (3.6) of the algebra Y(glN ) .

By pulling the representation T (u) 7→ R(u) back through the automorphism
(3.1) of Y(glN ) for any c ∈ C , we get the representation of Y(glN ) on the vector
space CN , such that T (u) 7→ R(u−c). It is called a vector representation of Y(glN ) ,
and is denoted by ρc . Thus

ρc : Tij(u) 7→ δij − eji (u− c)−1

or equvalently,

(6.2) ρc : T
(r)
ij 7→ −cr−1 eji for any r > 1 .
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By pulling the representation T (u) 7→ R t(−u) back through the automorphism
(3.1), we get the representation of Y(glN ) on C

N , such that T (u) 7→ R t(c− u). It
is called a covector representation of Y(glN ) , and is denoted by σc . Thus

σc : Tij(u) 7→ δij + eij (u− c)−1

or equvalently,

(6.3) σc : T
(r)
ij 7→ cr−1 eij for any r > 1 .

In Section 5 we introduced an ascending filtration on algebra Y(glN ) such that

any generator T
(r)
ij of Y(glN ) has the degree r − 1 . We denoted the corresponding

graded algebra by gr ′ Y(glN ) and defined a surjective homomorphism (5.7) by (5.6).

Under this homomorphism the element T
(r)
ij of Y(glN ) , or rather its image T̃

(r)
ij

in gr ′ Y(glN ) , corresponds to the generator Eij z
r−1 of U(glN [z]). One can define

a representation σ̃c of the algebra U(glN [z]) on the vector space C
N by

(6.4) σ̃c : Eij z
r−1 7→ cr−1 eij for any r > 1 ,

so that
σ̃c(Eij z

r−1 ) = σc(T
(r)
ij ) .

The representation σ̃c is an example of an evaluation representation of U(glN [z]),
see the general definition in Section 7 below.

7. Evaluation representations

For any Lie algebra a over C consider the corresponding polynomial current Lie
algebra a [z] = a⊗ C[z] . Let θ be any representation of a on the vector space C

N ,
and c be any complex number. Then one can define a representation of a [z] by

Xzs 7→ csθ (X) for any s > 0 .

This is the evaluation representation of the Lie algebra a [z] , corresponding to θ
at the point z = c of the complex plane C . When a = glN and θ is the defining
representation of the Lie algebra glN on C

N , we obtain σ̃c in this way.
We will need the following general property of evaluation representations. For

any c1, . . . , cn ∈ C let us denote by θc1...cn the tensor product of the evaluation
representations of the Lie algebra a [z] corresponding to θ at the points c1, . . . , cn .
We extend the representation θc1...cn to the universal enveloping algebra U(a [z]) .

Lemma 7.1. Suppose that the Lie algebra a is finite-dimensional, and θ is its

faithful representation. Let the parameters c1, . . . , cn and integer n > 0 vary. Then

the intersection in U(a [z]) of the kernels of all representations θc1... cn is trivial.

Proof. Using the faithful representation θ of the Lie algebra a , we can identify a [z]
with a subalgebra of the Lie algebra glN [z]. Hence it suffices to consider the case
when a is the Lie algebra glN , and θ : glN → EndCN is the defining representation.

Choose any basis X1, . . . , XN2 in glN such that one of the basis vectors is

I = E11 + · · ·+ ENN .

To distinguish between the algebras U(glN ) and EndCN , the operators on C
N

corresponding to the elements X1, . . . , XN2 ∈ glN will be denoted by x1, . . . , xN2

respectively. Note that one of these operators is the identity operator 1.
Take any finite non-zero linear combination C of the products

(7.1) (Xa1
zs1) . . . (Xam

zsm) ∈ U(glN [z])
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where the indices a1, . . . , am and s1, . . . , sm > 0 may vary. The number m of
factors in (7.1) may also vary. Let Sm be the symmetric group acting on the set
{1, . . . ,m} . For each fixed m > 0, we will suppose that the elements

(7.2)
∑

q∈Sm

(Xaq(1)
zsq(1))⊗ . . .⊗ (Xaq(m)

zsq(1)) ∈ (glN [z] )⊗m

corresponding to the products (7.1) which have exactly m factors and appear in C
with non-zero coefficients, are linearly independent. We may suppose so without
loss of generality, due to the commutation relations in the algebra U(glN [z]) . Using
the natural identification of vector spaces

(glN [z] )⊗m = gl⊗m
N [z1, . . . , zm] ,

the sum (7.2) may be also regarded as a polynomial function in m independent
complex variables z1, . . . , zm . This function takes values in the vector space gl⊗m

N .
For every element (7.1) appearing in the linear combination C, suppose that

Xa1 , . . . , Xal
6= I and Xal+1

= · · · = Xam
= I

for a certain number l > 0. Then xa1
, . . . , xal

6= 1 and xal+1
= . . . = xam

= 1. We

may suppose so without loss of generality, as the elements I, Iz, Iz2, . . . ∈ glN [z]
are central. Further, suppose that sl+1 > · · · > sm . Of course, the number l here
may depend on the given element (7.1); let l0 be the maximum of these numbers.

Let us consider two cases. First suppose that l0 = 0, so that l = 0 for every
element (7.1) appearing in the linear combination C. The image of (7.1) under the
representation θc1...cn of U(glN [z]) is then the operator of multiplication by

(7.3)

m∏

k=1

(csk1 + · · ·+ cskn ) ∈ C .

Since s1 > · · · > sm here, any non-trivial linear combination of the scalars (7.3)
corresponding to different sequences s1, . . . , sm cannot vanish identically for all
n > 0 and c1, . . . , cn ∈ C. This proves the claim when l0 = 0.

Second, suppose that l0 > 0. For any element (7.1) appearing in the linear
combination C, take its image under the representation θc1...cn with n > l. This
image belongs to the algebra End (CN )⊗n, which we will identify with (EndCN )⊗n.
Let Vl be the subspace in (EndCN )⊗n spanned by the elements xb1⊗. . .⊗xbn where
at least one of the first l tensor factors xb1 , . . . , xbl is 1. The indices b1, . . . , bn here
range over 1, . . . , N2. Modulo Vl the image of (7.1) in (EndCN )⊗n equals the sum

(7.4)
∑

p∈Sl

(c
sp(1)
1 xap(1)

)⊗ . . .⊗ (c
sp(l)
l xap(l)

)⊗ 1⊗(n−l)

multiplied by

(7.5)

m∏

k=l+1

(csk1 + · · ·+ cskn ) .

Notice that the sum (7.4) does not belong to Vl unless this sum is zero or l = 0 .
In the linear combination C, take the terms where l = l0 . Let D ∈ (EndCN )⊗n

be the image of the sum of these terms under the representation θc1...cn . We assume
that here n > l0 . The images of the terms with l < l0 under the representation
θc1...cn belong to the subspace Vl0 . We will show that D 6= 0 for some n > l0 and
c1, . . . , cn ∈ C . Then D /∈ Vl0 , and Lemma 7.1 will follow.
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Observe that the sum (7.4) does not depend on the parameters c l+1, . . . , cn
while the product (7.5) can depend on these parameters. Due to this observation,
we may now assume that for all terms in the linear combination C with l = l0 ,
the sequences s l0+1, . . . , sm are the same; see the case l0 = 0 considered above.
Moreover, we may assume that m = l0 for all these terms. But under the latter
assumption, the inequality D 6= 0 for some c1, . . . , c l0 ∈ C follows from the linear
independence of the elements (7.2) with m = l0 . �

8. Poincaré–Birkhoff–Witt theorem

Let us now make use of the bialgebra structure on Y(glN ) . For any c1, . . . , cn ∈ C

take the tensor product of the vector representations ρc1 , . . . , ρcn of Y(glN ) . We
get a representation

ρc1... cn : Y(glN ) → (EndCN )⊗n.

If n = 0, the representation ρc1... cn is understood as the counit homomorphism ε :
Y(glN ) → C . Using the matrix form (4.3) of the definition of the comultiplication
on Y(glN ) , we see that

id⊗ ρc1... cn : T (u) 7→ R12(u− c1) . . . R1,n+1(u− cn) .

Here we apply the convention made in the beginning of Section 6 to the algebra
A = (EndCN )⊗n and to the homomorphism α = ρc1... cn .

The tensor product of the covector representations σc1 , . . . , σcn will be denoted
by σc1... cn . By using the matrix form (4.3) of the definition of the comultiplication
on Y(glN ) again, we see that

id⊗ σc1... cn : T (u) 7→ R t
12(c1 − u) . . . R t

1,n+1(cn − u) .

By using Lemma 7.1, we will now prove the following proposition.

Proposition 8.1. Let the parameters c1, . . . , cn ∈ C and the integer n > 0 vary.

Then the intersection of the kernels of all representations σc1... cn is trivial.

Proof. Take any finite linear combination A of the products

T
(r1)
i1j1

. . . T
(rm)
imjm

∈ Y(glN )

with certain coefficients

A r1...rm
i1j1...imjm

∈ C

where the indices r1 , . . . , rm > 1 and the number m > 0 may vary, as well as the
indices i1, j1, . . . , im, jm . Suppose that A 6= 0 as an element of Y(glN ) .

The algebra Y(glN ) comes with an ascending filtration such that T
(r)
ij has the

degree r−1 . Let d be the degree of A rtelative to this filtration. Let B be the image
of A in the degree d component of the graded algebra gr ′ Y(glN ) . Then B 6= 0.

We can also assume that

A r1...rm
i1j1...imjm

= 0 if r1 + · · ·+ rm > d+m.

Let C be the sum of the elements of the algebra U(glN [z]),
∑

r1+···+rm=d+m

A r1...rm
i1j1...imjm

(E i1j1 z
r1−1) . . . (E imjm z rm−1) .

The image of C under the homomorphism (5.7) equals B. In particular, C 6= 0.
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Consider the image of A under the representation σc1... cn . This image depends
on c1, . . . , cn polynomially. The degree of this polynomial does not exceed d by the
definition (6.3). Let D be the sum of the terms of degree d of this polynomial.

Now equip the tensor product Y(glN )⊗n with the ascending filtration where the
degree is the sum of the degrees on the tensor factors. Then under the n-fold
comultiplication Y(glN ) → Y(glN )⊗n

T
(r)
ij 7→

n∑

b=1

1⊗(b−1) ⊗ T
(r)
ij ⊗ 1⊗(n−b) plus terms of degree less than r − 1 ,

see (4.4). But under the n-fold comultiplication U(glN [z]) → U(glN [z])⊗n,

Eij z
r−1 7→

n∑

b=1

1⊗(b−1) ⊗ (Eij z
r−1)⊗ 1⊗(n−b) .

The definitions (6.3) and (6.4) now imply that the sum D ∈ (EndCN )⊗n coincides
with the image of the sum C ∈ U(glN [z]) under the tensor product of the evaluation
representations σ̃c1 , . . . , σ̃cn . Since C 6= 0, using Lemma 7.1 we can choose n and
c1, . . . , cn so that D 6= 0. Then σc1...cn(A) 6= 0 by the definition of D. �

Proposition 8.2. Let the parameters c1, . . . , cn ∈ C and the integer n > 0 vary.

Then the intersection of the kernels of all representations ρc1... cn is trivial.

The proof of Proposition 8.2 is similar to that of Proposition 8.1 and is omitted.
We will now prove the injectivity of homomorphism (5.7) by modifying the logic of
our proof of Proposition 8.1. Take any finite linear combination C of the products

(E i1j1 z
r1−1) . . . (E imjm z rm−1) ∈ U(glN [z])

with certain coefficients
C r1...rm

i1j1...imjm
∈ C

where the indices r1 , . . . , rm > 1 and the number m > 0 may vary, as well as the
indices i1, j1, . . . , im, jm . Suppose that C 6= 0 as an element of U(glN [z]) .

The algebra U(glN [z]) is graded so that for any integer s > 0, the generator
Eij z

s has the degree s. The homomorphism (5.7) preserves the degree. Without
loss of generality suppose that the element C is homogeneous of degree d , that is

C r1...rm
i1j1...imjm

= 0 if r1 + · · ·+ rm 6= d+m.

Now define the element A ∈ Y(glN ) as the sum
∑

r1+···+rm=d+m

C r1...rm
i1j1...imjm

T
(r1)
i1j1

. . . T
(rm)
imjm

.

Let B be the image of A in the d -th component of the graded algebra gr ′ Y(glN ) .
The element B coincides with the image of C under the homomorhism (5.7).

Now let D ∈ (EndCN )⊗n be the image of C under the tensor product of the
evaluation representations σ̃c1 , . . . , σ̃cn . The image of A under the representation
σc1... cn depends on c1, . . . , cn polynomially. The degree of this polynomial does not
exceed d by (6.3). The sum of the terms of degree d of this polynomial equals D, see
the proof of Proposition 8.1. Since C 6= 0, using Lemma 7.1 we can choose n and
c1, . . . cn so that D 6= 0. Then deg ′A = d. Indeed, if deg ′A < d then the degree of
the polynomial σc1,...,cn(A) would be also less then d. This would contradict to the
non-vanishing of D. By the definition of the element B ∈ gr ′ Y(glN ) , the equality
deg ′A = d means that B 6= 0. So the homomorphism (5.7) is injective.
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Let us now invoke the classical Poincaré–Birkhoff–Witt theorem for the universal
enveloping algebras of Lie algebras [2, Section 2.1]. By applying this theorem to
the Lie algebra glN [z] we now obtain its analogue for the Yangian Y(glN ) .

Theorem 8.3. Given an arbitrary linear ordering of the set of generators T
(r)
ij

with r > 1 , any element of the algebra Y(glN ) can be uniquely written as a linear

combination of ordered monomials in these generators.

Corollary 8.4. The graded algebra grY(glN ) is the algebra of polynomials in the

generators T̂
(r)
ij with r > 1 .

9. Centre of the Yangian

Let a be any Lie algebra over the field C . Consider the corresponding polynomial
current Lie algebra a [z] . In the proof of Theorem 9.3 we will use a general property
of the universal enveloping algebra U(a [z]) . It is stated as the lemma below.

Lemma 9.1. Suppose that the Lie algebra a is finite-dimensional and has the trivial

centre. Then the centre of the algebra U(a [z]) is also trivial, that is equal to C .

Proof. Consider adjoint action of the Lie algebra a [z] on its symmetric algebra. It
suffices to prove that the space of invariants of this action is trivial.

Let A be any element of the symmetric algebra of a [z] invariant under the adjoint
action. Let M = dim a. Choose any basis X1, . . . , XM of a and let

[Xp , Xq ] =
M∑

r=1

crpq Xr

where crpq ∈ C . Let L be the minimal non-negative integer such that

A =
∑

d1,...,dM

A d1... dM
(X1 z

L)d1 . . . (XM zL)dM

where d1, . . . , dM range over non-negative integers and A d1...dM
is a polynomial in

the basis elements Xp z
s of a [z] with 1 6 p 6 M and 0 6 s < L only. We have

ad(Xp z)(A) = 0

for every index p = 1, . . . ,M . The component of the left hand side of this equation
that involves the basis elements of a [z] of the form Xr z

L+1 must be zero. Thus

∑

d1,...,dM

A d1... dM

M∑

q,r=1

crpq dq (X1 z
L)d1 . . . (Xq z

L)dq−1 . . . (XM zL)dM Xr z
L+1 = 0 .

Taking here the coefficient of Xr z
L+1 we obtain that

∑

d1,...,dM

A d1... dM

M∑

q=1

ckpq dq (X1 z
L)d1 . . . (Xq z

L)dq−1 . . . (XM zL)dM = 0 .

If follows that for any non-negative integers d ′
1, . . . , d

′
M we have

(9.1)

M∑

q=1

A d ′

1... d
′

q+1... d ′

M
crpq (d

′
q + 1) = 0 where p, r = 1, . . . ,M .
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Let us now fix d ′
1, . . . , d

′
M and observe that the elements X ′

q = (d ′
q + 1)Xq with

q = 1, . . . ,M also form a basis of a . Since the centre of a is trivial, the system

[Xp ,
M∑

q=1

aqX
′
q ] = 0 where p = 1, . . . ,M

of linear equations on a1, . . . , aM ∈ C has only trivial solution. It can be written as

M∑

q=1

aq c
r
pq (d

′
q + 1) = 0 where p, r = 1, . . . ,M .

Hence by comparing (9.1) with the latter system we obtain that A d ′

1... d
′

q+1... d ′

M
= 0

for every q = 1, . . . ,M . It now follows that A ∈ C , and L = 0 in particular. �

Now consider the series Z(u) defined by (3.8). For any r > 1 let Z(r) be the
coefficient of this series at u−r. Just before stating Proposition 3.4 we noted that
Z(1) = 0 . Hence

Z(u) = 1 + Z(2)u−2 + Z(3)u−3 + . . . .

Proposition 9.2. For any r > 2 the element Z(r) ∈ Y(glN ) has the degree r − 2
relative to the filtration (5.1). Its image in the graded algebra gr ′ Y(glN ) is equal to

(1− r )
N∑

i=1

T̃
(r−1)
ii .

Proof. Let us expand the factor Tki(u + N) appearing in the definition (3.8) as a
formal power series in u−1 . The result has the form

Tki(u) +N Ṫki(u) +Xki(u)

where
Ṫki(u) = −T

(1)
ki u−2 − 2T

(2)
ki u−3 − . . .

is the formal derivative of the series Tki(u) and

Xki(u) = X
(3)
ki u

−3 +X
(4)
ki u

−4 + . . .

is a series with coefficients X
(r)
ki ∈ Y(glN ) such that deg ′X

(r)
ki = r − 3 for r > 3 .

By setting i = j in (3.8) and summing over i = 1, . . . , N we now get the equality

(9.2) N +
N∑

i,k=1

(N Ṫki(u) +Xki(u))T
♯
ki(u) = NZ(u) .

Here we used the definition of the matrix T ♯(u) as the transposed inverse of T (u) .

The leading term of the series T ♯
ki(u) is δik while for any r > 1 the coefficient

of this series at u−r has the degree r − 1 relative to (5.1). It follows that modulo
lower degree elements, for any r > 1 the coefficient at u−r of the series at the left
hand side of (9.2) equals

N
N∑

i,k=1

(1− r)T
(r−1)
ki δik = N

N∑

i=1

(1− r)T
(r−1)
ii .

Hence Proposition 9.2 follows from (9.2). Also we see once again that Z(1) = 0 . �

Theorem 9.3. The coefficients Z(2), Z(3), . . . of the series Z(u) are free generators

of the centre of the associative algebra Y(glN ) .
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Proof. Let us apply Lemma 9.1 to the special linear Lie algebra a = slN . Since the
centre of the universal enveloping algebra U(slN [z] ) is trivial, the decomposition

glN [z] = slN [z] ⊕ C [z]

N∑

i=1

Eii

of Lie algebras implies that the centre of U(glN [z] ) is generated by the elements

(9.3)

N∑

i=1

Eii z
r−1

where r > 1 . Moreover these generators are free due to the Poincaré–Birkhoff–Witt
theorem [2, Section 2.1] applied to the Lie algebra glN [z] .

Under the isomorphism (5.7), the elements (9.3) go respectively to the elements

N∑

i=1

T̃
(r)
ii

where again r > 1 . Therefore the latter elements are free generators of the centre
of the algebra gr ′ Y(glN ) , see Proposition 5.1. On the other hand, we have already
proved that the elements Z(2), Z(3), . . . of the algebra Y(glN ) belong to its centre,
see Lemma 3.3. Hence Theorem 9.3 follows from Proposition 9.2. �

10. Dual Yangian

The dual Yangian for the Lie algebra glN , denoted by Y∗(glN ), is an associative
unital algebra over the field C with a countable set of generators

T
(−1)
ij , T

(−2)
ij , . . . where i, j = 1, . . . , N .

To write down the defining relations for these generators, introduce the series

(10.1) T ∗
ij(v) = δij + T

(−1)
ij + T

(−2)
ij v + T

(−3)
ij v2 + . . . ∈ Y∗(glN )[[v]] .

The reason for separating the term δij in (10.1) will become apparent in the next
section. Now combine all the series (10.1) into the single element

(10.2) T ∗(v) =

N∑

i,j=1

T ∗
ij(v)⊗ eij ∈ Y∗(glN )[[v]]⊗ EndCN .

We will write the defining relations of the algebra Y∗(glN ) first in their matrix
form, to be compared with (2.8). For any positive integer n, consider the algebra

(10.3) Y∗(glN )⊗ (EndCN )⊗n.

For any index b ∈ {1, . . . , n} introduce the formal power series in the variable v
with the coefficients from the algebra (10.3),

(10.4) T ∗
b (v) =

N∑

i,j=1

T ∗
ij(v)⊗ 1⊗(b−1) ⊗ eij ⊗ 1(n−b).

Here the belongs to the b-th copy of EndCN . Setting n = 2 and identifying R(u−v)
with 1⊗R(u− v) , the defining relations of Y∗(glN ) can be written as

(10.5) T ∗
1 (u)T

∗
2 (v)R(u− v) = R(u− v)T ∗

2 (v)T
∗
1 (u) .
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The relation (10.5) is equivalent to the collection of relations

(u− v) [T ∗
ij(u), T

∗
kl(v) ] = T ∗

il (u)T
∗
kj(v)− T ∗

il (v)T
∗
kj(u)

for all i, j, k, l = 1, . . . , N . We omit the proof of the equivalence, because it is similar
to the proof of Proposition 2.2. The last displayed relation can be rewritten as

[T ∗
ij(u), T

∗
kl(v) ] =

∞∑

p=0

u−p−1vp
(
T ∗
il (u)T

∗
kj(v)− T ∗

il (v)T
∗
kj(u)

)
.

Expanding here the series in u, v and equating the coefficients at ur−1vs−1 we get

[T
(−r)
ij , T

(−s)
kl ] = δkj T

(−r−s)
il − δil T

(−r−s)
kj +(10.6)

s∑

b=1

(
T

(b−r−s−1)
il T

(−b)
kj − T

(−b)
il T

(b−r−s−1)
kj

)
.

The proof of next proposition is similar to that of Proposition 4.1 and is omitted.

Proposition 10.1. The dual Yangian Y∗(glN ) is a bialgebra over the field C with

the counit defined ε : T ∗(v) 7→ 1 and the comultiplication defined by

(10.7) ∆ : T ∗
ij(v) 7→

N∑

k=1

T ∗
ik(v)⊗ T ∗

kj(v) .

Expanding the power series in v in (10.7) and using the axiom ∆(1) = 1⊗ 1, we
get a more explicit definition of the comultiplication on the dual Yangian Y∗(glN ),

(10.8) ∆
(
T

(−r)
ij

)
= T

(−r)
ij ⊗ 1 + 1⊗ T

(−r)
ij +

N∑

k=1

r∑

s=1

T
(−s)
ik ⊗ T

(s−r−1)
kj

for r > 1; cf. (4.4). Since ε(1) = 1, for every r > 1 we get ε
(
T

(−r)
ij

)
= 0.

The dual Yangian Y∗(glN ) is a bialgebra but not a Hopf algebra. The antipodal
map S is defined only for a completion Y◦(glN ) of Y∗(glN ) such that the element

T ∗(0) ∈ Y◦(glN )⊗ EndCN

is invertible. Then

T ∗(v) ∈ Y◦(glN )[[v]]⊗ EndCN

is also invertible, and the antipode S is defined by mapping T ∗(v) to its inverse.
This inverse will be denoted by T ♮(v). It will be used again in the end of Section 15.

In order to construct such a completion, let us equip the algebra Y∗(glN ) with

a descending filtration, defined by assigning to the generator T
(−r)
ij the degree r for

any r > 1. Then Y◦(glN ) is defined as the formal completion of Y∗(glN ) relative to
this descending filtration. The algebra Y◦(glN )⊗ EndCN contains the inverse of

T ∗(0) = 1⊗ 1 +

N∑

i,j=1

T
(−1)
ij ⊗ eij .

We extend the comultiplication ∆ on Y∗(glN ) to Y◦(glN ) , and also denote this
extension by ∆ . The image ∆(Y◦(glN )) lies in the formal completion of the algebra
Y∗(glN ) ⊗ Y∗(glN ) with respect to the descending filtration, defined by assigning

to the element T
(−r)
ij ⊗ T

(−s)
kl the degree r + s. Indeed, the image ∆

(
T

(−r)
ij

)
in

Y∗(glN )⊗Y∗(glN ) is a sum of elements of degrees r and r + 1 by (10.8).
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The kernel of the counit homomorphism ε : Y∗(glN ) → C consists of all the
elements which of positive degree relative to the filtration, see Proposition 10.1.
Therefore ε extends to the algebra Y◦(glN ). This extension is the counit map for
the Hopf algebra Y◦(glN ), it will be also denoted by ε.

For any c ∈ C the assignment T ∗(v) 7→ T ∗(v + c) determines an automorphism
of the algebra Y◦(glN ). This follows from the relations (10.5), cf. Proposition 3.1.
But for c 6= 0 this automorphism does not preserve the subset Y∗(glN ) ⊂ Y◦(glN ),
and therefore does not determine an automorphism of Y∗(glN ) .

To find the square of the antipodal map S of the Hopf algebra Y◦(glN ) let T ♭(v)
be the result of applying to the inverse of (10.2) the transposition in EndCN . Write

T ♭(v) =

N∑

i,j=1

T ♭
ij(v)⊗ eij ∈ Y◦(glN )[[v]]⊗ EndCN

so that
S : T ∗

ij(v) 7→ T ♭
ji(v) .

The proof of the next lemma is similar to that of Lemma 3.3 and is omitted here.

Lemma 10.2. There is a formal power series Z ◦(v) in v with coefficients from the

centre of the algebra Y◦(glN ) such that for all indices i and j

N∑

k=1

T ∗
ki(v −N)T ♭

kj(v) = δij Z
◦(v) .

In general, the coefficients of the series Z ◦(v) do not belong to the dual Yangian
Y∗(glN ) . However, the proposition below can be derived from Lemma 10.2 just as
Proposition 3.4 was derived from Lemma 3.3. Hence we again omit the proof.

Proposition 10.3. The square of the map S is the automorphism of Y◦(glN )

S2 : T ∗(v) 7→ Z ◦(v)−1 T ∗(v −N) .

The latter result follows just as Proposition 4.2 followed from Proposition 3.4.

Proposition 10.4. For the series Z ◦(v) defined above we have

∆ : Z ◦(v) 7→ Z ◦(v)⊗ Z ◦(v) .

The completion Y◦(glN ) of the filtered algebra Y∗(glN ) can be described more
explicitly. At the end of Section 12 we will show that the vector space Y∗(glN ) has
a basis parameterized by all multisets of triples (r1, i1, j1), . . . , (rm, im, jm) where

r1, . . . , rm ∈ {1, 2, . . . } and i1, j1, . . . , im, jm ∈ {1, . . . , N}

while m = 0, 1, 2, . . . . The corresponding basis vector in Y∗(glN ) is the monomial

(10.9) T
(−r1)
i1j1

. . . T
(−rm)
imjm

.

The ordering of the factors in this monomial can be chosen arbitrarily. Choose
any linear ordering of the basis monomials. For any positive integer r, there is
only a finite number of the basis monomials (10.9) such that r1 + · · · + rm 6 r.
This means that when the index of the basis monomial (10.9) in any chosen linear
ordering increases, then the filtration degree (10.9)

r1 + · · ·+ rm → ∞ .

Therefore the vector space Y◦(glN ) consists of all infinite linear combinations of
the basis monomials (10.9), with the coefficients from the field C .
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11. Canonical pairing

There is a canonical bilinear pairing

(11.1) 〈 , 〉 : Y(glN )×Y∗(glN ) → C .

We shall describe the corresponding linear map β : Y(glN )⊗Y∗(glN ) → C. It will
be defined so that for all integers m,n > 0 the linear map

(EndCN )⊗m ⊗Y(glN )⊗Y∗(glN )⊗ (EndCN )⊗n → (EndCN )⊗(m+n)

given by id⊗ β ⊗ id, will send

(11.2) T1(u1) . . . Tm(um)⊗ T ∗
1 (v1) . . . T

∗
n (vn) 7→

→∏

16a6m

→∏

16b6n

Ra,b+m(ua − vb).

Here u1, . . . , um, v1, . . . , vn are independent variables. The coefficients of the series

(11.3) T1(u1), . . . , Tm(um) and T ∗
1 (v1), . . . , T

∗
n (vn)

belong to the algebras (2.2) and (10.3), respectively.
Note that the series in u1, . . . , um and v1, . . . , vn at the left hand side of (11.2)

satisfy certain relations, implied by the defining relations of the algebras Y(glN )
and Y∗(glN ). The following proposition guarantees that the pairing is well-defined.

Proposition 11.1. The assignment (11.2) agrees with relations (2.8) and (10.5).

Proof. This follows from the Yang-Baxter equation (2.6). For instance, let us con-
sider the case when m = 2 and n = 1. Here we have to check that the series

(
R(u1 − u2)T1(u1)T2(u2)

)
⊗ T ∗(v)

and (
T2(u2)T1(u1)R(u1 − u2)

)
⊗ T ∗(v)

with the coefficients in the algebra

(EndCN )⊗2 ⊗Y(glN )⊗Y∗(glN )⊗ EndCN ,

have the same images in under the map id ⊗ β ⊗ id. These images are series with
the coefficients in (EndCN )⊗3. Note that the second element can be rewritten as

(
P T1(u2)T2(u1)P R(u1 − u2)

)
⊗ T ∗(v)

By the definition (11.2), the images of the two elements are respectively

R12(u1 − u2)R13(u1 − v)R23(u2 − v)

and

P12 R13(u2 − v)R23(u1 − v)P12 R12(u1 − u2)

= R23(u2 − v)R13(u1 − v)R12(u1 − u2).

The equality of two images is now evident due to (2.6). Using (2.6) repeatedly, one
can prove Proposition 11.1 for any m,n > 0. �

Let us show that the assignments (11.2) for all m,n = 0, 1, 2, . . . determine the
values of the bilinear pairing (11.1) uniquely. When m = n = 0, we get from (11.2)
the equality 〈 1 , 1 〉 = 1 . By choosing m = 1 and n = 0, we obtain from (11.2) that

〈T
(r)
ij , 1 〉 = 0 for any r > 1 . When m = 0 and n = 1, we obtain that 〈 1, T

(−s)
ij 〉 = 0

for any s > 1 . In both cases, we had to use the equality 〈 1 , 1 〉 = 1 obtained above.
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Now suppose that m,n > 1. To determine the pairing values

(11.4)
〈
T

(r1)
i1j1

. . . T
(rm)
imjm

, T
(−s1)
k1l1

. . . T
(−sn)
knln

〉

for any indices
r1, . . . , rm, s1, . . . , sn ∈ {1, 2, . . . }

and
i1, j1, . . . , im, jm, k1, l1, . . . , kn, ln ∈ {1, . . . , N},

the product of the rational functions Ra,b+m(ua − vb) on the right hand side of

(11.2) should be expanded as power series in the variables u−1
1 , . . . , u−1

m , v1, . . . , vn .
The series (11.3) should be then also expanded.

Note that although the coefficient of v0 in the series (10.1) is a sum of two terms,

δij and T
(−1)
ij , the pairing value (11.4) can be still determined by (11.2) for any

indices s1, . . . , sn > 1 by using the induction on n. Namely, if some of the indices
s1, . . . , sn are equal to 1, the value (11.4) can be determined by (11.2), using the
values (11.4) with n replaced by 0, . . . , n− 1.

Consider the case m = n = 1 in more detail. Then the map id⊗ β ⊗ id maps

T (u)⊗ T ∗(v) =

N∑

i,j,k,l=1

eij ⊗

( ∞∑

r=0

T
(r)
ij u−r

)
⊗

(
δkl +

∞∑

s=1

T
(−s)
kl vs−1

)
⊗ ekl

to the series

(11.5) R(u− v) = 1⊗ 1−
N∑

i,j=1

∞∑

r=1

u−rvr−1 eij ⊗ eji ;

see (2.4) and (10.1). Using the equality 〈T
(r)
ij , 1 〉 = δ0r for r > 0, we get

〈
T

(r)
ij , T

(−s)
kl

〉
= −δrs δil δjk for r, s > 1.

More explicitly the value (11.4) will be determined in the course of the proof
of the next lemma. This lemma describes a basic property of the bilinear pairing
(11.1). It is valid for any integers m,n > 0.

Lemma 11.2. If r1 + · · ·+ rm < s1 + · · ·+ sn then the value (11.4) is zero.

Proof. First suppose that s1, . . . , sn > 2. Then by the definition of the pairing
(11.2), the value (11.4) is the coefficient of

(11.6) ei1j1 ⊗ . . .⊗ eimjm ⊗ ek1l1 ⊗ . . .⊗ eknln · u−r1
1 . . . u−rm

m vs1−1
1 . . . vsn−1

n

in the expansion of the product in (EndCN )⊗(m+n)[[u−1
1 , . . . , u−1

m , v1, . . . , vn]]
→∏

16a6m

→∏

16b6n

Ra,b+m(ua − vb) =

→∏

16a6m

→∏

16b6n

(
1−

∞∑

r=1

u−r
a vr−1

b Pa,b+m

)
.

If the coefficient of (11.6) is non-zero in this expansion then clearly we have the
inequality r1 + · · ·+ rm > s1 + · · ·+ sn .

Now suppose that some of the numbers s1, . . . , sn are equal to 1. Without loss of
generality we will assume that s1, . . . , sd > 2 and sd+1, . . . , sn = 1 for some d < n.
Rewrite the product at the right hand side of the definition (11.2) as

→∏

16b6d

→∏

16a6m

Ra,b+m(ua − vb) ·
→∏

d<b6n

→∏

16a6m

Ra,b+m(ua − vb) .
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By definition, the coefficient of (11.6) in the expansion of this product equals
〈
T

(r1)
i1j1

. . . T
(rm)
imjm

, T
(−s1)
k1l1

. . . T
(−sd)
kdld

(
δkd+1ld+1

+ T
(−1)
kd+1ld+1

)
. . .

(
δknln+ T

(−1)
knln

)〉
.

The value (11.4) is then the coefficient of (11.6) in the expansion of the product

(11.7)
→∏

16b6d

→∏

16a6m

(
1−

∞∑

r=1

u−r
a vr−1

b Pa,b+m

)
×

→∏

d<b6n

( →∏

16a6m

(
1−

∞∑

r=1

u−r
a vr−1

b Pa,b+m

)
− 1

)
.

If that coefficient here is non-zero, then r1 + · · ·+ rm > s1 + · · ·+ sd + n− d . �

12. Non-degeneracy of the pairing

In Section 10 we equipped the algebra Y∗(glN ) with a descending filtration. Now
consider the corresponding graded algebra grY∗(glN ). Its component of degree s

will be denoted by grsY
∗(glN ). For any s > 1 denote by T̃

(−s)
ij the image of T

(−s)
ij

in grsY
∗(glN ). By (10.6) we immediately get

Lemma 12.1. In the graded algebra grY∗(glN ), for any r, s > 1 we have

[ T̃
(−r)
ij , T̃

(−s)
kl ] = δkj T̃

(−r−s)
il − δil T̃

(−r−s)
kj .

In Section 5 we equipped the algebra Y(glN ) with an ascending filtration, such
that the corresponding graded algebra grY(glN ) is commutative. Its subspace of
all elements of degree s will be denoted by grsY(glN ). Keeping to the notation of

Section 5, for any s > 1 let T̂
(s)
ij be the image of the generator T

(s)
ij in grsY(glN ).

We can define a bilinear pairing

(12.1) 〈 , 〉 : grY(glN )× grY∗(glN ) → C

by making its value

(12.2)
〈
T̂

(r1)
i1j1

. . . T̂
(rm)
imjm

, T̃
(−s1)
k1l1

. . . T̃
(−sn)
knln

〉

equal to (11.4) if r1+. . .+rm = s1+. . .+sn and by making it equal to zero otherwise.
Here r1, . . . , rm, s1, . . . , sn > 1 and m,n > 0 . The indices i1, j1, . . . , im, jm and
k1, l1, . . . , kn, ln may be arbitrary. This definition is self-consistent. Namely, if

(12.3) r1 + · · ·+ rm = s1 + . . .+ sn = s

for some s > 1, then by Lemma 11.2 we have
〈
T

(r1)
i1j1

. . . T
(rm)
imjm

+X,T
(−s1)
k1l1

. . . T
(−sn)
knln

+ Y
〉
=

〈
T

(r1)
i1j1

. . . T
(rm)
imjm

, T
(−s1)
k1l1

. . . T
(−sn)
knln

〉

for any X ∈ Y(glN ) and Y ∈ Y∗(glN ) of degrees respectively less and more than s.

Proposition 12.2. For any index s > 0, the restriction of the pairing (12.1) to

grsY(glN )× grsY
∗(glN ) is non-degenerate.

Proof. Fix an integer s > 0. In each of two vector spaces grsY(glN ) and grsY
∗(glN )

we will choose a basis so that the matrix of the bilinear pairing (12.1) relative to
these bases is lower triangular, with non-zero diagonal entries. In particular, we
will prove that these two vector spaces are of the same dimension.

Let r1, . . . , rm and s1, . . . , sn be non-increasing sequences of positive integers
satisfying (12.3). In other words, these two sequences are partitions of s. We will
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equip the set of all partitions of s with the inverse lexicographical ordering. In this
ordering, the sequence r1, . . . , rm precedes the sequence s1, . . . , sn if for some c > 0

rm = sn , rm−1 = sn−1 , . . . , rm−c+1 = sn−c+1 while rm−c < sn−c .

Suppose that s1, . . . , sd > 2 while sd+1, . . . , sn = 1 for d > 0. Unlike in the proof
of Lemma 11.2, now we do not exclude the case d = n. Take the coefficient at

(12.4) u−r1
1 . . . u−rm

m v s1−1
1 . . . v sn−1

n

in the expansion of the product (11.7) as a series in u−1
1 , . . . , u−1

m , v1 . . . , vn . This

coefficient is an element of the algebra (EndCN )⊗(m+n). If this coefficient is non-
zero, then equality

r1 + · · ·+ rm = s1 + . . .+ sn

implies that each of the indices r1, . . . , rm in (12.4) is a sum of some of the indices
s1, . . . , sn . Moreover, then each of the indices s1, . . . , sn appears in these sums only
once. If a sequence r1, . . . , rm obtained by this summation precedes the sequence
s1, . . . , sn in the inverse lexicographical ordering, then the two sequences must
coincide. That is, m = n and ra = sa for every index a = 1, . . . ,m.

For r = 1, 2, . . . denote by Sr the segment of the sequence 1, . . . ,m consisting of
all indices a such that sa = r. If the sequences r1, . . . , rm and s1, . . . , sn coincide,
then the coefficient at (12.4) in the expansion of the product (11.7) equals

(−1)m
∏

r>1

( ∑

p

∏

a∈Sr

P a,p(a)+m

)

where p runs through the set of all permutations of the sequence Sr . Note that in
the products over r and a above, all the factors pairwise commute.

The graded algebra grY(glN ) is free commutative with the generators T̂
(r)
ij where

r > 1 , see Corollary 8.4. Choose the basis in the vector space grsY(glN ) consisting
of the monomials

(12.5) T̂
(r1)
i1j1

. . . T̂
(rm)
imjm

.

The ordering of factors in (12.5) is irrelevant, let us order them in any way such
that r1 > · · · > rm. Choose any linear ordering of these basis vectors, subordinate
to the inverse lexicographical ordering of the corresponding sequences r1, . . . , rm .
The above arguments imply, that for any two basis elements,

T̂
(r1)
i1j1

. . . T̂
(rm)
imjm

and T̂
(s1)
k1l1

. . . T̂
(sm)
kmlm

such that the the sequence r1, . . . , rm precedes the sequence s1, . . . , sn, the pairing
value (12.2) is non-zero only if m = n and for every index a = 1, . . . ,m we have

ra = sa and ia = la , ja = ka .

Then the value (12.2) equals (−1)m g!h! . . . where g, h, . . . are the multiplicities in
the sequence of the triples (r1, i1, j1), . . . , (rm, im, jm). Therefore the monomials

(12.6) T̃
(−r1)
j1i1

. . . T̃
(−rm)
jmim

in grsY
∗(glN ) corresponding to the basis elements (12.5) of vector space grsY(glN ) ,

are linearly independent. These monomials also span the vector space grsY
∗(glN ) .

The latter result follows from Lemma 12.1 by using induction on m . Hence these
monomials form a basis in grsY

∗(glN ) . The matrix of the pairing (12.1) relative
to the two bases is then lower triangular, with non-zero diagonal entries. �
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The graded algebra grY∗(glN ) inherits from Y∗(glN ) the bialgebra structure.
Namely, using (10.8), for any r > 1 we get

(12.7) ∆
(
T̃

(−r)
ij

)
= T̃

(−r)
ij ⊗ 1 + 1⊗ T̃

(−r)
ij and ε

(
T̃

(−r)
ij

)
= 0.

Although the antipode S is defined only on the completion Y◦(glN ) of Y∗(glN ), it
still induces a well-defined anipodal map on the graded algebra grY∗(glN ),

(12.8) S : T̃
(−r)
ij 7→ − T̃

(−r)
ij .

Hence grY∗(glN ) becomes a Hopf algebra.
Now consider the subalgebra z glN [z] ∼= glN ⊗ (zC[z] ) in the polynomial current

Lie algebra glN [z]. The next proposition indicates the difference between the graded
algebras grY(glN ) and grY∗(glN ), cf. Proposition 5.1.

Proposition 12.3. The Hopf algebra grY∗(glN ) is isomorphic to the universal

enveloping algebra U(z glN [z] ).

Proof. Lemma 12.1 implies that the assignment Eij z
r 7→ T̃

(−r)
ij for r > 1 defines a

surjective homomorphism

(12.9) U(z glN [z] ) → grY∗(glN ) .

The kernel of this homomorphism is trivial, because the monomials (12.6) in T̃
(−r)
ij

corresponding to basis elements (12.5) of the free commutative algebra grY(glN )
form a basis in grY∗(glN ) . This was shown in the proof of Proposition 12.2. By
comparing the definitions (12.7),(12.8) with (5.4),(5.5) we complete the proof. �

We state the main property of the pairing 〈 , 〉 as the following theorem.

Theorem 12.4. The map (11.1) is a non-degenerate bialgebra pairing.

Proof. By Lemma 11.2 and Proposition 12.2 the pairing 〈 , 〉 is non-degenerate.
Let us show that under the pairing (11.1), the multiplication and comultiplication
on Y(glN ) become dual respectively to the comultiplication and multiplication on
Y∗(glN ). We have to prove that

(12.10) 〈X,Z W 〉 = 〈∆(X), Z ⊗W 〉 and 〈X Y,Z 〉 = 〈X ⊗ Y,∆(Z)〉

for any elements X,Y ∈ Y(glN ) and Z,W ∈ Y∗(glN ). Here we use the convention

〈X ⊗ Y, Z ⊗W 〉 = 〈X,Z〉 〈Y,W 〉 .

For instance, let us prove the first equality in (12.10). To this end it suffices to
substitute the series Ti1j1(u1) . . . Timjm(um) and

T ∗
k1l1

(v1) . . . T
∗
kdld

(vd) , T ∗
kd+1ld+1

(vd+1) . . . T
∗
knln

(vn)

for X and Z,W respectively. Here 0 6 d 6 n. If d = 0 or d = n, then we substitute
1 respectively for Z or for W . After these substitutions, we will have to prove that

(12.11)
〈
Ti1j1(u1) . . . Timjm(um) , T ∗

k1l1
(v1) . . . T

∗
knln

(vn)
〉

equals the sum

N∑

h1,...,hm=1

〈
Ti1h1

(u1) . . . Timhm
(um) , T ∗

k1l1
(v1) . . . T

∗
kdld

(vn)
〉
×(12.12)

〈
Th1j1(u1) . . . Thmjm(um) , T ∗

kd+1ld+1
(v1) . . . T

∗
knln

(vn)
〉
.
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To prove the latter equality, let us multiply (12.11) and (12.12) by the element

ei1j1 ⊗ . . .⊗ eimjm ⊗ ek1l1 ⊗ . . .⊗ eknln ∈ (EndCN )⊗(m+n),

taking the sum over the indices i1, j1, . . . , im, jm and k1, l1, . . . , kn, ln . In this way,
from (12.11) we obtain the product

→∏

16a6m

→∏

16b6n

Ra,b+m(ua − vb)

due to the definition (11.2). From (12.12) we obtain the product

→∏

16b6d

→∏

16a6m

Ra,b+m(ua − vb) ·

→∏

d<b6n

→∏

16a6m

Ra,b+m(ua − vb)

which is evidently equal to the previous product.
We have already noted the equality 〈 1 , 1 〉 = 1. Moreover, by setting n = 0 the

definition (11.2), for any r1, . . . , rm > 1 we get the equality

〈T
(r1)
i1j1

. . . T
(rm)
imjm

, 1 〉 = 0 if m > 1 .

Thus 〈X , 1 〉 = ε(X) for any element X ∈ Y(glN ). By setting m = 0 in (11.2) and
using the induction on n or, alternatively, by using Lemma 11.2, we obtain for any
s1, . . . , sn > 1 the equality

〈 1 , T
(−s1)
k1l1

. . . T
(−sn)
knln

〉 = 0 if n > 1.

Thus 〈 1 , Z 〉 = ε(Z) for any element Z ∈ Y∗(glN ) . Therefore the counit and the
unit maps for the bialgebra Y(glN ) are dual respectively to the unit and the counit
maps for the bialgebra Y∗(glN ). �

Due to Theorem 8.3, the vector space Y(glN ) has a basis parameterized by all
multisets of triples (r1, i1, j1), . . . , (rm, im, jm) where

r1, . . . , rm ∈ {1, 2, . . . } and i1, j1, . . . , im, jm ∈ {1, . . . , N}

while m = 0, 1, 2, . . . . The corresponding basis vector in Y(glN ) is the monomial

(12.13) T
(r1)
i1j1

. . . T
(rm)
imjm

.

The ordering of the factors in this monomial can be chosen arbitrarily. Suppose
that here r1 > · · · > rm . Then the sequence r1, . . . , rm can be regarded as a
partition of r1 + · · · + rm . Equip the set of all partitions of 0, 1, 2, . . . with the
following ordering. If r < s, the partitions of r precede those of s. For any given
r, the set of partitions of r is equipped with the inverse lexicographical ordering;
see the proof of Proposition 12.2. Choose any linear ordering of the basis elements
(12.13), subordinate to the above described ordering of their sequences r1, . . . , rm .
The proof of Proposition 12.2 implies that the monomials

T
(−r1)
j1i1

. . . T
(−rm)
jmim

corresponding to the basis elements (12.13) form a basis of the vector space Y∗(glN ).
The matrix of the pairing (11.1) relative to these two bases is lower triangular with
non-zero diagonal entries; see also Lemma 11.2. Here the basis elements of Y∗(glN )
are linearly ordered as the corresponding basis elements (12.13) of Y(glN ) .
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13. Universal R-matrix

Consider the formal completion Y◦(glN ) of the filtered algebra Y∗(glN ) defined
in Section 10. By Proposition 11.2 the canonical pairing (11.1) extends to a pairing

〈 , 〉 : Y(glN )×Y◦(glN ) → C .

Choose any basis X1, X2, . . . in the vector space Y(glN ).

Proposition 13.1. The completion Y◦(glN ) does contain the system of elements

X ′
1, X

′
2, . . . dual to X1, X2, . . . so that 〈Xr , X

′
s 〉 = δrs for any r and s.

Proof. As we explained at the end of Section 10, one can choose a basis Y1, Y2, . . .
in Y(glN ) and a basis Y ∗

1 , Y
∗
2 , . . . in Y∗(glN ) so that the filtration degree

(13.1) deg Y ∗
s → ∞ when s → ∞ ,

and so that the matrix of the pairing (11.1) relative to these bases is lower triangular
with non-zero diagonal entries. Let [ grs ] be its inverse matrix. The formal sums

(13.2) Y ′
s =

∞∑

r=1

grs Y
∗
r

satisfy the equations 〈Yr , Y
′
s 〉 = δrs for all indices r and s. Each of these sums is

contained in Y◦(glN ) due to (13.1). Moreover, because the the matrix [grs] is also
lower triangular, the property (13.1) implies that

(13.3) deg Y ′
s → ∞ when s → ∞ .

Now let X1, X2, . . . be any basis in Y(glN ). Let [hrs] be the coordinate change
matrix from the basis Y1, Y2, . . . so that for any index r we have

Ys =

∞∑

r=1

hrs Xr .

This sum must be finite, so that for any fixed index s there are only finitely many
non-zero coefficients hrs . The sums

(13.4) X ′
r =

∞∑

s=1

hrs Y
′
s

satisfy the equations 〈Xr , X
′
s 〉 = δrs as required. Each of these sums is contained

in the completion Y◦(glN ) due to the property (13.3). �

Consider an infinite sum of elements of the tensor product Y◦(glN )⊗Y(glN )

(13.5) R =

∞∑

r=1

X ′
r ⊗Xr .

This sum does not depend on the choice of the basis X1, X2, . . . in the vector space
Y(glN ) in the following sense. Let Y1, Y2, . . . be the basis in Y(glN ) used in the
proof of Proposition 13.1. Using the formula (13.4) for every r = 1, 2, . . . expand
the vectors X ′

1, X
′
2, . . . in (13.5). Then fix an index s and consider the sum of terms

∞∑

r=1

(hrs Y
′
s )⊗Xr
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corresponding to the vector Y ′
s in (13.4). Only finite number of these terms are

non-zero, and their sum is equal to Y ′
s ⊗ Ys . In this sense, the sum in (13.5) equals

∞∑

s=1

Y ′
s ⊗ Ys .

The infinite sum R is called the universal R-matrix for the Yangian Y(glN ) .
Any element of the vector space Y◦(glN )⊗Y(glN ) determines a linear operator

on the vector space Y(glN ) . If A is the operator corresponding to an element
Z ⊗ Y ∈ Y◦(glN )⊗Y(glN ), then

(13.6) A(X) = 〈X ,Z 〉 Y for any X ∈ Y(glN ).

By the above argument, the series of operators corresponding to (13.5) pointwise
converges to the identity operator id : X 7→ X on the vector space Y(glN ) .

Proposition 13.2. For the comultiplication on Y(glN ) and Y◦(glN ) we have

(13.7) (id⊗∆) (R) = R12R13 and (∆⊗ id) (R) = R13R23

where

R12 =

∞∑

r=1

X ′
r ⊗Xr ⊗ 1 , R13 =

∞∑

r=1

X ′
r ⊗ 1⊗Xr , R23 =

∞∑

r=1

1⊗X ′
r ⊗Xr .

Proof. Let us prove the first of the two equalities (13.7). This is an equality of
infinite sums of elements from the tensor product Y◦(glN ) ⊗ Y(glN ) ⊗ Y(glN ) . It
means the equality of the corresponding operators Y(glN ) → Y(glN ) ⊗ Y(glN ) .
By applying the linear operator corresponding to the infinite sum (id⊗∆) (R) to
any fixed element X ∈ Y(glN ) we get the element ∆(X). By applying to X the
operator corresponding to R12R13 we obtain the sum

∞∑

r,s=1

〈X ,Y ′
r Y ′

s 〉Yr ⊗ Ys =

∞∑

r,s=1

〈∆(X) , Y ′
r ⊗ Y ′

s 〉Yr ⊗ Ys = ∆(X).

Here we used the first equality in (12.10), and non-degeneracy of the pairing (11.1).
The property (13.3) guarantees that in both sums over r and s displayed above,
only finite number of summands are non-zero when X is fixed; see Lemma 11.2.
We have thus proved the first equality in (13.7). The second equality is deduced
from the second equality in (12.10) in a similar way. �

Proposition 13.3. For the counit maps on Y(glN ) and Y◦(glN ),

( id⊗ ε) (R) = 1 and (ε⊗ id) (R) = 1.

Proof. Because ε(X) = 〈X , 1 〉 for any element X ∈ Y(glN ) by Theorem 12.4,

( id⊗ ε) (R) =

∞∑

s=1

〈Ys , 1 〉Y
′
s = 1 .

Similarly, because ε(Z) = 〈 1 , Z 〉 for any element Z ∈ Y◦(glN ), we also have

(ε⊗ id) (R) =

∞∑

s=1

〈 1 , Y ′
s 〉Ys = 1

where only finitely many summands are non-zero due to (13.3), see Lemma 11.2. �
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The infinite sum in (13.5) can be also regarded as an element of a completion
of the tensor product Y∗(glN ) ⊗ Y(glN ). Namely, let us extend the descending
filtration from the algebra Y∗(glN ) to the tensor product Y∗(glN ) ⊗ Y(glN ) by

giving the degree r to each element of the form T
(−r)
ij ⊗X where X ∈ Y(glN ) and

r > 1. The element 1⊗X of Y∗(glN )⊗ Y(glN ) is given the zero degree. Take the
formal completion of the algebra Y∗(glN )⊗Y(glN ) relative to this filtration. This
completion contains the tensor product Y◦(glN ) ⊗ Y(glN ) , but does not coincide
with it because the algebra Y(glN ) is infinite-dimensional.

The next corollary shows in particular, that the sum in (13.5) is invertible as an
element of the completion of the algebra Y∗(glN )⊗Y(glN ) .

Corollary 13.4. For the antipodal maps on Y(glN ) and Y◦(glN ) we have

( id⊗ S) (R) = R−1 and (S⊗ id) (R) = R−1.

Proof. Regard the first equality in (13.7) as that of the elements of the completion
of the algebra Y∗(glN )⊗Y(glN )⊗Y(glN ). On this algebra, the descending filtration

is defined by giving the degree r to each element of the form T
(−r)
ij ⊗X ⊗ Y where

X,Y ∈ Y(glN ) and r > 1. The element 1⊗X ⊗ Y is then given the degree zero.
Let µ : Y(glN ) ⊗ Y(glN ) → Y(glN ) be the map of algebra multiplication, and

δ : C → Y(glN ) be the unit map: δ (1) = 1. Let us apply the map id⊗ S⊗ id, and
then the map id ⊗ µ to to both sides of the first equality in (13.7). At the right
hand side we get the element ((id ⊗ S)(R)) · R . At the left hand side we get the
element of the tensor product Y◦(glN )⊗Y(glN ) ,

(( id⊗ µ) ( id⊗ S⊗ id) ( id⊗∆)) (R) = ((id⊗ δ) ( id⊗ ε)) (R) = 1⊗ 1 .

Here we used the first axiom of antipode from Section 4 in the case A = Y(glN ),
and the first equality of Proposition 13.3. Hence the first equality of Corollary 13.4
follows from the first equality in (13.7).

Similarly, using the first axiom of antipode in the case A = Y◦(glN ) and the
second equality of Proposition 13.3, the second equality of Corollary 13.4 follows
from the second equality in (13.7). The last equality should be regarded here as
that of the elements of the completion of the algebra Y∗(glN )⊗Y∗(glN )⊗Y(glN ) .
On this algebra a descending filtration is defined by giving the degree r + s to any
element of the form

T
(−r)
ij ⊗ T

(−s)
kl ⊗X .

Then the elements T
(−r)
ij ⊗ 1⊗X and 1⊗ T

(−r)
ij ⊗X are given the degree r, while

the element 1⊗ 1⊗X is given the degree zero. Here X ∈ Y(glN ) and r, s > 1 . The
argument is completed in the same way as for the first equality. �

Let us now replace the complex parameter c in the definition (6.2) of a covector
representation ρc of Y(glN ) by the formal variable v . Then we get a homomorphism

(13.8) ρv : Y(glN ) → EndCN [v] ;

it is defined by the assignment T (u) 7→ R(u− v) of formal power series in u−1.
Similarly, the assignment T ∗(v) 7→ R(u − v) of formal power series in v defines

a homomorphism

(13.9) ρ∗
u : Y∗(glN ) → EndCN [u−1] .
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To prove the homomorphism property using the matrix form (10.5) of the defining
relations of the algebra Y∗(glN ) , we have to check the equality of rational functions
in the variables u, v and w with the values in the algebra (EndCN )⊗3,

R01(u− v)R02(u− w)R12(v − w) = R12(v − w)R02(u− w)R01(u− v) .

This equality follows from (2.6). Here we use the indices 0, 1, 2 instead of 1, 2, 3 to
label the tensor factors of (EndCN )⊗3. By comparing the expansions (10.2) and
(11.5), we see that

(13.10) ρ∗
u : T

(−r)
ij 7→ −u−reji for any r > 1 .

Obviously, the homomorphism ρ∗
u extends to a homomorphism

Y◦(glN ) → EndCN [[u−1]] .

We shall keep the notation ρ∗
u for the extended homomorphism.

Proposition 13.5. We have equalities of formal power series in u−1 and v,

(ρ∗
u ⊗ id) (R) = T (u) and ( id⊗ ρv ) (R) = T ∗(v) .

Proof. By the definition (11.2) of the pairing Y(glN )⊗Y∗(glN ) → C for any n > 0
the element T (u) ∈ End (CN )⊗Y(glN )[[u−1]] has the property that

T (u)⊗ T ∗
1 (v1) . . . T

∗
n (vn) 7→ R12(u− v1) . . . R1,n+1(u− vn)

under the linear map

id⊗ β ⊗ id : EndCN ⊗Y(glN )⊗Y∗(glN )⊗ (EndCN )⊗n → (EndCN )⊗ (n+1).

Because our pairing is non-degenerate, the same property for the element

(ρ∗u ⊗ id) (R) =
∞∑

s=1

ρ∗u (Y
′
s )⊗ Ys

will imply the first equality of Proposition 13.5. Note that when s → ∞ , then the
degree in u−1 of the image ρ∗u (Y

′
s ) tends to infinity due to (13.3) and (13.10). Hence

the above displayed sum over s = 1, 2, . . . is contained in End (CN )⊗Y(glN )[[u−1]] .
Thus to prove the first equality of Proposition 13.5, we have to show that under

the linear map id⊗ β ⊗ id,
∞∑

s=1

ρ∗
u (Y

′
s )⊗ Ys ⊗ T ∗

1 (v1) . . . T
∗
n (vn) 7→ R12(u− v1) . . . R1,n+1(u− vn) .

Since the system of vectors Y ′
1 , Y

′
2 , . . . is dual to the basis Y1, Y2, . . . of Y(glN ) , this

is equivalent to showing that

T ∗
1 (v1) . . . T

∗
n (vn) 7→ R12(u− v1) . . . R1,n+1(u− vn)

under the linear map

ρ∗
u ⊗ id : Y∗(glN )⊗ (EndCN )⊗n → (EndCN )⊗ (n+1)[u−1] .

The latter property follows directly from the definition of the homomorphism ρ∗
u .

The proof of the second equality of Proposition 13.5 is similar and is omitted. �

Corollary 13.6. We have the equality of formal power series in u−1 and v,

(ρ∗
u ⊗ ρv ) (R) = R(u− v) .



32 MAXIM NAZAROV

14. Double Yangian

Let ∆′ be the comultiplication on Y∗(glN ) opposite to the comultiplication ∆
defined by (10.7). By definition, the map

∆′ : Y∗(glN ) → Y∗(glN )⊗Y∗(glN )

is the composition of the comultiplication ∆ with the linear operator on the tensor
product Y∗(glN )⊗Y∗(glN ) exchanging the tensor factors.

The double Yangian of glN is defined as an associative unital algebra DY(glN )
over C generated by the elements of Y(glN ) and Y∗(glN ) subject to the relations

(14.1) R ∆(W ) = ∆′(W )R for every W ∈ Y∗(glN ) .

In the rest of this section we will provide a more explicit description of the algebra
DY(glN ) , see Theorem 14.4 below. In Section 15 we will show that the defining
homomorphisms of Y(glN ) and Y∗(glN ) to DY(glN ) are in fact embeddings. At the
end of that section we will also provide an equivalent definition of the DY(glN ) .

In (14.1) we have an equality of infinite sums of elements of the tensor product
Y◦(glN ) ⊗ DY(glN ). It means the equality of the corresponding linear operators
Y(glN ) → DY(glN ), cf. (13.6). For instance, let us consider the infinite sum

R ∆(W ) =
∞∑

s=1

(Y ′
s ⊗ Ys) ∆(W )

at the right hand side of the equality postulated in (14.1). Note that for any fixed
X ∈ Y(glN ) and Z ∈ Y∗(glN ), only finitely many summands in the infinite sum

∞∑

s=1

〈X ,Y ′
s Z 〉Ys

are non-zero; see Lemma 11.2 and the property (13.3). This observation shows that
the linear operator Y(glN ) → DY(glN ) corresponding to the infinite sum R ∆(W )
is well-defined for any element W ∈ Y∗(glN ) .

Now take the pair of homomorphisms ρu and ρ∗
u where we use the same formal

variable u , see (13.8) and (13.9).

Proposition 14.1. The associative algebra homomorphisms ρu , ρ
∗
u extend to a

homomorphism DY(glN ) → EndCN [u, u−1] .

Proof. Using (14.1), for any W ∈ Y∗(glN ) we have to check the equality

(id⊗ ρu ) (R) ( id⊗ ρ∗u ) (∆(W )) = (id⊗ ρ∗u ) (∆
′(W )) ( id⊗ ρu ) (R)

of formal series in u with coefficients in the algebra Y◦(glN )⊗ EndCN . It suffices
to substitute here the series T ∗

ij(v) for the element W . Due to the definition (10.7)
and to Proposition 13.5, the result of the substitution is the relation

N∑

k=1

T ∗(u) (T ∗
ik(v)⊗ ρ∗u(T

∗
kj(v))) =

N∑

k=1

(T ∗
kj(v)⊗ ρ∗u(T

∗
ik(v)))T

∗(u) .

Let us take the tensor products of both sides of the latter relation with the element
eij ∈ EndCN , and then sum over i, j = 1 . . . , N . Using the identity eij = eik ekj
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we then get the relation

N∑

i,j,k=1

(T ∗(u)⊗ 1) (T ∗
ik(v)⊗ ρ∗u(T

∗
kj(v))⊗ eik ekj ) =(14.2)

N∑

i,j,k=1

(T ∗
kj(v)⊗ ρ∗u(T

∗
ik(v))⊗ eik ekj ) (T

∗(u)⊗ 1)

of formal power series in u, v with the coefficients in Y∗(glN )⊗EndCN ⊗EndCN .
Note that by the definition of the homomorphism (13.9),

N∑

i,j=1

ρ∗u(T
∗
ij(v))⊗ eij = R(u− v) .

Therefore the relation (14.2) can be rewritten as

T ∗
1 (u)T

∗
2 (v) (1⊗R(u− v)) = (1⊗R(u− v))T ∗

2 (v)T
∗
1 (u) .

But this is just the defining relation for the algebra Y∗(glN ) , see (10.5). �

Let c be any non-zero complex number. In Proposition 14.1, we can specialize
the formal variable u to c . Then we obtain a representation DY(glN ) → EndCN .
We call it a covector representation of the algebra DY(glN ), it extends the covector
representation (6.2) of the algebra Y(glN ).

The vector representation (6.3) of Y(glN ) can be extended to a representation
of DY(glN ) , by mapping T ∗(v) 7→ R t(v − u) . We call it a vector representation of
the algebra DY(glN ) and denote it by σc . Note that then

(14.3) σc : T
(−r)
ij 7→ c−r eij for any r > 1 .

The proof that these assignments together with (6.3) define a representation of the
algebra DY(glN ) is similar to that of Proposition 14.1, and is omitted here.

To write down commutation relations in the algebra DY(glN ) , we will use the
tensor product EndCN ⊗DY(glN )⊗EndCN . There is a natural embedding of the
algebra EndCN ⊗ EndCN into this tensor product, such that x ⊗ y 7→ x ⊗ 1 ⊗ y
for any elements x, y ∈ EndCN . In the next proposition, the Yang R-matrix (2.4)
is identified with its image relative to this embedding.

Proposition 14.2. In the algebra EndCN ⊗DY(glN )⊗EndCN [[u−1, v ]] we have

(14.4) (T (u)⊗ 1)R(u− v) (1⊗ T ∗(v)) = (1⊗ T ∗(v))R(u− v) (T (u)⊗ 1) .

Proof. Let us substitute T ∗
ij(v) for W in the equality in (14.1), and then apply the

homomorphism ρ∗
u ⊗ id to the resulting equality. Due to the definition (10.7) and

to Proposition 13.5, we get an equality of formal power series in u−1 and v with
the coefficients from EndCN ⊗DY(glN ) ,

N∑

k=1

T (u) (ρ∗
u(T

∗
ik(v))⊗ T ∗

kj(v)) =
N∑

k=1

(ρ∗
u(T

∗
kj(v))⊗ T ∗

ik(v))T (u) .

Let us now take the tensor products of both sides of this equality with the element
eij ∈ EndCN , and then sum over i, j = 1 . . . , N . Using the identity eij = eik ekj
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we obtain an equality of series with coefficients from EndCN ⊗DY(glN )⊗EndCN

N∑

i,j,k=1

(T (u)⊗ 1) (ρ ∗
u (T

∗
ik(v))⊗ T ∗

kj(v)⊗ eik ekj ) =(14.5)

N∑

i,j,k=1

(ρ∗
u(T

∗
kj(v))⊗ T ∗

ik(v)⊗ eik ekj ) (T (u)⊗ 1) .

By using the definition of ρ∗
u the equality (14.5) can be rewritten as (14.4). �

Proposition 14.3. Relation (14.4) is equivalent to the collection of relations (14.1).

Proof. By Proposition 14.2 the relation (14.4) follows from (14.1). Let u1, . . . , um

be independent variables. Define the homomorphism

(14.6) ρ∗
u1...um

: Y∗(glN ) → (EndCN )⊗m [u−1
1 , . . . , u−1

m ]

as the composition of the m-fold comultiplication Y∗(glN ) → Y∗(glN )⊗m and of the
tensor product of the homomorphisms (13.9) where u = u1, . . . , um . By using the
descending filtration on Y∗(glN ) and the surjective homomorphism (12.9) we can
prove that when the number m vary, the kernels of all homomorphisms ρ∗

u1...um

have only zero intersection. The proof is similar that of Proposition 8.1 and is
omitted here. It now suffices to derive from (14.4) that for any W ∈ Y ∗(glN )

(14.7) (ρ∗
u1...um

⊗ id) (R ∆(W )) = (ρ∗
u1...um

⊗ id) (∆′(W ) R) .

Here the homomorphism (14.6) is extended to a homomorphism

Y◦(glN ) → (EndCN )⊗m [[u−1
1 , . . . , u−1

m ]]

and the extension is still denoted by ρ∗
u1...um

. Using Propositions 13.2 and 13.5, the
relation (14.7) can be rewritten as

T1(u1) . . . Tm(um) (ρ∗
u1...um

⊗ id) (∆(W ))

= (ρ∗
u1...um

⊗ id) (∆′(W ))T1(u1) . . . Tm(um) .

It suffices to verify the latter relation for each of the series T ∗
ij(v) being substituted

for the element W . By the definition (10.7), the substitution yields the relation of
the formal power series in u−1

1 , . . . , u−1
m and v with the coefficients in the algebra

(EndCN )⊗m ⊗DY(glN ) ,

T1(u1) . . . Tm(um) ×

N∑

k1,...,km=1

ρ∗
u1
(T ∗

ik1
(v))⊗ ρ∗

u2
(T ∗

k1k2
(v))⊗ . . .⊗ ρ∗um

(T ∗
km−1km

(v))⊗ T ∗
kmj(v) =

N∑

k1,...,km=1

ρ∗
u1
(T ∗

k1k2
(v))⊗ . . .⊗ ρ∗

um−1
(T ∗

km−1km
(v))⊗ ρ∗

um
(T ∗

kmj(v))⊗ T ∗
ik1

(v)

× T1(u1) . . . Tm(um) .

Let us now take the tensor products of both sides of this relation with the element
eij ∈ EndCN , and then sum over the indices i, j = 1 . . . , N . By using the identity

eij = eik1
ek1k2

. . . ekm−1km
ekmj
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in EndCN , we arrive at the following relation of series with the coefficients from
the tensor product (EndCN )⊗m ⊗DY(glN )⊗ EndCN :

(T1(u1) . . . Tm(um)⊗ 1)R1,m+1(u1 − v) . . . Rm,m+1(um − v) (1⊗ T ∗(v))

= (1⊗ T ∗(v))R1,m+1(u1 − v) . . . Rm,m+1(um − v) (T1(u1) . . . Tm(um)⊗ 1) .

Here the subscript m + 1 labels the last tensor factor EndCN , which comes after
DY(glN ). This relation can be proved by using (14.1) repeatedly, i.e. m times. �

We have now established the following theorem explicitly decribing DY(glN ) .

Theorem 14.4. The algebra DY(glN ) is generated by elements T
(r)
ij , T

(−r)
ij with

1 6 i, j 6 N and r > 1 subject only to the relations (2.8),(10.5) and (14.4).

Note that the relation (14.4) is equivalent to the collection of relations

(u− v) [Tij(u), T
∗
kl(v) ] =

N∑

m=1

(
δjk Tim(u)T ∗

ml(v)− δil T
∗
km(v)T ∗

mj(u)
)

for all i, j, k, l = 1, . . . , N . We omit the proof of the equivalence, as it is very similar
to the proof of Proposition 2.2. The last displayed relation can be rewritten as

[Tij(u), T
∗
kl(v) ] =

∞∑

p=0

N∑

m=1

u−p−1vp
(
δjk Tim(u)T ∗

ml(v)− δil T
∗
km(v)Tmj(u)

)
.

Expanding here the series in u, v and equating the coefficients at u−rvs−1 we get

[T
(r)
ij , T

(−s)
kl ] =

r∑

a=max(1,r−s+1)

(
δjk

(
δa,r−s+1 T

(r−s)
il +

N∑

m=1

T
(a−1)
im T

(r−s−a)
ml

)

− δil

(
δa,r−s+1 T

(r−s)
kj +

N∑

m=1

T
(r−s−a)
km T

(a−1)
mj

))

for any indices r, s > 1. Here we keep to the notation T
(0)
ij = δij .

We will complete this section with describing a bialgebra structure on DY(glN ).
The algebra DY(glN ) is generated by its two subalgebras, Y(glN ) and Y∗(glN ). We
have already shown that the assignments (4.1) and (10.7) define comultiplications
on these two subalgebras, while the assignments ε : T (u) 7→ 1 and ε : T ∗(v) 7→ 1
define counit maps on them; see Propositions 4.1 and 10.1. Let us now replace the
comultiplication ∆ on Y∗(glN ) by its opposite comultiplication ∆′.

Proposition 14.5. The double Yangian DY(glN ) is a bialgebra over C with the

comultiplication defined by extending ∆ on Y(glN ) and ∆′ on Y∗(glN ), and with

the counit defined by mapping T (u), T ∗(v) 7→ 1.

Proof. Using the equivalent form (14.4) of the defining relations (14.1), the proof
is similar to that of the proof of Proposition 4.1. Here we omit the details. �

15. Filtration on the double Yangian

In Section 5 we explained that the associative algebra Y(glN ) can be regarded as
a flat deformation of the universal enveloping algebra U(glN [z]). Our explanation
was based on Proposition 5.1. In the present section we establish an analogue of
that result for the double Yangian DY(glN ) .
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In order to do so, let us replace the descending filtration on the algebra Y∗(glN )

by an ascending filtration, such that any generator T
(−r)
ij with r > 1 has the degree

−r . Relative to this ascending filration on Y∗(glN ), the subspace of elements of
degree not more than −r coincides with the subspace of the elements of degree not
less than r relative to the descending filtration. Let us now combine the ascending
filtration on Y∗(glN ) with the ascending filtration on Y(glN ) used in Section 8.
That is, now introduce an ascending Z -filtration on the algebra DY(glN ) by setting

deg ′T
(r)
ij = r − 1 and deg ′T

(−r)
ij = −r

for each index r > 1. Denote by gr ′ DY(glN ) the corresponding Z -graded algebra.

Keeping to the notation of Section 8, for any r > 1 let T̃
(r)
ij be the image of T

(r)
ij in

the degree r − 1 component of gr ′ DY(glN ) . Since we are now using an ascending
filtration on Y∗(glN ) instead of the descending one, for any r > 1 we will denote by

T̃
(−r)
ij the image of T

(−r)
ij in the degree −r component of gr ′ DY(glN ) . So T̃

(−r)
ij

now formally gets a new meaning, which should not cause any confusion however.

Lemma 15.1. In the graded algebra gr ′ DY(glN ) for any r, s > 1 we have

[ T̃
(r)
ij , T̃

(−s)
kl ] =





δkj T̃
(r−s)
il − δil T̃

(r−s)
kj if r − s > 0,

δkj T̃
(r−s−1)
il − δil T̃

(r−s−1)
kj if r − s 6 0.

Proof. This follows from the relation displayed in Section 14 last. Indeed, relative
to the ascending filtration on DY(glN ) the commutator at the left hand side of that
relation has the degree r− s− 1 for any r, s > 1. For r− s > 0 the sum at the right
hand side equals

δjk T
(r−s)
il − δil T

(r−s)
kj

plus terms of degree not more that r − s− 2 . For r − s = 0 that sum equals

δjk
(
δil + T

(−1)
il

)
− δil

(
δkj + T

(−1)
kj

)
= δjk T

(−1)
il − δil T

(−1)
kj

plus terms of degree not more that −2. Finally, for r − s < 0 that sum equals

δjk T
(r−s−1)
il − δil T

(r−s−1)
kj

plus terms of degree not more that r − s− 2 . �

The graded algebra gr ′ DY(glN ) inherits from DY(glN ) a bialgebra structure,
see Proposition 14.5. Moreover gr ′ DY(glN ) is a Hopf algebra, see the remarks we
made just before Proposition 12.3.

Proposition 15.2. The graded Hopf algebra gr ′ DY(glN ) is isomorphic to universal

enveloping algebra U(glN [z, z−1] ) .

Proof. Consider the subalgebras gr ′ Y(glN ) and gr ′ Y∗(glN ) of the graded algebra
gr ′ DY(glN ) . We have an isomorphism (5.7) of graded algebras defined by the
assignments (5.6). Further, due to Lemma 12.1 a surjective homomorphism

U(z−1glN [z−1] ) → gr ′ Y∗(glN )

can be defined by

Eij z
−r 7→ T̃

(−r)
ij for r > 1 .

Lemma 15.1 ensures that these two homomorphisms extend to a homomorphism

(15.1) U(glN [z, z−1] ) → gr ′ DY(glN ) .
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This homomorphism is surjective and we will prove that it is injective as well. Our
proof will be similar to the proof of injectivity of the homomorphism (5.7) given at
the end of Section 8. But now we will use Propositions 14.1 and 14.5.

Take any finite linear combination C of the products

(E i1j1 z
s1) . . . (E imjm z sm) ∈ U(glN [z, z−1] )

with certain coefficients

C s1...sm
i1j1...imjm

∈ C

where the indices s1 , . . . , sm ∈ Z and the number m > 0 may vary; the indices
i1, j1, . . . , im, jm may vary as well. Suppose C 6= 0 as an element of U(glN [z, z−1]) .
The algebra U(glN [z, z−1]) comes with a natural Z-grading such that for any integer
s the generator Eij z

s has the degree s. The homomorphism (15.1) preserves this
grading. Without loss of generality, suppose that the element C is homogeneous of
degree d with respect to this grading. That is,

C s1...sm
i1j1...imjm

= 0 if s1 + · · ·+ sm 6= d.

Now define the element A ∈ DY(glN ) as the sum
∑

s1+···+sm=d

C s1...sm
i1j1...imjm

T
(r1)
i1j1

. . . T
(rm)
imjm

where for every k = 1, . . . ,m we set rk = sk if sk < 0 , and rk = sk + 1 if sk > 0 .
Let B be the image of A in the d -th component of the graded algebra gr ′ DY(glN ) .
The element B coincides with the image of C under the homomorhism (15.1).

For any non-zero complex number c the evaluation representation (6.4) of the
algebra U(glN [z]) can be extended to a representation σ̃c of U(glN [z, z−1]) so that

σ̃c : Eij z
s 7→ cs eij for any s ∈ Z .

Then by (6.3) and (14.3) we have

σ̃c(Eij z
s ) =

{
σc(T

(s)
ij ) if s < 0 ,

σc(T
(s+1)
ij ) if s > 0 .

Now let c1, . . . , cn be any non-zero complex numbers. Let D ∈ (EndCN )⊗n be
the image of C under the tensor product of the representations σ̃c1 , . . . , σ̃cn of the
algebra U(glN [z, z−1]) . Denote by σc1... cn the tensor product of the representations
σc1 , . . . , σcn of the algebra DY(gln) ; here we use Proposition 14.5. The image of
A ∈ DY(glN ) under the representation σc1... cn is a Laurent polynomial in c1, . . . , cn .
The degree of this polynomial does not exceed d , see (4.4) and (10.8). The sum of
the terms of degree d of this polynomial equals D, see the proof of Proposition 8.1.

For any finite-dimensional Lie algebra a there is an analogue of Lemma 7.1 for
a [z, z−1] instead of a [z]. The proof of that analogue is similar to that of Lemma 7.1
itself and is omitted here. Using that analogue, we can choose n and c1, . . . , cn 6= 0
so that D 6= 0. Then deg ′A = d. Indeed, if we had deg ′A < d then the degree of
the Laurent polynomial σc1... cn(A) would be also less then d . This would contradict
to the non-vanishing of D. By the definition of the element B ∈ gr ′ Y(glN ) , the
equality deg ′A = d means that B 6= 0. So the homomorphism (15.1) is injective.

Comparing the definitions (5.2),(5.3) and (12.7),(12.8) with general definitions
(5.4),(5.5) now completes the proof of the proposition. �
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By applying the Poincaré–Birkhoff–Witt theorem [2, Section 2.1] to the current
Lie algebra glN [z, z−1] we now obtain its analogue for the double Yangian DY(glN ) .

Theorem 15.3. Given any linear ordering of the set of generators T
(r)
ij and T

(−r)
ij

with r > 1 , any element of the algebra DY(glN ) can be uniquely written as a linear

combination of ordered monomials in these generators.

Corollary 15.4. The defining homomorphisms of the algebras Y(glN ) and Y∗(glN )
to DY(glN ) are embeddings.

We will now use our ascending filtration on DY(glN ) to show that in the initial
definition of this algebra, the relations (14.1) can be replaced by the relations

(15.2) ∆(X) R = R ∆′(X) for every X ∈ Y(glN ) .

Here ∆′ is the comultiplication on Y(glN ) opposite to (4.1). The infinite sums at
both sides of the relations (15.2) can be regarded as elements of the tensor product
of Y(glN ) and of the completion of DY(glN ) relative to our ascending filtration. The
completion of Y∗(glN ) as a subalgebra of DY(glN ) then coincides with Y◦(glN ) .

Proposition 15.5. Relations (15.2) in the algebra DY(glN ) are equivalent to (14.1).

Proof. Let Y1, Y2, . . . be the basis of Y(glN ) from the proof of Proposition 13.1. Let

Yp Yq =

∞∑

r=1

ar
pq Yr and ∆(Yr) =

∞∑

p,q=1

brpq Yp ⊗ Yq

so that ar
pq , b

r
pq ∈ C are the structure constants of the bialgebra Y(glN ) relative to

this basis. Since the system of vectors Y ′
1 , Y

′
2 , . . . of Y◦(glN ) is dual to the system

Y1, Y2, . . . relative to the bialgebra pairing (11.1), we also have the equalities

Y ′
p Y

′
q =

∞∑

r=1

brpq Y
′
r and ∆(Y ′

r ) =

∞∑

p,q=1

ar
pq Y

′
p ⊗ Y ′

q .

Here we extend the comultiplication ∆ on Y∗(glN ) to Y◦(glN ) as we did just after
stating Proposition 10.1.

It suffices to take X = Yr with r = 1, 2, . . . in the relations (15.2). Hence we get

∞∑

p,q,s=1

brpq (Yp Y
′
s )⊗ (Yq Ys) =

∞∑

p,q,s=1

brpq (Y
′
s Yq)⊗ (Ys Yp)

or
∞∑

p,q,s,t=1

a t
qs b

r
pq (Yp Y

′
s )⊗ Yt =

∞∑

p,q,s,t=1

a t
sp b

r
pq (Y

′
s Yq)⊗ Yt .

So the relations (15.2) are equivalent to the relations in our completion of DY(glN )

(15.3)

∞∑

p,q,s=1

a t
qs b

r
pq Yp Y

′
s =

∞∑

p,q,s=1

a t
sp b

r
pq Y

′
s Yq where r , t = 1, 2, . . . .

The vectors Y ′
1 , Y

′
2 , . . . have been determined by (13.2) using a basis Y ∗

1 , Y
∗
2 , . . .

of Y∗(glN ) . We also have the equalities

(15.4) Y ∗
s =

∞∑

r=1

frs Y
′
r
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where frs = 〈Yr , Y
∗
s 〉 . The matrix [ grs ] used in (13.2) is inverse to [ frs ] . Due to

(13.2) and (15.4) we can replace W ∈ Y∗(glN ) by Y ′
t ∈ Y◦(glN ) with t = 1, 2, . . .

in the relations (14.1). In this way we get
∞∑

p,q,s=1

a t
pq (Y

′
s Y

′
p)⊗ (Ys Y

′
q ) =

∞∑

p,q,s=1

a t
pq (Y

′
q Y

′
s )⊗ (Y ′

p Ys)

or
∞∑

p,q,r,s=1

a t
pq b

r
sp Y

′
r ⊗ (Ys Y

′
q ) =

∞∑

p,q,r,s=1

a t
pq brqs Y

′
r ⊗ (Y ′

p Ys) .

So the relations (14.1) are equivalent to the relations in our completion of DY(glN )
∞∑

p,q,s=1

a t
pq b

r
sp Ys Y

′
q =

∞∑

p,q,s=1

a t
pq brqs Y

′
p Ys where r , t = 1, 2, . . . .

By cyclically permuting the summation indices in these relations we get (15.3). �

Corollary 15.6. The coefficients of the series Z(u) lie in the centre of DY(glN ) .

Proof. The coefficients of Z(u) lie in the centre of Y(glN ) by Lemma 3.3. To prove
that they commute with the elements of Y∗(glN ) as a subalgebra of DY(glN ) let us
substitute the series Z(u) for X ∈ Y(glN ) in (15.2). Due to Proposition 4.2 we get

∞∑

s=1

(Z(u)Y ′
s )⊗ (Z(u)Ys) =

∞∑

s=1

(Y ′
s Z(u))⊗ (Ys Z(u)) .

As the coefficients of Z(u) are central in Y(glN ) , dividing this by 1⊗ Z(u) yields
∞∑

s=1

(Z(u)Y ′
s )⊗ Ys =

∞∑

s=1

(Y ′
s Z(u))⊗ Ys .

It follows that the coefficients of Z(u) commute with every Y ′
s in our completion of

the algebra DY(glN ) . By using the relations (15.4) we now get the corollary. �

Now consider the series Z ◦(v) appearing in Lemma 10.2. Arguing as in the proof
of the Corollary 15.6, but using the relations (14.1) and Proposition 10.4 instead of
the relations (15.2) and Proposition 4.2, we can show that the coefficients of Z ◦(v)
belong to the centre of our completion of the algebra DY(glN ) . However, in general
these coefficients do not belong to the algebra DY(glN ) itself, see Section 10 again.

Our completion of the algebra DY(glN ) can also be used to rewrite the relations
(10.5) and (14.4) similarly to (2.8). Take the element T ♮(v) inverse to T ∗(v) . In the
notation analogous to (10.4) the equality (10.5) of series in u and v with coefficients
in Y∗(glN )⊗ (EndCN )⊗2 can be then rewritten as the equality

R(u− v)T ♮
1 (u)T

♮
2 (v) = T ♮

2 (v)T
♮
1 (u)R(u− v)

of series with coefficients in Y◦(glN )⊗ (EndCN )⊗2 . The (14.4) can be rewritten as

R(u− v) (T (u)⊗ 1) (1⊗ T ♮(v)) = (1⊗ T ♮(v)) (T (u)⊗ 1)R(u− v) .
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